
1/18

www.fortinet.com
/blog/threat-research/wintapix-kernal-driver-middle-east-countries

WINTAPIX: A New Kernel Driver Targeting Countries in The
Middle East
⋮ 5/22/2023

Affected platforms: Windows

Impacted parties: Windows Users


Impact: Allows remote code execution and persistent access to the host (backdoor) and the rest of the
network (proxy)


Severity level: Medium



At Fortinet, we monitor suspicious executables that make use of open-source tools and frameworks. One
of the things that we keep an eye out for is tools that use the Donut project. Donut is a position-
independent shellcode that loads .NET Assemblies, PE files, and other Windows payloads from memory
and runs them with parameters. During our daily threat-hunting process in early February, we
encountered a kernel driver that used the Donut tool and caught our attention for further analysis.  

The sample that triggered our rule was a driver called WinTapix.sys (which is why we named it
WINTAPIX). Since it uses Donut, we decided to analyze it further. It turned out to be a very interesting
sample that we believe is being used in targeted attacks against countries in the Middle East.

This captured sample was compiled in May 2020 but was only uploaded to Virus Total in February of this
year. Pivoting from this sample, we found another variant of this driver with the same name that was
compiled around the same time, but it was uploaded to Virus Total in September 2022. Pivoting again
from the used certificates, we found another variant of the WINTAPIX driver with the SRVNET2.SYS
name. This sample was compiled in June 2021 and was first observed in the wild in December 2021. 

Based on the information we have collected so far, we now believe that this driver has been active in the
wild since at least mid-2020 and, to the best of our knowledge, has not been reported before.

Observed telemetry shows that 65% of the lookups for this driver were from Saudi Arabia, indicating it
was a primary target. This same telemetry shows a considerable increase in the number of lookups for
this driver in August and September 2022 and again in February and March 2023. This may indicate that
the actor(s) behind this driver was operating major campaigns on these dates.

However, we still do not have enough information about how this driver has been distributed and who
was behind these operations. Based on the victimology, we suspect an Iranian threat actor developed
this driver. Observed telemetry shows that while this driver has primarily targeted Saudi Arabia, it has
also been detected in Jordan, Qatar, and the United Arab Emirates, which are the classic targets of
Iranian threat actors.

Since Iranian threat actors are known to exploit Exchange servers to deploy additional malware, it is also
possible that this driver has been employed alongside Exchange attacks. To that point, the compilation

https://www.fortinet.com/blog/threat-research/wintapix-kernal-driver-middle-east-countries
https://github.com/TheWover/donut


2/18

time of the drivers is also aligned with times when Iranian threat actors were exploiting Exchange server
vulnerabilities. 

The attribution process of this driver is still ongoing, and we will provide additional info when we have a
better idea about the identity of the threat actor or group.

In this blog post, we provide a comprehensive analysis of this driver.

Analysis Summary

We analyzed the sample with the SHA-256 hash of
8578bff36e3b02cc71495b647db88c67c3c5ca710b5a2bd539148550595d0330, also known as
Wintapix.sys. As the file extension suggests, this is a Windows Kernel Driver. Figure 1 shows some of its
attributes.

Figure 1. Attributes of Wintapix.sys.

Its digital signature is invalid, meaning the threat actor might first need to load a vulnerable (but
legitimate) driver and exploit that to load the Wintapix.sys. But once the driver is loaded, the following
execution chain runs:

1. Wintapix.sys is loaded in the kernel.
2. Wintapix.sys injects an embedded shellcode into a suitable process local system privilege.
3. The injected shellcode loads and executes an encrypted .NET payload.

We will look at these artifacts in more detail in the rest of the analysis.



3/18

Figure 2. Process of unpacking the final payload.

Wintapix Kernel Driver

Wintapix.sys is partially protected by VMProtect, a software protection tool that uses virtualization to
protect software applications from reverse engineering and unauthorized usage. It transforms the original
executable file into a virtualized code executed in a protected environment, making it difficult to analyze
and tamper with.

However, not all functions in the driver are protected, including the code that creates the next stage of the
attack, which is the focus of the analysis.

Shellcode Injection

Wintapix.sys is essentially a loader. Thus, its primary purpose is to produce and execute the next stage of
the attack. This is done using a shellcode. Interestingly, the shellcode (Figure 3) is hardcoded in the
binary without any obfuscation.



4/18


Figure 3. Shellcode
hardcoded in Wintapix.sys.

This defeats the purpose of protecting most of the binary with VMProtect since most Anti-Virus engines
can identify the embedded shellcode.

To inject the shellcode, the driver must first find a suitable target process. The requirements for the target
process are as follows:

The process runs with a Local System account.
The process is 32-bit.
The process name is not on the block list, which is ‘wininit.exe, csrss.exe, smss.exe, services.exe,
winlogon.exe, and lsass.exe.’


Figure 4. Checking
the process name block list.

Once a suitable process is found, it is opened with ZwOpenProcess(), and memory is allocated in the
target process’s memory with ZwAllocateVirtualMemory(). Finally, NtWriteVirtualMemory() injects the



5/18

embedded shellcode into the target process (Figure 5). The address of NtWriteVirtualMemory() is
recovered in runtime, helping to hide the function call from static analyzers.

Figure 5. Injecting into the target process with NtWriteVirtualMemory().

Persistence
Another important function of Wintapix.sys is to set up persistence. This is first done by creating register
keys at the following places:

\\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\Services\\WinTapix
\\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\Control\\SafeBoot\\Minimal\\WinTapix.sys
\\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\Control\\SafeBoot\\Network\\WinTapix.sys

The service for the driver is then created, as shown in Figure 6.

Figure 6. Creating a service for the driver.

Interestingly, the driver is set to load in Safe Boot. Safe Boot, also known as Safe Mode, is a diagnostic
startup mode in Windows that launches the system with minimal drivers and services. It is designed to
help users troubleshoot and resolve software or driver-related issues that might prevent the system from
starting normally. Loading the driver in Safe Boot also adds another layer of persistence to the mix.

All created registry keys are monitored using the ZwNotifyChangeKey(). This Windows kernel-mode
function allows monitoring changes to a specified registry key. The function notifies the caller of any
changes to the registry key by signaling the event or invoking the APC (asynchronous procedure call)
routine. This makes it useful for applications that need to react to registry modifications in real time. This
allows the malware to reset itself in the registry after it has been removed.

It also starts a new thread with PsCreateSystemThread() to monitor the file location of Wintapix.sys. It
uses NtNotifyChangeDirectoryFile() to monitor changes in the file. Should Wintapix.sys be deleted, it will
write it back to the same location.



6/18

Figure 7. Monitoring changes of the file on disk.

Injected Shellcode

Fortunately, the embedded shellcode can be dumped from Wintapix.sys and analyzed separately. It
quickly revealed that the shellcode was created using the Donut project.

Donut allows you to convert any .NET assembly or shellcode file into position-independent shellcode,
which can then be injected into a target process using techniques like process hollowing or thread
hijacking. The generated shellcode is self-contained and does not rely on any external dependencies.
This means that the primary goal in our analysis should be to extract the next attack stage, which should
be a .NET assembly.

The .NET payload can be extracted from the Donut shellcode by identifying and breaking the decryption
function in a debugger. After decryption runs, the .NET assembly can be dumped from memory.

.NET Payload

Once the payload is saved into a file, we analyzed it as a stand-alone .NET executable. Of course, one of
the advantages of .NET binaries (from a reverse engineering point of view) is that they can be easily
decompiled into source code. This, of course, is a tremendous help in understanding the binary’s goals
and capabilities. Detect It Easy (Figure 8), however, tells us that this executable has been protected by
multiple obfuscators, particularly Smart Assembly and Eazfuscator. Because of this, the deobfuscator
tools did not help much, and we just had to live with the challenge.



7/18

Figure 8. Detect It Easy shows multiple obfuscators applied on the .NET payload

Initialization

The program's main function first decodes two arrays using the GetListUrls() function (Figure 9),
suggesting that the results contain URLs.



8/18


Figure 9. Resolving encoded
strings

The array called ‘input’ contains the following decoded values:



9/18

"accidents_"


"js-"

"aspnet_client_"


"js_search-"


"_book"

"library-"

"subject_"

"lookup_data-"


"_toj_web"

"mng_data_bank_"


"transactions-"


"_models"

"trn_fitness-"


"news_"

"update-"

"_omrvision"


"user_accounts-"


"popup_"

"violation-"


"_program_steps"


"workflow-"


Copy

The array called ‘input2’ contains the following values:

"programs_skill_"


"competences-"


"properties_"


"-content"

"_report"

"evaluation-"


"expert_data_"


"css-"

"_expert_form"


"img-"

"-field"

"educat_"

"reports-"

"_employee"


"-scales"

"files_"

"scripts-"

"_fonts"



10/18

"-skill"

"helpes_"

Copy

These values are used to construct URLs. However, the malware is looking for Microsoft Internet
Information Services (IIS) characteristics to build them. This means that this malware only targets IIS
servers. On machines without IIS installed, it will simply crash. Given the IIS characteristics shown in
Figure 10, the malware extracts the sites hosted by the IIS server. And using that and the strings listed
above, it constructs a list of URL templates that it will listen on.

Figure 10. Building a list of URL templates.

These URL lists are used in the two main functionalities of the payload:

Backdoor
Proxy

Backdoor Functionality

The list named ‘input2’ is used for the backdoor functionality. It starts an HTTP listener on these URLs
and uses the Program.HandleRequest() function to handle any incoming requests, which then refers to
RequestHandler.Execute()(Figure 11).



11/18

Figure 11. Evaluating incoming requests in RequestHandler.Execute().

Let’s start from the end. If the incoming request contains the string ‘wOxhuoSBgpGcnLQZxipa’, then the
string ‘UsEPTIkCRUwarKZfRnyjcG13DFA’ is sent back. This seems to be a kind of heartbeat
implementation.

Command Execution

If the request has a ‘Jet’ or ‘<space>Ver’ parameter, their values are base64-decoded and used to build a
command using cmd /c <command>. This is then passed to the RunCommand() function, which executes
them with Process.start(). Their output will be sent back in the response to the request.

And finally, if the request has a body, then the RunData() function (Figure 12) is called.



12/18

Figure 12. RunData() function.

RunData() decrypts the body of the request and, depending on the message type, implements the
following actions:

Command Execution: as before, it executes the commands in the request body
File Upload: writes the file content from the request into a file on the filesystem
File Download: sends the requested file in the HTTP response

Encryption

Encryption is implemented for both incoming and outgoing messages. The attribute PrivateKey (Figure
13) suggests that it implements some kind of asymmetric encryption algorithm. However, after looking
further into the code, we discovered that calling it a ‘PrivateKey’ is just an exaggeration. In reality, there is
nothing asymmetric about it, the program implements a simple XOR encoding (Figure 14) as decryption
and encryption using the ‘PrivateKey’ as a key.



13/18


Figure 13.
'PrivateKey' used for encryption and decryption.


Figure 14. XOR
based decryption function.

Proxy Functionality

The values from the list ‘input’ are used to start proxy listeners with Proxy.HandleRequest() on those
URLs. This part of the program can handle a variety of data streams. If it’s just data, it will act as a simple
proxy, sending and receiving data between the two sides of the proxy.

However, it can also accept RDP configuration data (Figure 15).



14/18

Figure 15. Parsing the RDPConfig.

Using this RDP data, it can open a connection to the target RPD server and proxy it to the threat actor.

Conclusion

This blog provided a detailed analysis of a driver named WinTapix, which we identified in early Feb of this
year. The driver uses a Donut open-source payload to inject its shell code. It seems to be primarily
targeting Saudi Arabia. The attribution process of this driver is still ongoing, but based on the victims, we
assess with low confidence that this is a work of an Iranian threat actor.

Fortinet Protections
Fortinet customers are already protected from these APT and cyber-crime campaigns through
FortiGuard’s AntiVirus, FortiMail, and FortiClient services, as follows:

 The following (AV) signatures detect the malicious documents mentioned in this blog:

W32/PossibleThreat

W64/AI.Native.Suspicious.AVEN


W32/GenCBL.BAK!tr



FortiEDR natively detects and blocks the malicious executables identified in the report based on their
behavior. The following image shows how FortiEDR detects the suspicious driver load and flags the
driver as malicious.



15/18

If you think this or any other cybersecurity threat has impacted your organization, contact our Global
FortiGuard Incident Response Team.




IOCs

Filename Sha256
SRVNET2.SYS f6c316e2385f2694d47e936b0ac4bc9b55e279d530dd5e805f0d963cb47c3c0d
WinTapix.sys 1485c0ed3e875cbdfc6786a5bd26d18ea9d31727deb8df290a1c00c780419a4e
WinTapix.sys 8578bff36e3b02cc71495b647db88c67c3c5ca710b5a2bd539148550595d0330
Injected
Shellcode

aae9c8bd9db4e0d48e35d9ab3b1a8c7933284dcbeb344809fed18349a9ec7407

.Net payload 27a6c3f5c50c8813ca34ab3b0791c08817c803877665774954890884842973ed

 

MITRE ATT&CK Matrix

The following MITRE ATT&CK overlay contains TTPs associated with the deployment, installation and
execution of the WinTapix driver and assocaited backdoor identified by FortiGuard Labs.

https://www.fortinet.com/corporate/about-us/contact-us/experienced-a-breach


16/18

Attack Flow
In this section we are releasing the attack flow of Wintapix driver. The attack flow shows the actions that
have been executed by this Driver based on Mitre TTPs.

Attack Flow is a language that explains how threat actors combine and sequence various techniques and
toolsets to accomplish their objectives.  This language can help defenders to move from tracking
individual adversary behaviors to monitoring the series of actions that adversaries utilize to achieve their
objectives. 

https://mitre-engenuity.org/blog/2022/10/27/attack-flow/


17/18

https://www.fortinet.com/content/dam/fortinet-blog/article-images/wintapix-driver-final.png
https://undefined/content/dam/fortinet-blog/article-images/wintapix_ATTACK_Flow.png


18/18

https://undefined/content/dam/fortinet-blog/article-images/wintapix_ATTACK_Flow.png

