
1/11

www.deepinstinct.com /blog/operation-rusty-flag-a-malicious-campaign-against-azerbaijanian-targets

Operation Rusty Flag – A Malicious Campaign Against
Azerbaijanian Targets
⋮ 9/14/2023

Key takeaways:

The Deep Instinct Threat Lab has discovered a new operation against Azerbaijanian targets
The operation has at least two different initial access vectors
The operation is not associated with a known threat actor; the operation was instead named because of their
novel malware written in the Rust programming language
One of the lures used in the operation is a modified document that was used by the Storm-0978 group. This
could be a deliberate “false flag”

Figure 1: Attack Flow

LNK Vector:

Deep Instinct Threat Lab observed a malicious LNK file with low detections named “1.KARABAKH.jpg.lnk.”

The file has a double extension to lure the victim to click an image that is related to a military incident in Nagorno-
Karabakh.

The LNK downloads and executes an MSI installer hosted by DropBox:

https://www.deepinstinct.com/blog/operation-rusty-flag-a-malicious-campaign-against-azerbaijanian-targets
https://en.wikipedia.org/wiki/Nagorno-Karabakh


2/11

Fig 2: LNK arguments

Fig 3: OSINT information about MSI
uploader from Dropbox

The MSI file drops an implant written in Rust, an xml file for a scheduled task to execute the implant, and a decoy
image file:

Figure 4: Decoy image file

The image file includes watermarks of the symbol of the Azerbaijanian MOD.

Office False Flag Vector:

Once we identified the LNK campaign the Deep Instinct Threat Lab attempted to identify additional, related files.

Deep Instinct Threat Lab quickly found another MSI file hosted on DropBox that drops a different variant of the same
Rust implant; however, the identification of the initial access vector for this campaign was trickier.

The DropBox URL was masked with a URL shortener (hxxps://t[.]]ly/8CYQW) and the evidence showed that this URL
was invoked via exploitation of Microsoft Equation Editor CVE-2017-11882.

Deep Instinct Threat Lab identified a file named “Overview_of_UWCs_UkraineInNATO_campaign.docx” that was
invoking the request to this shortened URL; however, this filename and its content are known to be associated with a
Storm-0978 campaign utilizing CVE-2023-36884.

The identified file even had a comment on VirusTotal that it is related to the Storm-0978 campaign:

https://mod.gov.az/en
https://www.microsoft.com/en-us/security/blog/2023/07/11/storm-0978-attacks-reveal-financial-and-espionage-motives/


3/11

Figure 5: VT comment

After further investigation it was revealed that this is a different file, not related to the Storm-0978 campaign. The
embedded “afchunk.rtf” file has been replaced and CVE-2023-36884 is not used. Instead, CVE-2017-11882 is used
to download and install the MSI file.

This action looks like a deliberate false flag attempt to pin this attack on Storm-0978.

Fig 6: OSINT information about MSI
uploader for Office vector

Even though the initial lure is an Office file, the delivered MSI file also open a decoy file, this time a PDF invoice:



4/11

Fig 7: PDF decoy dropped by Office vector

MSI Analysis:

While the initial vectors are different, the execution is the same and it is done by invoking msiexec with URL to
DropBox.

Using a Linux file command or msitools it seems that the MSI files were created by “MSI Wrapper”
https://www.exemsi.com/, which is often used by threat actors to drop malicious files.

The MSI installers are dropping and executing the Rust implant along with a decoy file and xml file for scheduled
task.

https://www.exemsi.com/


5/11

Figure 8: MSI Metadata

Rust Implant Analysis:

Each attack had its unique file names and metadata. One of the file Rust Implants named “WinDefenderHealth.exe”
is written in Rust. It is expected to gather information and send it to the attacker server, which is still active at the time
of this research.

Figure 9: Metadata of the Rust malware

Figure 10: Rust compiler

Rust is becoming more popular among malware authors. Security products are not yet detecting Rust malware
accurately, and the reverse engineering process is more complex. The Rust standard library is not familiar to tools
like IDA and Ghidra. It results in tagging large portions of the code as unknown, and it is difficult to differentiate the
code of the standard library from the code of the malware. To overcome this, the plugin GhidRust was used, but it
didn't detect the functions of the standard library. In addition, BinDiff was used. A simple Rust binary was compiled
and compared against the malware, but very little code was shared. Some open projects for Rust were used in the
malware such as Tokio (a runtime for writing reliable, asynchronous, and slim applications with the Rust programming
language), hyper (a fast and correct HTTP implementation for Rust) and Serde JSON (a framework for serializing and
deserializing Rust data structures efficiently and generically). After that part, we moved on to dynamic analysis.

Once the file is executed it goes to sleep for 12 minutes. This is a known method to avoid security researchers and
sandbox’s easy analysis.



6/11

Figure 11: “Sleep” for 12 minutes

Then it starts collecting information about the infected machine:



7/11

Figure 12: “Collect” information

Figure 13: Processes collecting information about the PC

The malware then reads the output of the above executions by redirecting their StdOut to a named pipe. It is notable
that the values of StdIn, StdOut, and StdErr match the handles of the processes to the named pipes.



8/11

Figure 14: “Read” the collected information

The information is gathered leveraging the following template:



9/11

Figure 15: Sample of the collected info before encryption

The above information is then encrypted and sent to the attacker server using an uncommon, hardcoded port 35667:



10/11

Figure 16: Encrypted information being sent to the server

We have built a script to decrypt the information, available in our Git, that the malware is sending.

All analyzed files above have a low detection rate on VT at the time. There are zero detections on first seen and most
of the detections are generic ones.

Figure 17: Detections of the RUST implant in VT. All detections are generic.

While the other Rust implant still has zero detections:

Figure 18: 2nd Rust implant VT detections

Conclusion:

https://github.com/deepinstinct/Rusty-Flag-DecryptData


11/11

Deep Instinct Threat Lab could not attribute these attacks to any known threat actor. There is a possibility that these
files are part of a red team exercise.

Regardless of the above statement, the fact that both Rust implants had zero detections when first uploaded to
VirusTotal shows that writing malware in esoteric languages can bypass many security solutions.

MITRE:

Tactic Technique Description Observable

Discovery
T1082 System
Information
Discovery

The malware executes
systeminfo.exe to gain information
about the infected computer

systeminfo.exe

Discovery
T1016 System
Network
Configuration
Discovery

Gain detailed information about the
network interfaces on the system ipconfig.exe /all

Discovery
T1033 System
Owner/User
Discovery

Gain user, group, and privileges
information for the users Whoami.exe /all

Discovery T1087 Account
Discovery

Gain information about local or
domain accounts on a system Net.exe user

Discovery T1057 Process
Discovery

Gain a list of currently running
processes, including detailed
information about each one

Tasklist.exe /v

Persistence T1053 Scheduled
Task/Job

Create a scheduled task using the
xml file Schtasks.exe

Command
and Control

T1132 Data
Encoding Encrypted communication

Encrypted information sent to the C2. A
tool for decrypting the information is
provided in our Git.

IOC:

78.135.73[.]140

SHA256 Description

463183002d558ec6f4f12475cc81ac2cb8da21549959f587e0fb93bd3353e13e Archive containing malicious
Office file

edc531d255b9ae8ae6902dc676f24e95a478576cad297e08e2bbc0b8fe03e4ce Malicious Office file

1546bb5bfc25741434148b77fe51fed7618432a232049b3f6f7210e7fb1f3f0e MSI file from
hxxps://t[.]ly/8CYQW

387304b50852736281a29d00ed2d8cdb3368d171215f1099b41c404e7e099193 SangforUD.EXE Rust
implant

0742cd9b92661f23f6b294cc29c814de027b5b64b045e4807fc03123b153bcd5 Decoy PDF file
04725fb5a9e878d68e03176364f3b1057a5c54cca06ec988013a508d6bb29b42 Malicious LNK file
35f2f7cd7945f43d9692b6ea39d82c4fc9b86709b18164ad295ce66ac20fd8e5 MSI file from LNK vector

5327308fee51fc6bb95996c4185c4cfcbac580b747d79363c7cf66505f3ff6db WinDefenderHealth.EXE
Rust implant

e508cafa5c45847ecea35539e836dc9370699d21522839342c3f3573bf550555 Decoy JPEG file

 
© 2023 Deep Instinct. All rights reserved.

https://undefined/blog

