
1/11

securelist.com /triangulation-validators-modules/110847/

The outstanding stealth of Operation Triangulation

Authors

 Georgy Kucherin

 Leonid Bezvershenko

 Valentin Pashkov

Introduction
In our previous blogpost on Triangulation, we discussed the details of TriangleDB, the main implant used
in this campaign, its C2 protocol and the commands it can receive. We mentioned, among other things,
that it is able to execute additional modules. We also mentioned that this operation was quite stealthy.
This article details one important aspect of this attack – the stealth that was exercised by the threat actor
behind it. Along the way, we will also reveal more information about the components used in this attack.

Validation components
In our previous blogposts, we outlined the Operation Triangulation infection chain: a device receives a
malicious iMessage attachment that launches a chain of exploits, and their execution ultimately results in
the launch of the TriangleDB implant. In more detail, the infection chain can be summarized with the
following graph:

https://securelist.com/triangulation-validators-modules/110847/
https://securelist.com/author/georgykucherin/
https://securelist.com/author/leonidbezvershenko/
https://securelist.com/author/valentinpashkov/
https://securelist.com/triangledb-triangulation-implant/110050/
https://securelist.com/trng-2023/

2/11

Apart from the exploits and components of the TriangleDB implant, the infection chain contains two
“validator” stages, namely “JavaScript Validator” and “Binary Validator”. These validators collect various
information about the victim device and send it to the C2 server. This information is then used to assess if
the iPhone or iPad to be implanted with TriangleDB could be a research device. By performing such
checks, attackers can make sure that their 0-day exploits and the implant do not get burned.

JavaScript Validator
At the beginning of the infection chain, the victim receives an invisible iMessage attachment with a zero-
click exploit. The ultimate goal of this exploit is to silently open a unique URL on the backuprabbit[.]com
domain. The HTML page hosted on that URL contains obfuscated JavaScript code of the NaCl
cryptography library, as well as an encrypted payload. This payload is the JavaScript validator. This
validator performs a lot of various checks, including different arithmetic operations like Math.log(-1) or
Math.sqrt(-1), availability of components such as Media Source API, WebAssembly and others.

And, as we already mentioned, it performs a fingerprinting technique called Canvas Fingerprinting by
drawing a yellow triangle on a pink background with WebGL and calculating its checksum:

JavaScript

1

2

3

4

5

context.bufferData(context.ELEMENT_ARRAY_BUFFER, l, context.STATIC_DRAW);

context.useProgram(C);

context.clearColor(0.5, 0.7, 0.2, 0.25);

context.clear(context.COLOR_BUFFER_BIT);

context.drawElements(context.TRIANGLES, l.length, context.UNSIGNED_SHORT, 0);

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23054731/Triangulation-modules_en-ru_01.png
https://www.kaspersky.com/blog/triangulation-attack-on-ios/48353/

3/11

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

C.L = context.getAttribLocation(C, Z('VE'));

C.W = context.getUniformLocation(C, Z('Zv'));

context.enableVertexAttribArray(C.L);

context.vertexAttribPointer(C.L, 3, context.FLOAT, !1, 0, 0);

context.uniform2f(C.W, 1, 1);

context.drawArrays(context.TRIANGLE_STRIP, 0, 3);

var h = new Uint8Array(262144);

context.readPixels(0, 0, 256, 256, context.RGBA, context.UNSIGNED_BYTE, h);

data['xT'] = h[88849];

data['jHWOO'] = h[95054];

data['aRR'] = h[99183];

data['ffJEi'] = h[130012];

for (var p = 0, _ = 0; _ < h.length; _++)

 p += h[_];

data['WjOn'] = p;

Code drawing the triangle

The drawn triangle

This triangle is, in fact, why we dubbed this whole campaign Operation Triangulation.

After running the validator, it encrypts and sends all collected information to another unique URL on
backuprabbit[.]com in order to receive (or not) the next stage of the infection chain.

Binary Validator

As we see from the infection chain graph, this validator gets launched prior to deployment of the
TriangleDB implant. As opposed to the JavaScript Validator, which is a script, this validator is a Mach-O

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23124743/Triangulation-modules_en-ru-02.png

4/11

binary file (hence the name Binary Validator). When launched, it decrypts its configuration using AES.
This configuration is a plist:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<key>sco</key>

 <array>

 <string>DeleteLogs</string>

 <string>DeleteArtifacts</string>

 <string>ProcessList</string>

 <string>InterfaceList</string>

 <string>JailbreakDetect</string>

 <string>EnableAdTracking</string>

 <string>DeviceInfo</string>

 <string>InstalledApps</string>

 </array>

 <key>sda</key>

 <dict>

 <key>sdf</key>

 <array/>

 <key>sdi</key>

 <true/>

 <key>sdk</key>

 <array>

 <string>c99218578c03cfe347fababc838dd9f2</string>

 <string>3d527800ad9418b025340775eaf6454c</string>

 <string>07d2143cea9fe70f7a0fcc653a002403</string>

 <string>c66cc1d90cce4e9cb6b631e063c83d61</string>

This plist contains a list of actions (such as DeleteLogs, DeleteArtifacts, etc.) that have to be performed
by the validator. Specifically, it:

Removes crash logs from the /private/var/mobile/Library/Logs/CrashReporter directory that could
have been created during the exploitation process;
Searches for traces of the malicious iMessage attachment in various databases, such as ids-pub-
id.db or knowledgeC.db, and then removes them. To be able to do that, the validator’s configuration

5/11

contains 40 MD5 hashes of Apple IDs that are used for sending the malicious iMessages. We
managed to crack the majority of these hashes, thus obtaining a list of attacker-controlled Apple ID
email addresses:

mailto:travislong544[at]yahoo.com
 mailto:norsarall87[at]outlook.com

 mailto:jesteristhebestband[at]gmail.com
 mailto:christineashleysmith[at]gmail.com
 mailto:homicidalwombat[at]yahoo.com

 mailto:nigelmlevy[at]gmail.com
 mailto:supercatman15[at]hotmail.com

 mailto:shannonkelly404[at]gmail.com
 mailto:superhugger21[at]gmail.com

 mailto:parkourdiva[at]yahoo.com
 mailto:naturelover1972[at]outlook.com

 mailto:sasquatchdreams[at]outlook.com
 mailto:trunkfullofbeans[at]yahoo.com

 mailto:danielhbarnes2[at]gmail.com
 mailto:patriotsman121[at]gmail.com
 mailto:wheelsordoors[at]yahoo.com
 mailto:janahodges324[at]gmail.com
 mailto:mibarham[at]outlook.com

mailto:tinyjax89[at]gmail.com
 mailto:nonbaguette[at]yahoo.com

 mailto:slbrimms96[at]outlook.com
 mailto:costamaria91[at]outlook.com

 mailto:hyechink97[at]gmail.com
 mailto:greatoleg9393[at]mail.com

 mailto:popanddangle[at]outlook.com
 mailto:maxjar90[at]mail.com

 mailto:chongwonnam[at]gmail.com
 mailto:wopperplopper1[at]aol.com

 mailto:bajablaster101[at]gmail.com
 mailto:carlson31773[at]outlook.com
 mailto:fsozgur[at]outlook.com

 mailto:soccerchk835[at]gmail.com
 mailto:stephamartinez122[at]gmail.com

 mailto:popcornkerner[at]gmail.com
 mailto:pupperoni1989[at]outlook.com

 mailto:biglesterjames5[at]gmail.com

Gets a list of processes running on the device, as well as a list of network interfaces;
Checks whether the target device is jailbroken. The validator implements checks for a wide range
of jailbreak tools: Pangu, xCon, Evasion7, Electra, unc0ver, checkra1n and many more;
Turns on personalized ad tracking;
Collects a wide range of information about the victim, such as username, phone number, IMEI and
Apple ID;
Retrieves a list of installed applications.

What is interesting about these actions is that the validator implements them both for iOS and macOS
systems:

We also found that the validator implements an unused action, which was dubbed PSPDetect by the
attackers.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23054743/Triangulation-modules_en-ru_03.png

6/11

This action retrieves a list of files from the validator’s configuration (this list was empty for the validator
configurations that we analyzed), checks if they are present in the file system and produces a list of found
files as output.

The abbreviation PSP in the name of this action may mean “personal security product,” or, in simpler
terms, a security solution. It is thus possible that this action may be launched on macOS devices in order
to detect installed antivirus products.

Having executed all these actions, the validator encrypts and sends the obtained data (list of processes,
user information, etc.) to the C2 server. In response, the server returns the TriangleDB implant, which we
described before.

Looking for traces in logs, again
The threat actor behind Operation Triangulation exercises stealth not only by introducing two validators in
the infection chain. In fact, they perform all operations with the TriangleDB implant very carefully. This can
be observed from our analysis of commands sent by the attackers to the infected devices via this implant.

After the implant establishes communication with the C2 server and sends a heartbeat, it receives
multiple CRXShowTables and CRXFetchRecord commands from the C2 server. These commands are
related to retrieval of logs that might show traces of the infection chain and/or the malware itself. Some of
the files that are retrieved are:

Crash log files (e.g. those in the /var/mobile/Library/Logs/CrashReporter);
Database files (e.g. /private/var/mobile/Library/IdentityServices/ids-gossip.db). These database
files may contain the Apple ID used by the attackers to send the malicious iMessage.

Once the attackers receive these files, they delete them from the device, so that the victim can’t examine
them and potentially find signs of compromise. Having completed log collection and deletion, the
attackers send multiple CRXPollRecords commands to the implant, instructing it to periodically exfiltrate
files from the /private/var/tmp directory. The names of the files to be uploaded to the C2 server should
match one of the following regular expressions:

Regular expression Type of data
^(kng|dky).+\.dat$ Location data
^adr3.+\.dat$ SQL-related data

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23124704/Triangulation-modules_en-ru-04.png

7/11

^sr6d.+\.(dat|srm)$ Microphone-recorded data
^S5L.+\.kcd$ Keychain data
^ntc.+\.db2$ Unknown
^(\w[247F][023A][24BC]|\w[4AEF]

[349B][169D]){2}-\w[05AF][3468]

[124C]-4[123A][09AD][356A]-

[89AB]\w\w\w-(\w[126A][24CE]

[348B]|\w[29DE][168D][156D]){3}$

Unknown

The files with these names contain execution results produced by modules. These modules are uploaded
to the infected device through the CRXUpdateRecord and CRXRunRecord commands – we describe
them below.

Microphone recording

One of the most privacy-invading modules is the microphone-recording module, which goes by the name
of “msu3h” (we believe 3h stands for three hours, the default recording duration). Upon execution, it
decrypts (using a custom algorithm derived from GTA IV hashing) its configuration, but it performs further
actions only if the battery is more than 10% charged.

The configuration file itself contains typical configuration data, such as how long to record for and the
AES encryption key used to encrypt recordings, but also more menacing parameters, such as:

suspendOnDeviceInUse: sets whether recording should be stopped if the device screen is turned
on;
syslogRelayOverride: sets whether audio should be recorded when system logs are being
captured.

The recording takes place using the Audio Queue API, and sound chunks are compressed using the
Speex codec, then encrypted using AES. Apart from sound data, each recording contains diagnostic
messages, which have a four-byte type identifier, which can either be:

Identifier Message
0x6265676E recording started
0x736C726E recording stopped because of syslog monitoring

0x6465766E recording stopped because device screen got
turned on

0x6964736E recording stopped because of insufficient disk
space

0x656E646E recording finished

Keychain exfiltration

For an unknown reason, the attackers decided to add an additional keychain exfiltration module, despite
such functionality already being present in TriangleDB. This keychain module has the same logic as that
in TriangleDB, but is largely based on code from the iphone-dataprotection.keychainviewer project.

SQLite stealing modules

https://code.google.com/archive/p/iphone-dataprotection/

8/11

Many apps on iOS use SQLite to store their internal data. It is thus of no surprise that the attackers
implemented modules capable of stealing data from various SQLite databases. All these modules have
the same codebase, and contain different SQL queries to be executed. Again, they have a configuration
that is encrypted. When this is decrypted, only standard variables such as file path, AES key, query
string, etc. can be found.

The code of these modules is quite peculiar. For example, the attackers implemented a wrapper around
the fopen() function, adding the Z flag (indicating that a created file should be AES-encrypted and zlib-
compressed) used in combination with the standard w (write) flag, as can be seen in the image below.

What is also interesting is that the SQLite stealing modules contain three branches of code for different
iOS versions: lower than 8.0, between 8.0 and 9.0, and 9.0 and later.

Each module that we found performs different SQL database queries. For example, there is a module
that processes application usage data from the knowledgeC.db database. Another module extracts
photo-related metadata, such as whether a child is in the picture or not, if the person is male or female
(see image below) and text that was automatically OCRed from media files.

Oracle PL/SQL

1

2

3

4

5

6

7

8

9

...

END AS 'Face(s) Detected',

CASE face.ZAGETYPE

 WHEN 1 THEN 'Baby / Toddler'

 WHEN 2 THEN 'Baby / Toddler'

 WHEN 3 THEN 'Child / Young Adult'

 WHEN 4 THEN 'Young Adult / Adult'

 WHEN 5 THEN 'Adult'

 else 'Unknown'

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23055710/Triangulation-modules_en-ru_05.png

9/11

10

11

12

13

14

15

16

17

END AS 'Subject Age Estimate',

CASE face.ZGENDERTYPE

 WHEN 1 THEN 'Male'

 WHEN 2 THEN 'Female'

 else 'Unknown'

END AS 'Subject Gender',

person.ZDISPLAYNAME AS 'Subject Name'

...

It should also come as no surprise that the attackers expressed interest in WhatsApp, SMS and Telegram
messages as well – we found modules exfiltrating this data too.

Location-monitoring module
This module runs in a separate thread and tries to impersonate the bundle that is authorized to use the
location services specified in the configuration (e.g. /System/Library/LocationBundles/Routine.bundle).
Apart from using GPS to determine the location, it also uses GSM, retrieving the MCC
(MobileCountryCode), MNC (MobileNetworkCode), LAC (LocationAreaCode) and CID (CellID) values
through the CoreTelephony framework.

One reason for using GSM-related data is to estimate the victim’s location when GPS data is not
available.

10/11

Conclusion

The adversary behind Triangulation took great care to avoid detection. They introduced two validators in
the infection chain in order to ensure that the exploits and the implant do not get delivered to security
researchers. Additionally, microphone recording could be tuned in such a way that it stopped when the
screen was being used. The location tracker module may not use standard GPS functionality if this is
unavailable, but rather metadata from the GSM network.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2023/10/23055718/Triangulation-modules_en-ru_06.png

11/11

The attackers also showed a great understanding of iOS internals, as they used private undocumented
APIs in the course of the attack. They additionally implemented in some modules support for iOS
versions prior to 8.0. Recall that these were widely used before 2015, which gives an indication of just
how long the code of the modules has been in use.

Last but not least, some of the components used in this attack contain code that may indicate that they
are targeting macOS systems as well, although, as of the publication date, no Triangulation traces have
been encountered on macOS devices.

Even though Operation Triangulation was executed with a high degree of stealth, we were still able to
extract the full exploitation chain, as well as the implant and its plugins. If you want to find how we
managed to circumvent all the protections introduced by the attackers, we encourage you to attend the
SAS conference, where Igor Kuznetsov will present a talk entitled “Operation Triangulation: Сonnecting
the Dots” and the story of how this long-lasting attack was put to a stop. If you are not able to make it to
Phuket, you can read the blogpost summarizing this talk that we will release shortly after SAS.

https://thesascon.com/

