
1/11

www.welivesecurity.com /en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/

Stealth Falcon preying over Middle Eastern skies with Deadglyph

ESET Research

ESET researchers have discovered Deadglyph, a sophisticated backdoor used by the infamous Stealth Falcon group
for espionage in the Middle East

ESET Research

22 Sep 2023 • , 21 min. read

For years, the Middle East has maintained its reputation as a fertile ground for advanced persistent threats (APTs). In
the midst of routine monitoring of suspicious activities on the systems of high-profile customers, some based in this
region, ESET Research stumbled upon a very sophisticated and unknown backdoor that we have named Deadglyph.
We derived the name from artifacts found in the backdoor (such as 0xDEADB001, shown also in Table 1), coupled
with the presence of a homoglyph attack. To the best of our knowledge, this is the first public analysis of this
previously undocumented backdoor, used by a group that exhibits a notable degree of sophistication and expertise.
Based on the targeting and additional evidence, we attribute Deadglyph with high confidence to the Stealth Falcon
APT group.

Deadglyph’s architecture is unusual as it consists of cooperating components – one a native x64 binary, the other a
.NET assembly. This combination is unusual because malware typically uses only one programming language for its
components. This difference might indicate separate development of those two components while also taking
advantage of unique features of the distinct programming languages they utilize. Different language can also be
harnessed to hinder analysis, because mixed code is more difficult to navigate and debug.

The traditional backdoor commands are not implemented in the backdoor binary; instead, they are dynamically
received by it from the command and control (C&C) server in the form of additional modules. This backdoor also
features a number of capabilities to avoid being detected.

In this blogpost, we take a closer look at Deadglyph and provide a technical analysis of this backdoor, its purpose,
and some of the additional components we obtained. We are also presenting our findings about Deadglyph at the
LABScon 2023 conference.

Key points of the blogpost:

ESET Research discovered a sophisticated backdoor with unusual architecture that we have
named Deadglyph.
The main components are encrypted using a machine-specific key.
Traditional backdoor commands are implemented via additional modules received from its C&C
server.
We obtained three out of many modules – process creator, file reader, and info collector.
We attribute Deadglyph to the Stealth Falcon group.

https://www.welivesecurity.com/en/eset-research/stealth-falcon-preying-middle-eastern-skies-deadglyph/
https://undefined/en/our-experts/eset-research/
https://undefined/en/our-experts/eset-research/
https://www.labscon.io/speakers/filip-jurcacko/

2/11

Additionally, we found a related shellcode downloader; we postulate it could potentially be used for
installation of Deadglyph.

The victim of the analyzed infiltration is a governmental entity in the Middle East that was compromised for espionage
purposes. A related sample found on VirusTotal was also uploaded to the file-scanning platform from this region,
specifically from Qatar. The targeted region is depicted on the map in Figure 1.

Figure 1. Victimology of Deadglyph; the related sample was uploaded to VirusTotal from Qatar (in darker color)

Stealth Falcon (also known as Project Raven or FruityArmor) is a threat group linked to the United Arab Emirates
according to MITRE. Active since 2012, Stealth Falcon is known to target political activists, journalists, and dissidents
in the Middle East. It was first discovered and described by Citizen Lab, which published an analysis of a campaign of
spyware attacks in 2016.

In January 2019, Reuters published an investigative report on Project Raven, an initiative allegedly employing former
NSA operatives and aiming at the same types of targets as Stealth Falcon. Based on these two reports referring to
the same targets and attacks, Amnesty International has concluded (shown in Figure 2) that Stealth Falcon and
Project Raven actually are the same group.

Figure 2. Claudio Guarnieri has connected Stealth Falcon with Project Raven

In September 2019, we published research on a backdoor, attributed to Stealth Falcon, that used an unusual
technique, Background Intelligent Transfer Service, for C&C communication. We now reveal the result of our in-depth
analysis of what presumably is the newest addition to Stealth Falcon’s espionage toolset.

Deadglyph backdoor

Deadglyph’s loading chain consists of multiple components, as illustrated in Figure 3. The initial component is a
registry shellcode loader, which loads shellcode from the registry. This extracted shellcode, in turn, loads the native

https://attack.mitre.org/groups/G0038/
https://citizenlab.ca/about/
https://citizenlab.ca/2016/05/stealth-falcon/
https://www.reuters.com/investigates/special-report/usa-spying-raven/
https://twitter.com/botherder/status/1090590455048347649
https://www.welivesecurity.com/2019/09/09/backdoor-stealth-falcon-group/
https://docs.microsoft.com/en-us/windows/win32/bits/background-intelligent-transfer-service-portal

3/11

x64 part of the backdoor – the Executor. The Executor subsequently loads the .NET part of the backdoor – the
Orchestrator. Notably, the only component on system’s disk as a file is the initial component, which is in the form of a
Dynamic Link Library (DLL). The remaining components are encrypted and stored within a binary registry value.

Figure 3. Deadglyph loading chain components

While the precise method of the initial compromise vector is not yet determined, our suspicion is that an installer
component is involved in deploying further components and establishing persistence within the system.

In the rest of this section, we analyze each component.

Registry shellcode loader

Deadglyph’s initial component is a tiny DLL with a single export, named 1. This component is persisted using
Windows Management Instrumentation (WMI) event subscription and serves as a registry shellcode loader. It is
executed via the command line rundll32 C:\WINDOWS\System32\\pbrtl.dll,#1.

The registry shellcode loader begins its operation by decrypting the path to the encrypted shellcode stored within the
Windows registry, using RC4. We suspect the path is unique for each victim; in the case analyzed here, the registry
path was:

Software\Classes\CLSID\{5abc7f42-1112-5099-b082-ce8d65ba0c47}\cAbRGHLg

The root registry key is either HKLM or HKCU, depending on whether the current process is running with elevated
privileges or not. The same logic can be found in further components.

Following this, the loader derives a machine-specific RC4 key using the system UUID retrieved from the raw SMBIOS
firmware table. Using this key, it loads, decrypts, and then executes the shellcode. It is important to highlight that this
key derivation approach ensures that proper decryption won’t occur if the loader is executed on a different computer.

Interestingly, the loader can also be configured by a flag in its .data section to use a hardcoded key to decrypt the
shellcode, instead of the machine-specific one.

We spotted a homoglyph attack mimicking Microsoft Corporation in the VERSIONINFO resource of this and other PE
components. This method employs distinct Unicode characters that appear visually similar, but in this case not
identical, to the original characters, specifically Greek Capital Letter San (U+03FA, Ϻ) and Cyrillic Small Letter O
(U+043E, о) in Ϻicrоsоft Corpоratiоn.

Registry shellcode

Comprised of two parts, the registry shellcode consists of a decryption routine and an encrypted body. First, the
decryption routine rotates each byte of the encrypted body to the left by one (ROL 0x01). Subsequently, control is
transferred to this decrypted body. The decrypted body consists of a PE loader and a PE file, the latter being the
Executor, which represents the native part of the backdoor. This loader is responsible for parsing and loading the
associated PE file.

Executor

The Executor is the native x64 part of the Deadglyph backdoor, which does the following:

https://attack.mitre.org/techniques/T1546/003/
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemfirmwaretable

4/11

loads its configuration,
initializes the .NET runtime,
loads the embedded .NET part of the backdoor (the Orchestrator), and
acts as a library for the Orchestrator.

First, two default configurations embedded in the .data section are AES-decrypted. The configurations encompass
various parameters, including encryption keys, safety and evasion settings, and the entry point of the subsequent
component.

During the initial execution, those two default configurations are stored within the Windows registry, from where they
are loaded on subsequent runs, enabling the implementation of updates. The registry path for each configuration is
generated with the following format:

{HKCU|HKLM}\Software\Classes\CLSID\{<variable_GUID>}\(Default)

<variable_GUID> is a generated GUID, which is unique to each victim.

Following this, the .NET runtime is initialized, then the Executor RC4-decrypts the .NET part of the backdoor known
as the Orchestrator. The Orchestrator is located within the .rsrc section of the Executor. The configuration specifies
the Orchestrator’s execution method as an entry point. Moreover, a distinct structure is provided to facilitate
accessibility of the Executor’s functions by the Orchestrator.

After launching the Orchestrator, the Executor acts as a support library for the Orchestrator. The Executor contains
many interesting functions; we describe some of them in the following section, in context of their utilization by the
Orchestrator and further loaded modules.

Orchestrator

Written in .NET, the Orchestrator is the main component of the Deadglyph backdoor. This component’s primary role
involves establishing communication with the C&C server and executing commands, often facilitated through the
intermediary role of the Executor. In contrast to the preceding components, the Orchestrator is obfuscated, employing
.NET Reactor. Internally, the backdoor is referred to as agent, which is a common name for the client part in various
post-exploitation frameworks.

Initialization

The Orchestrator first loads its configuration and two embedded modules, each accompanied by its own set of
configurations, from resources. These resources are Deflate compressed and AES encrypted. They are referenced
by an ID that is SHA-1 hashed into a resource name. An overview of these resources is provided in Table 1.

Table 1. Orchestrator resources

Resource name ID
(decimal) ID (hex) Description

43ed9a3ad74ed7ab74c345a876b6be19039d4c8c 25702868650x99337711 Orchestrator
configuration.

3a215912708eab6f56af953d748fbfc38e3bb468 3740250113 0xDEEFB001 Network
module.

42fb165bc9cf614996027a9fcb261d65fd513527 37402503690xDEEFB101
Network
module
configuration.

e204cdcf96d9f94f9c19dbe385e635d00caaf49d 37359247370xDEADB001 Timer
module.

abd2db754795272c21407efd5080c8a705a7d151 37359249930xDEADB101
Timer
module
configuration.

The configuration of the Orchestrator and embedded modules is stored in XML format. An example of an
Orchestrator configuration is shown in Figure 4.

Figure 4. Orchestrator configuration

The description of Orchestrator configuration entries is shown in Table 2.

https://en.wikipedia.org/wiki/Deflate
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

5/11

Table 2. Orchestrator configuration entries

Key Description

k AES key used for persisting module
configurations.

a Network module initialization method name.
b Unknown network module-related flag.
c Timer module initialization method name.

d Flag enabling usage of machine-specific
AES key (system UUID) for resources.

p Network module resource ID.
t Timer module resource ID.

After the resource components are loaded, multiple threads are created to carry out distinct tasks. One of these
threads is responsible for conducting environment checks, a function implemented within the Executor. Another
thread is devoted to establishing periodic communication with the C&C server, enabling the retrieval of commands.
Lastly, a set of three threads is employed for the purpose of executing received commands and subsequently
transmitting any generated output back to the C&C server.

The environment-checking thread monitors running processes to identify unwanted ones. This thread operates with
two distinct lists of process names. If a process on the first list is detected, C&C communication and command
execution is paused until the unwanted process no longer exists. If there is a match for any process on the second
list, the backdoor immediately quits and uninstalls itself.

Neither list was configured in the analyzed instance, so we don’t know what processes might typically be checked for;
we believe it is probably intended to evade analysis tools that could detect suspicious activity and lead to discovery of
the backdoor.

Communication

The Orchestrator utilizes two embedded modules for C&C communication – Timer and Network. Like the
Orchestrator, these modules are obfuscated with .NET Reactor. The configuration for both modules is supplied by the
Orchestrator. Within the Orchestrator, a preset configuration for the modules is included; optionally, the Orchestrator
can also load an updated configuration version from the registry:

{HKCU|HKLM}\Software\Classes\CLSID\{<variable_GUID>}\<mod_cfg_res_ID>

The backdoor contains an interesting safety measure related to communication. If the backdoor is unable to establish
communication with the C&C server for a duration surpassing a predefined threshold, configured within the Executor,
a self-uninstallation mechanism is triggered. This time threshold is specified in hours and was set at one hour in the
examined case.

This approach serves a twofold purpose. On one hand, it prevents the generation of redundant network requests
towards an inaccessible server. On the other hand, it reduces the chances of subsequent detection if the operators
lose control over the backdoor.

Timer module

This small module executes the specified callback at a configurable interval. It is used by the Orchestrator in
combination with the Network module to communicate with the C&C server periodically. To prevent the creation of
detectable patterns in network logs, the execution interval is subject to randomization, based on a percentage
specified in the configuration. In the analyzed instance, the interval was set to five minutes, with a ±20% variation
introduced for randomness.

Another method to avoid detectable network patterns in periodic communication can be found in generation of
requests sent to the C&C server. This mechanism, implemented in the Executor, involves the inclusion of padding of
varying length, comprised of random bytes, within the requests, resulting in requests of diverse sizes.

Network module

The Network module implements communication with the C&C servers specified in its configuration. It can send data
to a C&C server using HTTP(S) POST requests. Notably, it offers several mechanisms to acquire proxy configuration
details. This feature suggests a potential focus on environments where direct internet access is not available.

An example of a decrypted (and beautified) configuration is shown in Figure 5.

Figure 5. Network module configuration

6/11

Configuration entries contain details related to network communications – C&C URLs, HTTP User-Agent, and
optionally a proxy configuration.

When communicating with the C&C server, a custom binary protocol with encrypted content is used underneath
HTTPS.

Commands

The Orchestrator receives commands from the C&C server in the form of tasks, which are queued for execution.
There are three kinds of tasks processed:

Orchestrator tasks,
Executor tasks, and
Upload tasks.

The first two kinds are received from the C&C server and the third is created internally to upload the output of
commands and errors.

Orchestrator tasks

Orchestrator tasks offer the ability to manage the configuration of the Network and Timer modules, and also to cancel
pending tasks. The overview of Orchestrator tasks is shown in Table 3.

Table 3. Orchestrator tasks

Type Description

0x80 Set configuration of network and timer
modules.

0x81 Get configuration of network and timer
modules.

0x82 Cancel task.
0x83 Cancel all tasks.

Executor tasks

Executor tasks offer the ability to manage the backdoor and execute additional modules. It’s notable that the
traditional backdoor functionality is not inherently present within the binary itself. Instead, these functions are obtained
from the C&C server in the form of PE files or shellcode. The full extent of the backdoor’s potential remains unknown
without these additional modules, which effectively unlock its true capabilities. An overview of module tasks is shown
in Table 4, which includes details about the few identified modules. Similarly, Table 5 provides an overview of
management tasks associated with the Executor.

Table 4. Executor tasks – modules

Type Description
0x??–0x63 Unknown
0x64 File reader
0x65 Unknown
0x66 Unknown
0x67 Unknown
0x68 Unknown
0x69 Process creator
0x6A Unknown
0x6B Unknown
0x6C Info collector
0x6D Unknown
0x6E Unknown

Table 5. Executor tasks – management

Type Description
0x6F-0x76 Not implemented
0x77 Set Executor

configuration
0x78 Get Executor

configuration
0x79-0x7C Not implemented
0x7D Update
0x7E Quit
0x7F Uninstall

The command that sets the Executor configuration can change the:

unwanted process lists,
time threshold of C&C communication failure, and
time limit for execution of additional modules.

7/11

Modules

We managed to obtain three unique modules from the C&C server, each corresponding to a different Executor task
type, as shown in Table 4. Based on available information, we estimate there are nine to fourteen modules in total. As
the modules are in fact backdoor commands, they have one basic operation to execute and then optionally return
their output. The modules we obtained are DLLs with one unnamed export (ordinal 1), in which they resolve
necessary API functions and call the main function.

When executed, the modules are provided with an API resolution function, which can resolve Windows APIs and
custom Executor APIs. The Windows APIs are referenced by a DWORD hash, calculated from the name of the API
and its DLL. Small hash values (<41) are treated specially, referencing the Executor API function. The Executor API
comprises a total of 39 functions that are accessible to the modules. These functions pertain to a variety of
operations, including:

file operations,
encryption and hashing,
compression,
PE loading,
access Token Impersonation, and
utility.

In the rest of this section, we describe the modules that we obtained.

Process creator

Module 0x69 executes the specified command line as a new process and provides the resulting output back to the
Orchestrator. The process can be created under a different user, and its execution time can be limited. Notably, an
unusual Job API is used in this module’s functionality.

This module was served with the command line cmd.exe /c tasklist /v.

We assume it serves as an idle command issued automatically, while the operators wait for something interesting to
happen on the compromised computer.

Info collector

Module 0x6C collects extensive information about the computer via WMI queries and passes it back to the
Orchestrator. Information about the following is collected:

operating system,
network adapters,
installed software,
drives,
services,
drivers,
processes,
users,
environment variables, and
security software.

File reader

Module 0x64 reads the specified file and passes the content back to the Orchestrator. Optionally, it can delete the file
after reading.

We saw this module used to retrieve the victim’s Outlook data file

c:\Users\<redacted>\AppData\Local\Microsoft\Outlook\outlook.ost.

Chain with shellcode downloader

In the process of investigating Deadglyph, we encountered a dubious CPL file signed with an expired certificate and
no countersignature with a timestamp, which had been uploaded to VirusTotal from Qatar. Upon closer examination, it
became evident that this CPL file functioned as a multistage shellcode downloader, sharing certain code
resemblances with Deadglyph. The loading chain is illustrated in Figure 6.

https://docs.microsoft.com/en-us/windows/win32/api/jobapi2/

8/11

Figure 6. Shellcode downloader loading chain

In its initial form, which serves as the first stage, this file anticipates having a .cpl extension (Control Panel file) and is
meant to be executed via a double-click action. Upon execution in this manner, the embedded shellcode undergoes
XOR decryption, and the running processes are checked to identify a suitable host process for subsequent injection.

If avp.exe (a Kaspersky endpoint security process) is running, %windir%\system32\UserAccountBroker.exe is used.
Otherwise, the default browser is used. Then, it creates the host process in a suspended state, injects the shellcode
by hijacking its main thread, and resumes the thread.

The second stage, the shellcode, consists of two parts. The first part of the shellcode resolves API hashes, using the
same unique hash calculation technique employed in Deadglyph, and decrypts strings with process names. It starts a
self-delete thread tasked with overwriting and subsequently erasing the first-stage file. Following this, the shellcode
proceeds to inspect the currently active processes, targeting a security solution.

If any of the specified processes are detected, the shellcode creates a sleeper thread with the lowest priority
(THREAD_PRIORITY_IDLE) and allows it to remain active for a duration of 60 seconds before terminating its
operation. This interval is likely implemented as a precautionary measure to evade certain detection mechanisms
employed by security solutions. Finally, the shellcode proceeds to invoke the execution of the second part of its code.

The second part of the shellcode loads an embedded PE file with stage three and calls its export with ordinal number
1.

The third stage, a DLL, serves as a .NET loader and contains the payload in its .rsrc section.

To load the payload, the .NET runtime is initialized. During the .NET initialization, two intriguing techniques are
performed, seemingly intended to evade Windows Antimalware Scan Interface (AMSI) scanning:

The .NET loader temporarily hooks theGetModuleHandleW import in the loaded clr.dll, while calling
ICorRuntimeHost::Start. The hook tampers with the return value when GetModuleHandleW is called with NULL.
It returns a pointer to a dummy PE with no sections.
It then subtly patches the AmsiInitialize import name string in the .rdata section of the loaded clr.dll to
amsiinitialize.

The fourth stage is a .NET assembly, obfuscated with ConfuserEx, that serves as a shellcode downloader. First, it
XOR-decrypts its configuration in XML format from its resources. A beautified version of the extracted configuration is
presented in Figure 7. The configuration entries contain details related to network communication and blocklisted
processes.

Figure 7. Shellcode downloader configuration

Before proceeding, it checks the running processes against a list of blocklisted processes from the configuration. If a
match is detected, the execution halts. It is important to note that in the analyzed instance, this blocklist wasn’t set up.

Next, it sends an HTTP GET request to the C&C server to retrieve some shellcode, using parameters specified in the
configuration (URL, User-Agent, and optionally Proxy). Regrettably, during our investigation we were unable to
acquire any shellcode from the C&C server. Nonetheless, we hypothesize that the content being retrieved could
potentially serve as the installer for Deadglyph.

Following this, the retrieved shellcode is executed within a newly created thread. After waiting until the shellcode
thread finishes execution, the shellcode downloader removes all files located in the directory
%WINDIR%\ServiceProfiles\LocalService\AppData\Local\Temp\TfsStore\Tfs_DAV.

Finally, it makes an attempt to delete itself after a 20-second interval, employing the subsequent command, before
concluding its operation and exiting:

cmd.exe choice /C Y /N /D Y /T 20 & Del /f /q <current_process_exe_path>

This self-deletion does not make sense in this chain. This is due to the fact that the shellcode downloader is executed
within a browser or system process after being injected, rather than operating as an independent executable.

https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

9/11

Moreover, the initial file was already deleted by the second stage. This observation suggests that the shellcode
downloader might not be an exclusive payload of this chain and may also be used separately in other operations.

Conclusion
We have discovered and analyzed a sophisticated backdoor used by the Stealth Falcon group that we have named
Deadglyph. It has an unusual architecture, and its backdoor capabilities are provided by its C&C in the form of
additional modules. We managed to obtain three of these modules, uncovering a fraction of Deadglyph’s full
capabilities.

Notably, Deadglyph boasts a range of counter-detection mechanisms, including continuous monitoring of system
processes and the implementation of randomized network patterns. Furthermore, the backdoor is capable of
uninstalling itself to minimize the likelihood of its detection in certain cases.

Additionally, our investigation led us to the discovery of a compelling multistage shellcode downloader chain on
VirusTotal. We suspect this downloader chain is likely leveraged in the installation process of Deadglyph.

For any inquiries about our research published on WeLiveSecurity, please contact us
at threatintel@eset.com.

 ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this
service, visit the ESET Threat Intelligence page.

IoCs
Files

SHA-1 Filename Detection Description

C40F1F46D230A85F702DAA38CFA18D60481EA6C2 pbrtl.dll Win64/Deadglyph.A
Registry
Shellcode
Loader.

740D308565E215EB9B235CC5B720142428F540DB N/A Win64/Deadglyph.A
Deadglyph
Backdoor –
Executor.

1805568D8362A379AF09FD70D3406C6B654F189F N/A MSIL/Deadglyph.A
Deadglyph
Backdoor –
Orchestrator.

9CB373B2643C2B7F93862D2682A0D2150C7AEC7E N/A MSIL/Deadglyph.A
Orchestrator
Network
module.

F47CB40F6C2B303308D9D705F8CAD707B9C39FA5 N/A MSIL/Deadglyph.A
Orchestrator
Timer
module.

3D4D9C9F2A5ACEFF9E45538F5EBE723ACAF83E32 N/A Win64/Deadglyph.A.gen
Process
creator
module.

3D2ACCEA98DBDF95F0543B7C1E8A055020E74960 N/A Win64/Deadglyph.A File reader
module.

4E3018E4FD27587BD1C566930AE24442769D16F0 N/A Win64/Deadglyph.A Info collector
module.

7F728D490ED6EA64A7644049914A7F2A0E563969 N/A Win64/Injector.MD
First stage of
shellcode
downloader
chain.

Certificates

Serial number 00F0FB1390F5340CD2572451D95DB1D92D
Thumbprint DB3614DAF58D041F96A5B916281EA0DC97AA0C29
Subject CN RHM LIMITED
Subject O RHM LIMITED
Subject L St. Albans
Subject S Hertfordshire
Subject C GB
Email rhm@rhmlimited[.]co.uk
Valid from 2021-03-16 00:00:00
Valid to 2022-03-16 23:59:59

C&C servers

IP Domain First seen Comment
185.25.50[.]60 chessandlinkss[.]com 2021-08-25 Deadglyph C&C server.
135.125.78[.]187 easymathpath[.]com 2021-09-11 Deadglyph C&C server.

45.14.227[.]55 joinushealth[.]com 2022-05-29 Shellcode downloader C&C
server.

MITRE ATT&CK techniques

https://undefined/mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=stealth-falcon-preying-middle-eastern-skies-deadglyph/

10/11

This table was built using version 13 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.001
Acquire
Infrastructure:
Domains

Stealth Falcon has registered
domains for C&C servers and to
obtain a code-signing certificate.

T1583.003
Acquire
Infrastructure: Virtual
Private Server

Stealth Falcon has used VPS hosting
providers for C&C servers.

T1587.001 Develop Capabilities:
Malware

Stealth Falcon has developed
custom malware, including custom
loaders and the Deadglyph
backdoor.

T1588.003
Obtain Capabilities:
Code Signing
Certificates

Stealth Falcon has obtained a code-
signing certificate.

Execution

T1047
Windows
Management
Instrumentation

Deadglyph uses WMI to execute its
loading chain.

T1059.003
Command and
Scripting Interpreter:
Windows Command
Shell

Shellcode downloader uses cmd.exe
to delete itself.

T1106 Native API
A Deadglyph module uses
CreateProcessW and
CreateProcessAsUserW API
functions for execution.

T1204.002 User Execution:
Malicious File

The shellcode downloader chain
requires the user to double-click and
execute it.

Persistence T1546.003

Event Triggered
Execution: Windows
Management
Instrumentation
Event Subscription

The initial Deadglyph loader is
persisted using WMI event
subscription.

Defense
Evasion

T1027 Obfuscated Files or
Information

Deadglyph components are
encrypted. Deadglyph Orchestrator
and embedded modules are
obfuscated with .NET Reactor.

The shellcode downloader is
obfuscated with ConfuserEx.

T1070.004 Indicator Removal:
File Deletion

Deadglyph can uninstall itself.

The shellcode downloader chain
deletes itself and deletes files in the
WebDAV cache.

T1112 Modify Registry
Deadglyph stores its configuration
and encrypted payload in the
registry.

T1134 Access Token
Manipulation

Deadglyph can impersonate another
user.

T1140 Deobfuscate/Decode
Files or Information

Deadglyph decrypts encrypted
strings.

The shellcode downloader chain
decrypts its components and
configurations.

T1218.011 System Binary Proxy
Execution: Rundll32

The initial Deadglyph loader is
executed using rundll32.exe.

T1480.001
Execution
Guardrails:
Environmental
Keying

Deadglyph is encrypted using a
machine-specific key derived from
the system UUID.

T1562.001
Impair Defenses:
Disable or Modify
Tools

The shellcode downloader avoids
AMSI scanning by patching clr.dll in
memory .

T1620 Reflective Code
Loading

Deadglyph reflectively loads its
modules using a custom PE loader.

Discovery
T1007 System Service

Discovery
A Deadglyph module discovers
services using the WMI query
SELECT * FROM Win32_Service.

T1012 Query Registry
The shellcode downloader chain
queries the registry for the default
browser.

T1016 System Network
Configuration
Discovery

A Deadglyph module discovers
network adapters using WMI queries
SELECT * FROM
Win32_NetworkAdapter and
SELECT * FROM
Win32_NetworkAdapterConfiguration
where InterfaceIndex=%d.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v13/techniques/T1583/001
https://attack.mitre.org/versions/v13/techniques/T1583/003
https://attack.mitre.org/versions/v13/techniques/T1587/001
https://attack.mitre.org/versions/v13/techniques/T1588/003
https://attack.mitre.org/versions/v13/techniques/T1047
https://attack.mitre.org/versions/v13/techniques/T1059/003
https://attack.mitre.org/versions/v13/techniques/T1106
https://attack.mitre.org/versions/v13/techniques/T1204/002
https://attack.mitre.org/versions/v13/techniques/T1546/003
https://attack.mitre.org/versions/v13/techniques/T1027
https://attack.mitre.org/versions/v13/techniques/T1070/004
https://attack.mitre.org/versions/v13/techniques/T1112
https://attack.mitre.org/versions/v13/techniques/T1134
https://attack.mitre.org/versions/v13/techniques/T1140
https://attack.mitre.org/versions/v13/techniques/T1218/011
https://attack.mitre.org/versions/v13/techniques/T1480/001
https://attack.mitre.org/versions/v13/techniques/T1562/001
https://attack.mitre.org/versions/v13/techniques/T1620
https://attack.mitre.org/versions/v13/techniques/T1007
https://attack.mitre.org/versions/v13/techniques/T1012
https://attack.mitre.org/versions/v13/techniques/T1016

11/11

T1033 System Owner/User
Discovery

A Deadglyph module discovers users
with the WMI query SELECT *
FROM Win32_UserAccount.

T1057 Process Discovery
A Deadglyph module discovers
processes using WMI query SELECT
* FROM Win32_Process.

T1082 System Information
Discovery

A Deadglyph module discovers
system information such as OS
version, drives, environment
variables, and drivers using WMI
queries.

T1518 Software Discovery
A Deadglyph module discovers
installed software using WMI query
SELECT * FROM Win32_Product.

T1518.001
Software Discovery:
Security Software
Discovery

A Deadglyph module discovers
security software using WMI queries
SELECT * FROM AntiVirusProduct,
SELECT * FROM
AntiSpywareProduct and SELECT *
FROM FirewallProduct.

The shellcode downloader chain
checks running processes for a
security solution.

Collection T1005 Data from Local
System

Deadglyph has a module for reading
files.

Command
and Control

T1071.001
Application Layer
Protocol: Web
Protocols

Deadglyph and the shellcode
downloader communicate with the
C&C server via the HTTP protocol.

T1090 Proxy
Deadglyph and the shellcode
downloader can use HTTP proxy for
C&C communication.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

Deadglyph uses AES to encrypt C&C
communications.

Exfiltration T1041 Exfiltration Over C2
Channel

Deadglyph uses the C&C channel for
exfiltration.

https://attack.mitre.org/versions/v13/techniques/T1033
https://attack.mitre.org/versions/v13/techniques/T1057
https://attack.mitre.org/versions/v13/techniques/T1082
https://attack.mitre.org/versions/v13/techniques/T1518
https://attack.mitre.org/versions/v13/techniques/T1518/001
https://attack.mitre.org/versions/v13/techniques/T1005
https://attack.mitre.org/versions/v13/techniques/T1071/001
https://attack.mitre.org/versions/v13/techniques/T1090
https://attack.mitre.org/versions/v13/techniques/T1573/001
https://attack.mitre.org/versions/v13/techniques/T1041
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=stealth-falcon-preying-middle-eastern-skies-deadglyph/

