
1/7

www.mandiant.com
/resources/blog/lightshift-and-lightshow

Stealing the LIGHTSHOW (Part Two) — LIGHTSHIFT and
LIGHTSHOW

Mandiant Intelligence and Consulting

Mar 09, 2023

7 min read

In part one on North Korea's UNC2970, we covered UNC2970’s tactics, techniques and procedures
(TTPs) and tooling that they used over the course of multiple intrusions. In this installment, we will focus
on how UNC2970 utilized Bring Your Own Vulnerable Device (BYOVD) to further enable their operations.

During our investigation, Mandiant consultants identified most of the original compromised hosts,
targeted by UNC2970, contained the files %temp%\<random>_SB_SMBUS_SDK.dll and suspicious
drivers, created around the same time on disk.

At the time Mandiant initially identified these files, we were unable to determine how they were dropped
or the exact use for these files. It wasn't until later in the investigation, during analysis of a forensic image,
where the pieces started falling into place. A consultant noticed multiple keyword references to the file
C:\ProgramData\USOShared\Share.DAT (MD5: def6f91614cb47888f03658b28a1bda6). Upon
initial glance at the Forensic Image, this file was no longer on disk. However, Mandiant was able to
recover the original file, and the initial analysis of the sample found that Share.DAT was a XORed data
blob, which was encoded with the XOR key 0x59.

The decoded payload (MD5: 9176f177bd88686c6beb29d8bb05f20c), referred to by Mandiant
as LIGHTSHIFT, is an in-memory only dropper. The LIGHTSHIFT dropper distributes a payload
(MD5: ad452d161782290ad5004b2c9497074f) that Mandiant refers to as LIGHTSHOW. Once
loaded into memory, LIGHTSHIFT invokes the exports Create then Close in that order. The response
from Close is written as a hex formatted address to the file C:\Windows\windows.ini.

https://www.mandiant.com/resources/blog/lightshift-and-lightshow
https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970
https://advantage.mandiant.com/actors/threat-actor--90d4205f-c1a0-54ab-9d43-e2a507c82de9
https://advantage.mandiant.com/malware/malware--0d86b906-1974-5d24-a78e-9c771339bc50
https://advantage.mandiant.com/malware/malware--59b3fc08-f453-54e9-8e67-d46f6e3ef57d

2/7

Figure 1: LIGHTSHIFT preparing to load LIGHTSHOW

LIGHTSHOW is a utility that makes use of two primary anti-analysis techniques used to hinder both
dynamic and static analysis. To deter static analysis, LIGHTSHOW was observed being packed by VM-
Protect. In an effort to thwart dynamic analysis, LIGHTSHOW is targeted to a specific host and requires a
specific SHA256 hash corresponding to a specific computer name or the sample will not fully execute.
Once FLARE completed the analysis of LIGHTSHOW, we were able to understand how the files
%temp%\<random>_SB_SMBUS_SDK.dll and drivers were created on disk.

LIGHTSHOW is a utility that was used by UNC2970 to manipulate kernel data-structures and represents
an advancement in DPRK’s capabilities to evade detection. To accomplish this, LIGHTSHOW drops a
legitimate version of a driver with known vulnerabilities, with a SHA256 hash of
175eed7a4c6de9c3156c7ae16ae85c554959ec350f1c8aaa6dfe8c7e99de3347to

https://swapcontext.blogspot.com/2020/08/ene-technology-inc-vulnerable-drivers.html

3/7

C:\Windows\System32\Drivers with one of the following names chosen at random and appended
with mgr:

circlass

dmvsc

hidir

isapnp

umpass

LIGHTSHOW then creates the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<service name> where
<service name> is the same as the chosen filename without appended mgr. It then creates a registry
key with the value name ImagePath, which points to the path of the driver. The sample then loads the
driver using NtLoadDriver. LIGHTSHOW drops and loads a dummy DLL %temp%\
<random>_SB_SMBUS_SDK.dll to register itself to the driver as a legitimate caller.

Using the vulnerable driver, LIGHTSHOW can perform arbitrary read and write operations to kernel
memory. LIGHTSHOW uses this read/write primitive to patch different kernel routines, which are related
to the type of facilities an Endpoint Detection and Response (EDR) software may use, to enable evasion
of said EDR software. After the read and write operations to kernel memory, the sample unloads and
deletes %temp%\<random\>_SB_SMBUS_SDK.dll.

Examining the chain of execution, we see further obfuscation techniques being employed in
LIGHTSHOW. UNC2970 has a concerted effort towards obfuscation and employs multiple methods to do
this throughout the entire chain of delivery and execution.

4/7

Figure 2: LIGHTSHOW Obfuscation

LIGHTSHOW is another example of tooling that looks to capitalize on the technique of BYOVD. BYOVD
is a technique that utilizes the abuse of legitimate and trusted, but vulnerable drivers, to bypass kernel
level protections. This technique has been utilized by adversaries ranging from financial actors, such as
UNC3944, to espionage actors like UNC2970, which shows its usefulness during intrusion operations.
AHNLab recently released a report on activity tracked as Lazarus Group that focused largely on the use
of BYOVD. While Mandiant did not observe the hashes included in the AHNLab report, the use of
SB_SMBUS_SDK.dll as well as other similarities, such as the exported functions Create and Close,
indicate an overlap between the activity detailed in this blog post and those detailed by AHNLab.

Throughout several incidents we responded to in 2022 that involved UNC2970, we observed them
utilizing a small set of vulnerable drivers. This includes the Dell DBUtil 2.3 and the ENE Technology
device drivers. UNC2970 utilized both of these drivers in an attempt to evade detection. These two
drivers, and many more, are found in the Kernel Driver Utility (KDU) toolkit. With this in mind, it is likely
that we will continue to see UNC2970 abuse vulnerable drivers from other vendors.

https://www.mandiant.com/resources/blog/hunting-attestation-signed-malware
https://asec.ahnlab.com/wp-content/uploads/2022/10/Analysis-Report-on-Lazarus-Groups-Rootkit-Attack-Using-BYOVD_Oct-05-2022-3.pdf
https://www.dell.com/support/kbdoc/nl-nl/000186019/dsa-2021-088-dell-client-platform-security-update-for-an-insufficient-access-control-vulnerability-in-the-dell-dbutil-driver?lang=en
https://github.com/hfiref0x/KDU

5/7

Mandiant has worked to detect and mitigate BYOVD techniques for a number of years and has worked
closely with industry allies to report vulnerabilities when discovered. During research being carried out on
UNC2970 we discovered a vulnerable driver that the actor had access to, but did not know was
vulnerable - essentially making it a 0day in the wild but not being actively exploited. This was verified
through our Offensive Task Force who subsequently carried out a notification to the affected organization
and reported the vulnerability to MITRE, which was assigned CVE-2022-42455.

Outlook and Implications
Mandiant continues to observe multiple threat actors utilizing BYOVD during intrusion operations.
Because this TTP provides adversaries an effective means to bypass and mitigate EDR, we assess that
it will continue to be utilized and adapted into actor tooling. The continued targeting of security
researchers by UNC2970 also provides an interesting way that the group can potentially continue to
expand their toolset to gain an upper hand with BYOVD.

Mitigations
Because attestation signing is a legitimate Microsoft program and the resulting drivers are signed with
Microsoft certificates, execution-time detection is made much more difficult as most EDR tools and Anti-
Viruses will allow binaries signed with Microsoft certificates to load. The recent blog post released by
Mandiant on UNC3944 driver operations details multiple techniques that can be used by organizations to
hunt for the abuse of attestation signing. If you haven't already, don't forget to read part one on North
Korea's UNC2970. Additionally, Microsoft recently released a report detailing how organizations can
harden their environment against potentially vulnerable third-party developed drivers.

Indicators of Compromise

MD5 Signature
def6f91614cb47888f03658b28a1bda6 XOR’d LIGHTSHIFT
9176f177bd88686c6beb29d8bb05f20c LIGHTSHIFT
ad452d161782290ad5004b2c9497074f LIGHTSHOW
7e6e2ed880c7ab115fca68136051f9ce ENE Driver
SB_SMBUS_SDK.dll LIGHTSHOW Dummy DLL
C:\Windows\windows.ini LIGHTSHIFT Output

Signatures
LIGHTSHIFT

rule M_Code_LIGHTSHIFT

{

 meta:

 author = "Mandiant"

 description = "Hunting rule for LIGHTSHIFT"

https://github.com/mandiant/Vulnerability-Disclosures
https://advantage.mandiant.com/reports/23-00003754
https://github.com/mandiant/Vulnerability-Disclosures/blob/master/2023/MNDT-2023-0003.md
https://www.mandiant.com/resources/blog/hunting-attestation-signed-malware
https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970
https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules

6/7

 sha256 = "ce501fd5c96223fb17d3fed0da310ea121ad83c463849059418639d211933aa4"

 strings:

 $p00_0 = {488b7c24??448d40??48037c24??488bcfff15[4]817c24[5]74??488b4b??33d2}

 $p00_1 = {498d7c01??8b47??85c075??496345??85c07e??8b0f41b9}

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (

 ($p00_0 in (750..11000) and $p00_1 in (0..8200))

)

}

LIGHTSHOW

rule M_Code_LIGHTSHOW

{

 meta:

 author = "Mandiant"

 description = "Hunting rule For LIGHTSHOW."

 md5 = "ee5057da3e38b934dae15644c6eb24507fb5a187630c75725075b24a70065452"

 strings:

 $E01 = { 46 75 64 4d 6f 64 75 6c 65 2e 64 6c 6c }

 $I01 = { 62 63 72 79 70 74 2e 64 6c 6c }

 $I02 = { 4b 45 52 4e 45 4c 33 32 2e 64 6c 6c }

 $I03 = { 75 73 65 72 33 32 2e 64 6c 6c 00 }

 $H1 = { 4D 5A 90 00 }

 $H2 = { 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F }

 $F01 = { 47 65 74 4d 6f 64 75 6c 65 46 69 6c 65 4e 61 6d 65 57 }

 $F02 = { 47 65 74 4d 6f 64 75 6c 65 48 61 6e 64 6c 65 41 }

 $F03 = { 47 65 74 46 69 6c 65 54 79 70 65 }

 $F04 = { 47 65 74 56 65 72 73 69 6f 6e }

 $F05 = { 51 75 65 72 79 53 65 72 76 69 63 65 53 74 61 74 75 73 }

 $F06 = { 42 43 72 79 70 74 4f 70 65 6e 41 6c 67 6f 72 69 74 68 6d 50 72 6f

76 69 64 65 72 }

 $M01 = { 68 2d 79 6e b1 }

 $M02 = { 68 ea 71 c2 55 }

7/7

 $M03 = { 66 b8 ad eb }

 $M04 = { 4c 8d 2c 6d b3 6c 05 39 }

 $M05 = { 48 8d 2c 95 08 9d ec 9a }

 $S01 = { 48 8d 0c f5 a3 cd 0a eb}

 $S02 = { 81 f9 7f 56 e6 0a}

 condition:

 ($H1 in (0..2048)) and ($H2 in (0..2048)) and filesize < 100MB and filesize >

5KB and all of ($M0*) and all of ($E*) and all of ($I0*) and 6 of ($F0*) and all of

($S0*)

}

© Copyright 2023 Mandiant. All rights reserved.

Always Active

