
1/18

www.elastic.co
/security-labs/update-to-the-REF2924-intrusion-set-and-related-campaigns

Update to the REF2924 intrusion set and related campaigns

Elastic Security Labs is providing an update to the active intrusions using SIESTAGRAPH, DOORME, and
SHADOWPAD, including malware analysis and associations with additional campaigns.

Key takeaways

DOORME is a malicious IIS module that provides remote access to a contested network.
SIESTAGRAPH interacts with Microsoft’s GraphAPI for command and control using Outlook and OneDrive.
SHADOWPAD is a backdoor that has been used in multiple campaigns attributed to a regional threat group
with non-monetary motivations.
REF2924 analytic update incorporating third-party and previously undisclosed incidents linking the REF2924
adversary to Winnti Group and ChamelGang along technical, tactical, and victim targeting lines.

Preamble
This research highlights the capabilities and observations of the two backdoors, named "DOORME" and
"SIESTAGRAPH", and a backdoor called “SHADOWPAD” that was disclosed by Elastic in December of 2022.
DOORME is an IIS (Internet Information Services) backdoor module, which is deployed to web servers running the
IIS software. SIESTAGRAPH is a .NET backdoor that leverages the Microsoft Graph interface, a collection of APIs for
accessing various Microsoft services. SHADOWPAD is an actively developed and maintained modular remote access
toolkit.

DOORME, SIESTAGRAPH, and SHADOWPAD each implement different functions that can be used to gain and
maintain unauthorized access to an environment. The exact details of these functionalities will be described in further
detail in this research publication. It is important to note that these backdoors can be used to steal sensitive
information, disrupt operations, and gain a persistent presence in a victim environment.

Additionally, we will discuss the relationships between REF2924 and three other intrusions carried out by the same
threat group, intrusion set, or both. These associations are made using first-party observations and third-party
reporting. They have allowed us to state with moderate confidence that SIESTAGRAPH, DOORME, SHADOWPAD,
and other elements of REF2924 are attributed to a regional threat group with non-monetary motivations.

Additional information on the REF2924 intrusion set

Additional information on the REF2924 intrusion setFor additional information on this intrusion set, which includes our
initial disclosure as well as information into the campaign targeting the Foreign Ministry of an ASEAN member state,
check out our previous research into REF2924.

DOORME code analysis

Introduction to backdoored IIS modules

https://www.elastic.co/security-labs/update-to-the-REF2924-intrusion-set-and-related-campaigns
https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry
https://undefined/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry

2/18

IIS, developed by Microsoft, is an extensible web server software suite that serves as a platform for hosting websites
and server-side applications within the Windows environment. With version 7.0, Microsoft has equipped IIS with a
modular architecture that allows for the dynamic inclusion or exclusion of modules to suit various functional
requirements. These modules correspond to specific features that the server can utilize to handle incoming requests.

As an example, a backdoored module that overrides the OnGlobalPreBeginRequest event can be used to perform
various malicious activities - such as capturing sensitive user information submitted to webpages, injecting malicious
code into content served to visitors, or providing the attacker remote access to the web server. It is possible that a
malicious module could intercept and modify a request before it is passed on to the server, adding an HTTP header
or query string parameter that includes malicious code. When the server processes that modified request, the
malicious code might be executed, allowing the attacker to gain unauthorized access or control the server and its
resources.

Adding to the danger of IIS backdoors is that they can be stealthy and organizations may not be aware that they have
been compromised. Many companies do not have the resources or expertise to regularly monitor and test their IIS
modules for vulnerabilities and malicious code, which can make it difficult to detect and remediate backdoors. To
mitigate these risks, organizations should maintain a comprehensive inventory of all IIS modules and implement
network and endpoint protection solutions to help detect and respond to malicious activities. Elastic Security Labs has
seen increased use of this persistence mechanism coupled with defense evasions, which may disproportionately
impact those hosting on-premises servers running IIS.

Introduction to the DOORME IIS module

DOORME is a native backdoor module that is loaded into a victim's IIS infrastructure and used to provide remote
access to the target infrastructure. We first discussed the DOORME sample that we observed targeting the Foreign
Ministry of an ASEAN member nation in December of 2022.

DOORME uses the RegisterModule function, which is an export of a malicious C++ DLL module and is responsible
for loading the module and setting up event handler methods. It also dynamically resolves API libraries that will be
used later. The main functionality of the backdoor is implemented in the CGlobalModule class and its event handler,
OnGlobalPreBeginRequest. This event handler is overridden by DOORME, allowing it to be loaded before a web
request enters the IIS pipeline. The core functions of the backdoor (including cookie validation, parsing commands,
and calling underlying command functions) are all located within this event handler. DOORME uses multiple
obfuscation methods, an authentication mechanism, AES encryption implementation, and a purpose-built series of
commands.

This diagram illustrates the contrast between an attacker attempting to connect to a backdoored IIS server and a
legitimate user simply trying to access a webpage.

Overview diagram of the DOORME backdoor

Obfuscation

String obfuscation

https://www.iis.net/
https://learn.microsoft.com/en-us/previous-versions/iis/smooth-streaming-client/cglobalmodule-onglobalprebeginrequest-method
https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry
https://learn.microsoft.com/en-us/previous-versions/iis/smooth-streaming-client/pfn-registermodule-function
https://learn.microsoft.com/en-us/previous-versions/iis/smooth-streaming-client/cglobalmodule-class
https://learn.microsoft.com/en-us/previous-versions/iis/smooth-streaming-client/cglobalmodule-onglobalprebeginrequest-method

3/18

DOORME XOR-encrypts strings to evade detection. These encrypted strings are then stored on the memory stack.
As the original plaintext is obscured this string obfuscation makes it more difficult for security software or researchers
to understand the purpose or meaning of the strings. The malware uses the first byte of every encrypted blob to XOR-
decrypt the strings.

Pseudocode showcasing string obfuscation

Anti-disassembly technique

The malware employs a technique that can cause disassemblers to incorrectly split functions in the code, which leads
to the generation of incorrect assembly graphs. This technique can make it more challenging for analysts to
understand the malware's behavior and create an effective defense against it.

Gaps in the assembly view of IDA pro

Control flow obfuscation

The malware in question also employs a technique known as Control Flow Obfuscation (CFO) to complicate the
analysis of its behavior. CFO is a technique where the flow of instructions in the code is deliberately manipulated to
make it more difficult for security software and researchers to understand the malware's functionality.

The malware uses CFO to complicate the analysis process, but it is noteworthy that this technique is not applied to
the entire codebase. From an analysis point of view, this tells us that these strings are of particular importance to the
malware author - possibly to frustrate specific security tooling. The following example serves as a demonstration of
how the malware uses CFO to conceal its functionality in the context of stack string XOR decryption.

Pseudocode showcasing CFO example

https://unprotect.it/technique/obscuring-control-flow/

4/18

Dynamic import table resolution obfuscation

Dynamic import table resolution is a technique used by malicious software to evade detection by security software. It
involves resolving the names of the Windows APIs that the malware needs to function at runtime, rather than hard
coding the addresses of these APIs in the malware's import table.

DOORME first resolves the address of LoadLibraryA and GetProcAddress Windows API by parsing the
kernel32.dll module export table, then uses the GetProcAddress function to locate the desired APIs within the
modules by specifying the name of the API and the name of the DLL module that contains it.

Pseudocode showcasing import address table resolution

Execution flow

Authentication

The malicious IIS module backdoor operates by looking for the string "79cfdd0e92b120faadd7eb253eb800d0" (the
MD5 hash sum of a profane string), in a specific cookie of the incoming HTTP requests, when found it will parse the
rest of the request.

GET request handling

GET requests are used to perform a status check: the malware returns the string “It works!” followed by the
username and the hostname of the infected machine. This serves as a means for the malware to confirm its
presence on an infected machine.

GET request to the backdoor using curl command

POST requests handling

The backdoor operator sends commands to the malware through HTTP POST requests as data which is doubly
encrypted. Commands are AES-encrypted and then Base64 encoded, which the DOORME backdoor then decrypts.

Base64 implementation

The malware's implementation of Base64 uses a different index table compared to the default Base64 encoding RFC.
The specific index table used by the malware is
"VZkW6UKaPY8JR0bnMmzI4ugtCxsX2ejiE5q/9OH3vhfw1D+lQopdABTLrcNFGSy7", while the normal index
table used by the Base64 algorithm is
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/". This deviation from the
standard index table makes it more difficult to decode the encoded data and highlights additional custom obfuscation
techniques by the DOORME malware author in an attempt to frustrate analysis.

AES algorithm implementation

The malware uses AES (Advanced Encryption Standard) in CBC (Cipher Block Chaining) mode to encrypt and
decrypt data. It uses the MD5 hash of the first 16 bytes of the authentication hash
"79cfdd0e92b120faadd7eb253eb800d0", as the AES key. The initialization vector (IV) of the algorithm is the MD5
hash of the AES key.

In our case the AES key is “5a430ab45c7e142c70018b99fe0d2da3” and the AES IV is “57ce15b304a97772”.

Command handling table

The backdoor is capable of executing four different commands, each with its own set of parameters. To specify which
command to run and pass the necessary parameters, the operators of the backdoor use a specific syntax. The
command ID and its parameters are separated by the "pipe" symbol(|).

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

5/18

Command ID 0x42

The first command implemented has the ID 0x42 and generates a Globally Unique Identifier (GUID) by calling the
API CoCreateGuid. Used to identify the infected machine, this helps to track infected machines and allows the
attacker to focus on specific high-value environments.

Pseudocode generating the GUID

Command ID 0x43

Another command, ID 0x43, is particularly noteworthy as it allows the attacker to execute shellcode in the memory of
the same process. This functionality is achieved by utilizing the Windows native functions NtAllocateVirtualMemory
and NtCreateThreadEx.

The NtAllocateVirtualMemory function is used to allocate memory in the same process for shellcode, while the
NtCreateThreadEx function creates an execution thread with shellcode in that newly-allocated memory.

Pseudocode self-shellcode injection

Command ID 0x63

Command ID 0x63 allows the attacker to send a blob of shellcode in chunks, which the malware reassembles to
execute. It works by sending this command ID with a shellcode chunk as a parameter. Implants can detect that the
shellcode has been fully received when the server communicates a different shellcode size than expected. This
approach allows the malware to handle large shellcode objects with minimal validation.

Command ID 0x44

Command ID 0x44 provides a means of interacting with the shellcode being executed on the infected system. The
attacker can send input to the shellcode and retrieve its output via a named pipe. This allows the attacker to control
the execution of the shellcode and receive feedback, which may help to capture the output of tools deployed in the
environment via the DOORME implant.

DOORME Summary

In summary, DOORME provides a dangerous capability allowing attackers to gain unauthorized access to the internal
network of victims through an internet-facing IIS web server. It includes multiple obfuscation techniques to evade

6/18

detection, as well as the ability to execute additional malware and tools. Malware authors are increasingly leveraging
IIS as covert backdoors that hide deep within the system. To protect against these threats, it is important to
continuously monitor IIS servers for any suspicious activity, processes spawned from the IIS worker process
(w3wp.exe), and the creation of new executables.

SIESTAGRAPH code analysis
Introduction to the SIESTAGRAPH implant

The implant utilizes the Microsoft Graph API to access Microsoft 365 Mail and OneDrive for its C2 communication. It
uses a predetermined tenant identifier and a refresh token to obtain access tokens. The implant uses the legitimate
OneDriveAPI library which simplifies the process of interacting with the Microsoft API and allows for efficient
management of access and refresh tokens. The implant leverages sleep timers in multiple locations as a defense
evasion technique. This led to the implant’s name: SIESTAGRAPH.

Overview diagram of the SIESTAGRAPH implant

Execution flow

SIESTAGRAPH starts and enters its main function which will set up the needed parameters to access Microsoft
GraphAPI by requesting an access token based on a hard coded refresh token.

Initial setup of SIESTAGRAPH

During the setup phase the malware uses the Microsoft Office GUID (d3590ed6-52b3-4102-aeff-aad2292ab01c).
This is needed to supply access to both Microsoft 365 Mail and OneDrive.

Request an authentication token

Authentication

The SIESTAGRAPH author utilized a pre-determined tenant identifier and a refresh token to obtain access tokens.
Both of these elements are essential in making a request for an access token. It is important to note that access
tokens possess a limited lifespan, however, the refresh token can be utilized to request new access tokens as
necessary.

https://learn.microsoft.com/en-us/graph/overview
https://github.com/KoenZomers/OneDriveAPI
https://learn.microsoft.com/en-us/troubleshoot/azure/active-directory/verify-first-party-apps-sign-in#application-ids-of-commonly-used-microsoft-applications:~:text=Microsoft%20Office,4102%2Daeff%2Daad2292ab01c

7/18

Hard coded tenant and refresh tokens

To facilitate this process, the attacker utilized a third-party and legitimate library named OneDriveAPI. This library
simplifies the process of interacting with the Microsoft API and allows for efficient management of access and refresh
tokens. It should be noted that although third-party libraries such as OneDriveAPI can provide a convenient way to
interact with APIs, they should not be considered to be malicious.

Use of third-party libraries

The malware utilizes the GetAccessTokenFromRefreshToken method to request an authentication token. This
token is then used in all subsequent API requests.

Refresh tokens have a 90-day expiration window. So while the access token was being used by the Graph API for
C2, the refresh token, which is needed to generate new access tokens, was not used within the expiration window.
The refresh token was generated on 2022-11-01T03:03:44.3138133Z and expired on 2023-01-
30T03:03:44.3138133Z. This means that a new refresh token will be needed before a new access token can be
generated. As the refresh token is hard coded into the malware, we can expect SIESTAGRAPH to be updated with a
new refresh token if it is intended to be used in the future.

Command and control

A session token (sessionToken) is created by concatenating the process ID, machine name, username, and
operating system. The session token is later used to retrieve commands intended for this specific implant.

Defining the session token

After obtaining authentication and session tokens, the malware collects system information and exfiltrates it using a
method called sendSession.

Inspecting the sendSession method we see that it creates an email message and saves it as a draft. Using draft
messages is common C2 tradecraft as a way to avoid email interception and inspection.

https://github.com/KoenZomers/OneDriveAPI
https://learn.microsoft.com/en-us/microsoft-365/enterprise/session-timeouts?view=o365-worldwide#:~:text=The%20default%20lifetime%20for%20the%20access%20token%20is%201%20hour.%20The%20default%20max%20inactive%20time%20of%20the%20refresh%20token%20is%2090%20days

8/18

The sendMessage method

After sending the session information to the attacker, the implant enters a loop in which it will check for new
commands. By default, this beaconing interval is every 5 seconds, however, this can be adjusted by the attacker at
any time.

When receiving a command, the implant will use the getMessages method to check for any draft emails with
commands from the attacker.

The getMessage method

With every call that contacts the Graph API, SIESTAGRAPH will receive the current authentication token
(authToken). This token is then used in the HTTP request header following the Authorization: Bearer
(“Authorization”, “Bearer “ + authToken).

Every call to this method will contain the sessionToken, a command, and command arguments, separated with
colons (:) (<sessionToken>:<Command>:<command arguments>).

If a command has multiple arguments they will be split by a pipe (|). An example of this is the rename command
where the source and destination names are split by a pipe.

Using a pipe for separating arguments

We have identified the following commands:

9/18

Command text DescriptionCommand text Description
C Run a command
N Update the amount of time the binary will sleep between check-ins
D Upload a file to OneDrive
U Download Item from Onedrive
UU Check to see is Core.bin exists then Download item from Onedrive
ListDrives Send a list of the logical drives
GetDirectories Send a list of given subdirectories
GetFiles Send a list of files in a given directory
Del Delete a given file
Rename Rename a given file or directory
P Get a list of running processes
E Ends the execution of the binary
K Kill a given process ID
S Update the amount of time the binary will sleep between check-ins (same as N)
NET Get network information
SS Take a screenshot

Several commands are self-explanatory (ListDrives, Rename, etc.), however the run commands, update sleep timer,
upload and download files, and take screenshots are more interesting and can provide a better understanding of the
capabilities of SIESTAGRAPH.

C - run command

When the C command is received the malware runs the runCommand method. This method takes in the name of
cmd.exe, the command line to run, and the number of milliseconds to wait for the new process to exit.

If the command parameter is not null or empty, the method proceeds to create a new instance of the
System.Diagnostics.Process class, which is used to start and interact with a new process. It sets the properties of
the process instance's StartInfo property, which is of the ProcessStartInfo class, such as the FileName property to
the cmd parameter passed to the method, the Arguments property to /c concatenated with the command parameter,
and also sets UseShellExecute, RedirectStandardInput, RedirectStandardOutput, RedirectStandardError, and
CreateNoWindow property. As this method is only called with the hard coded value of cmd for the cmd parameter,
the resulting command will always be cmd /c <command to run>.This is a common way to run commands if one
does not have direct access to an interactive shell.

The runCommand method

N - Sleep timer update

The sleep command is a single instruction. If the argument for the command is larger than 1000, the value for the
SleepTimer variable is updated. This variable is later used to determine how long the process will sleep in between
check-ins.

10/18

Updating the SleepTimer

D - Upload to OneDrive

The D command is issued from the attacker’s perspective, so while they’re “downloading” from OneDrive, the host is
“uploading” to OneDrive

The method receives a filePath, and the authentication and session tokens. It will then upload the requested file to
OneDrive. If the file is successfully uploaded, a response message is sent to the attacker using the format
OK|C:\foo\file.txt.

If the upload did not succeed the attacker will receive the error message OK|<Error message>.

While this method might seem simple it helps to avoid detection by using common libraries while achieving the goal
of exfiltrating data from the victim. While unconfirmed, this could be how the exported Exchange mailboxes were
collected by the threat actor.

The uploadFile method

U - Download from OneDrive

The download function is similar to the upload function. Again, from the attacker's perspective, the U command
stands for upload. As the file is downloaded from OneDrive by the implant, but uploaded by the attacker.

NET - Gather network information

https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry#exporting-exchange-mailboxes

11/18

The NET command will gather network information and send it back to the attacker. In order to gather the information
the binary first resolves two functions from the DLLs, Ws2_32.dll (the Windows socket API) and iphlpapi.dll (the
Windows IP helper API).

Revolve functions from Ws2_32.dll and iphlpapi.dll

The NET command gathers information about open TCP connections from the system's TCP table. It then loops over
all open connections and stores the information in an array that is sent back to the attacker. This code helps the
attacker to get a better insight into the system's purpose within the network. As an example, if there are open
connections for ports 587, 993, and 995, the host could be a Microsoft Exchange server.

SS - Take screenshot

To see the victim's desktop, SIESTAGRAPH can call the method named TakeScreenShot which takes a screenshot
of the primary monitor and returns the screenshot as a Base64 encoded string.

The TakeScreenShot method

This function creates a new Bitmap object with the width and height of the primary screen's bounds. Then it creates a
new Graphics object from the Bitmap object and uses the CopyFromScreen function to take a screenshot and copy
it to the Graphics object.

It then creates a new MemoryStream object and uses the Save method of the Bitmap object to save the screenshot
as a PNG image into the memory stream. The image in the memory stream is then converted to a Base64 encoded
string using the Convert.ToBase64String method. The resulting Base64 string is then sent back to the attacker by
saving it as an email draft.

SIESTAGRAPH Summary

SIESTAGRAPH is a purpose-built and full-featured implant that acts as a proxy for the threat actor. What makes
SIESTAGRAPH more than a generic implant is that it uses legitimate and common, but adversary-controlled,
infrastructure to deliver remote capabilities on the infected host.

SHADOWPAD loader code analysis

Introduction to log.dll

When Elastic Security Labs disclosed REF2924 in December of 2022, we observed an unknown DLL. We have since
collected and analyzed the DLL, concluding it is a loader for the SHADOWPAD malware family.

The DLL, log.dll, was observed on two Domain Controllers and was being side-loaded by an 11-year-old version of
the Bitdefender Crash Handler (compiled name: BDReinit.exe), named 13802 AR.exe (in our example). Once
executed, SHADOWPAD copies itself to C:\ProgramData\OfficeDriver\ as svchost.exe before installing itself as a
service. Once log.dll is loaded, it will spawn Microsoft Windows Media Player (wmplayer.exe) and dllhost.exe,
injecting into them which triggers a memory shellcode detection for Elastic Defend.

At runtime, log.dll looks for the log.dll.dat file which contains the shellcode to be executed. Then log.dll will encrypt
and store the shellcode in the registry and shred the original log.dll.dat file. If the file doesn’t exist it will skip this
part.

https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry#dll-side-loading
https://malpedia.caad.fkie.fraunhofer.de/details/win.shadowpad

12/18

Then the sample will load the shellcode from the registry, RWX map it, and execute it from memory. If the registry key
doesn’t exist the sample will crash.

Execution flow

Our version of the SHADOWPAD DLL expects to be sideloaded by an 11-year-old and vulnerable version of the
BitDefender BDReinit.exe binary. The offset to the trampoline (jump instructions) in the vulnerable application is hard
coded which means that the sample is tailored for this exact version of BitDefender’s binary
(386eb7aa33c76ce671d6685f79512597f1fab28ea46c8ec7d89e58340081e2bd). This side-loading behavior was
previously reported by Positive Technologies.

log.dll’s hard coded offsets to BDReinit.exe

For our analysis, we patched log.dll to execute without the BitDefender sideloading requirement.

Capabilities

Obfuscation

The log.dll uses two lure functions to bypass automatic analysis.

We define lure functions as benign and not related to malware capabilities, but intended to evade defenses,
obfuscate the true capabilities of the malware, and frustrate analysis. They may trick time-constrained sandbox
analysis by showcasing benign behavior while exhausting the analysis interval of the sandbox.

log.dll’s lure functions

log.dll incorporates a code-scattering obfuscation technique to frustrate static analysis, however, this doesn't protect
the binary from dynamic analysis.

This technique involves fragmenting the code into gadgets and distributing those gadgets throughout the binary. Each
gadget is implemented as a single instruction followed by a call to a “resolver” function.

Obfuscated function prologue 1/2

Obfuscated function prologue 2/2

The resolver function of each call resolves the address of the next gadget and passes execution.

https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gccint/Trampolines.html
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/

13/18

Resolver function computing the next gadget address

The obfuscation pattern is simple and a trace can be used to recover the original instructions:

result = []

for i, x in enumerate(trace):

 if "ret" in x:

 result.append(trace[i + 1])

API loading

The sample uses the common Ldr crawling technique to find the address of kernel32.dll.

Searching for the process module list in the PEB’s Ldr

Searching for kernel32.dll by name in the module list

Next, log.dll parses the exports of kernel32.dll to get the address of the LoadLibraryA and GetProcAddress
functions. It uses GetProcAddress to resolve imports as needed.

Persistence

The sample expects to find a file called log.dll.dat in its root directory using the FindFirstFile and FindNextFile
APIs. Once log.dll.dat is located, it is loaded, encrypted, and stored in the registry under the
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{1845df8d-241a-a0e4-
02ea341a79878897}\D752E7A8} registry value.

This registry value seems to be hard coded. If the file isn't found and the hard coded registry key doesn’t exist, the
application crashes.

Payload is stored encrypted in the registry

https://0xevilc0de.com/2018/02/25/locating-dll-name-from-the-process-environment-block-peb/

14/18

Once the contents of log.dll.dat have been encrypted and embedded in the registry, the original file will be deleted.
On subsequent runs, the shellcode will be loaded directly from the registry key.

Shellcode

To execute the shellcode the sample will allocate an RWX-protected memory region using the VirtualAlloc Windows
API, then write the shellcode to the memory region and pass execution to it with an ESI instruction call.

log.dll allocate RWX memory for the shellcode

log.dll pass execution to the shellcode

First instruction of the shellcode

Other SHADOWPAD research

While researching shared code and techniques, Elastic Security Labs identified a publication from SecureWorks’ CTU
that describes the BitDefender sideload vulnerability. Additionally, SecureWorks has shared information describing
the functionality of a file, log.dll.dat, which is consistent with our observations. The team at Positive Technologies
ETC also published detailed research on SHADOWPAD which aligns with our research.

SHADOWPAD Summary

SHADOWPAD is a malware family that SecureWorks CTU has associated with the BRONZE UNIVERSITY threat
group and Positive Technologies ETC has associated with the Winnti group.

Campaign and adversary modeling
Our analysis of Elastic telemetry, combined with open sources and compared with third-party reporting, concludes a
single nationally-aligned threat group is likely responsible. We identified relationships involving shared malware,
techniques, victimology, and observed adversary priorities. Our confidence assessments vary depending on the
sourcing and collection fidelity.

We identified significant overlaps in the work of Positive Technologies ETC and SecureWorks CTU while researching
the DOORME, SIESTAGRAPH, and SHADOWPAD implants, and believe these are related activity clusters.

REF2924 intersections and associations

In the following analysis, we’ll discuss the four campaigns that we associate with this intrusion set including sourcing,
intersections, and how each supported our attribution across all campaigns.

1. Winnti - reported by Positive Technologies, January 2021
2. Undisclosed REF, Winnti - observed by Elastic Security Labs, March 2022
3. REF2924, ChamelGang, Winnti - reported by Elastic Security Labs, December 2022
4. Undisclosed REF, ChamelGang - observed by Elastic Security Labs, December 2022

https://www.ired.team/offensive-security/defense-evasion/finding-all-rwx-protected-memory-regions
https://www.secureworks.com/research/shadowpad-malware-analysis
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.secureworks.com/research/threat-profiles/bronze-university
https://www.ptsecurity.com/upload/corporate/ww-en/pt-esc/winnti-2020-eng.pdf
https://www.secureworks.com/research/shadowpad-malware-analysis

15/18

Winnti

In January of 2021, the team at Positive Technologies ETC published research that overlapped with our observations
for REF2924; specifically SHADOWPAD malware deployed with the file names log.dll and log.dll.dat and using the
same sample of BitDefender we observed as a DLL injection vehicle.

While the research from Positive Technologies ETC covered a different activity cluster, the adversary deployed a
similar variant of SHADOWPAD, used a similar file naming methodology, and leveraged similar procedure-level
capabilities; these consistencies contribute to our conclusion that REF2924 is related. In the graphic above, we use a
dashed line to represent third-party consensus and moderate confidence because, while the reporting appears
thorough and sound, we cannot independently validate all findings.

Undisclosed REF, Winnti

In early 2022, Elastic observed a short-lived intrusion into a telecommunications provider in Afghanistan. Using code
analysis and event sampling, we internally attributed these sightings to WINNTI malware implants and external
research overlaps with the Winnti Group. We continue to track this intrusion set, independently of and in relation to
REF2924 observations.

REF2924, ChamelGang, Winnti

In early December 2022, we observed Powershell commands used to collect and export mailboxes from an internet-
connected Microsoft Exchange server for the Foreign Affairs Office of an Association of Southeast Asian Nations
(ASEAN) member. Our research identified the presence of the DOORME backdoor, SHADOWPAD, and a new
malware implant we call SIESTAGRAPH (discussed in the SIESTAGRAPH code analysis section above).

In researching the events of REF2924, we believe they are consistent with details noted by Positive Technologies'
research into ChamelGang, and likely represent the actions of one group with shared goals.

Undisclosed REF, ChamelGang

Using the DOORME IIS backdoor that we collected during research into REF2924, we developed a scanner that
identified the presence of DOORME on an internet-connected Exchange server at a second telecommunications
provider in Afghanistan.

Campaign associations

Building associations between events, especially when relying on third-party reporting, is a delicate balance between
surfacing value from specific observations and suppressing noise from circular reporting. Details reported by research
teams and consisting of atomic indicators, techniques, procedures, and capabilities provide tremendous value in
spotting associations between activity clusters. Elements of evidence that are repeated multiple times via circular
reporting can lead to over-weighting that evidence. In analyzing these activity clusters, we have specific observations
from our telemetry (host artifacts, capabilities, functionality, and adversary techniques) and third-party reporting
consistent with our findings.

We use third-party reporting as supporting, but not factual, evidence to add context to our specific observations. It
may be possible to verify a third-party had firsthand visibility of a threat, but that’s a rare luxury. We used estimative
language in building associations where appropriate.

To uncover potential associations among these campaigns, we weighed host artifacts, tools, and TTPs more heavily
than transitory atomic indicators like hashes, IP addresses, and domains.

We’ll discuss notable (non-exhaustive) overlaps in the following section.

Campaigns 1 and 3

Campaigns 1 (Winnti) and 3 (REF2924, ChamelGang, Winnti) are related by several elements: the use of the
SHADOWPAD malware family, the specific file names (log.dll and log.dll.dat), and the injection technique using the
same BitDefender hash.

Campaigns 3 and 4

Campaigns 3 (REF2924, ChamelGang, Winnti) and 4 (Undisclosed REF, ChamelGang) are related by the presence
of a specifically configured DOORME backdoor and a shared national strategic interest for the adversary.

Using network scan results for about 180k publicly-accessible Exchange servers, and specific authentication
elements uncovered while reverse engineering REF2924’s DOORME sample, we were able to identify an identical
DOORME configuration at a second telecommunications provider in Afghanistan. This was a different victim than
Campaign 2 (Undisclosed REF, Winnti).

While the DOORME IIS backdoor is not widely prevalent, simply having DOORME in your environment isn’t a strong
enough data point to build an association. The presence of this DOORME configuration, when compared to a search

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://attack.mitre.org/groups/G0044/
https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/new-apt-group-chamelgang/
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/higaisa-or-winnti-apt-41-backdoors-old-and-new/
https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry

16/18

of 180k other Exchange servers and the moderate confidence of the national strategic interests, led us to associate
Campaigns 3 and 4 together with high confidence and that Campaign 4 was also a part of the same threat group.

Summary
DOORME allows for a threat actor to access a targeted network through the use of a backdoored IIS module on an
internet-connected server. DOORME includes the capability to collect information about the infected host, upload
shellcode chunks to evade detection, and execute shellcode in memory.

SIESTAGRAPH is an implant discovered by Elastic Security Labs that uses the Microsoft Graph API for command
and control. The Graph API is used for interacting with Microsoft Office 365, so C2 communication would be largely
masked by legitimate network traffic. Elastic Security Labs has reported the tenant ID hard coded into
SIESTAGRAPH to Microsoft.

Based on our code analysis and the limited internet presence of DOORME and SIESTAGRAPH, we believe that this
intrusion set is used by a limited distribution, or singular, threat actor.

SHADOWPAD is a modular malware family that is used as a way to load and execute shellcode onto a victim system.
While it has been tracked since 2017, SHADOWPAD continues to be a capable and popular remote access and
persistence tool.

The REF2924 intrusion set, using SIESTAGRAPH, DOORME, SHADOWPAD, and the system binary proxy execution
technique (among others) represents an attack group that appears focused on priorities that, when observed across
campaigns, align with a sponsored national strategic interest.

Detections
Hunting queries

Hunting queries are used as a starting point for potentially malicious events, but because every environment is
different, an investigation should be completed.

The following KQL query can be used to hunt for additional behaviors related to SIESTAGRAPH. This query looks for
processes that are making DNS queries to graph.microsoft.com where the process does not have a trusted code-
signing certificate or the process is not signed by Microsoft.

dns.question.name : "graph.microsoft.com" and (process.code_signature.trusted :

“false” or not (process.code_signature.subject_name : "Microsoft Windows" or

process.code_signature.subject_name : "Microsoft Windows Publisher" or

process.code_signature.subject_name : "Microsoft Corporation")) and process.name : *

YARA rules

The DOORME IIS module

rule Windows_Trojan_DoorMe {

 meta:

 author = "Elastic Security"

 creation_date = "2022-12-09"

 last_modified = "2022-12-15"

 os = "Windows"

 arch = "x86"

 category_type = "Trojan"

 family = "DoorMe"

 threat_name = "Windows.Trojan.DoorMe"

 license = "Elastic License v2"

 strings:

 $seq_aes_crypto = { 8B 6C 24 ?? C1 E5 ?? 8B 5C 24 ?? 8D 34 9D ?? ?? ?? ?? 0F

B6 04 31 32 44 24 ?? 88 04 29 8D 04 9D ?? ?? ?? ?? 0F B6 04 01 32 44 24 ?? 88 44 29

?? 8D 04 9D ?? ?? ?? ?? 0F B6 04 01 44 30 F8 88 44 29 ?? 8D 04 9D ?? ?? ?? ?? 0F B6

04 01 44 30 E0 88 44 29 ?? 8B 74 24 ?? }

 $seq_copy_str = { 48 8B 44 24 ?? 48 89 58 ?? 48 89 F1 4C 89 F2 49 89 D8 E8

?? ?? ?? ?? C6 04 1E ?? }

 $seq_md5 = { 89 F8 44 21 C8 44 89 C9 F7 D1 21 F1 44 01 C0 01 C8 44 8B AC 24

?? ?? ?? ?? 8B 9C 24 ?? ?? ?? ?? 48 89 B4 24 ?? ?? ?? ?? 44 89 44 24 ?? 46 8D 04 28

41 81 C0 ?? ?? ?? ?? 4C 89 AC 24 ?? ?? ?? ?? 41 C1 C0 ?? 45 01 C8 44 89 C1 44 21 C9

44 89 C2 F7 D2 21 FA 48 89 BC 24 ?? ?? ?? ?? 8D 2C 1E 49 89 DC 01 D5 01 E9 81 C1 ??

?? ?? ?? C1 C1 ?? 44 01 C1 89 CA 44 21 C2 89 CD F7 D5 44 21 CD 8B 84 24 ?? ?? ?? ??

48 89 44 24 ?? 8D 1C 07 01 EB 01 DA 81 C2 ?? ?? ?? ?? C1 C2 ?? }

17/18

 $seq_calc_key = { 31 FF 48 8D 1D ?? ?? ?? ?? 48 83 FF ?? 4C 89 F8 77 ?? 41

0F B6 34 3E 48 89 F1 48 C1 E9 ?? 44 0F B6 04 19 BA ?? ?? ?? ?? 48 89 C1 E8 ?? ?? ??

?? 83 E6 ?? 44 0F B6 04 1E BA ?? ?? ?? ?? 48 8B 4D ?? E8 ?? ?? ?? ?? 48 83 C7 ?? }

 $seq_base64 = { 8A 45 ?? 8A 4D ?? C0 E0 ?? 89 CA C0 EA ?? 80 E2 ?? 08 C2 88

55 ?? C0 E1 ?? 8A 45 ?? C0 E8 ?? 24 ?? 08 C8 88 45 ?? 41 83 C4 ?? 31 F6 44 39 E6 7D

?? 66 90 }

 $str_0 = ".?AVDoorme@@" ascii fullword

 condition:

 3 of ($seq*) or 1 of ($str*)

}

Read more

The SIESTAGRAPH implant

rule Windows_Trojan_SiestaGraph {

 meta:

 author = "Elastic Security"

 creation_date = "2022-12-14"

 last_modified = "2022-12-15"

 os = "windows"

 arch_context = "x86"

 category_type = “Trojan”

 family = “SiestaGraph”

 threat_name = "Windows.Trojan.SiestaGraph"

 license = "Elastic License v2"

 strings:

 $a1 = "downloadAsync" ascii nocase fullword

 $a2 = "UploadxAsync" ascii nocase fullword

 $a3 = "GetAllDriveRootChildren" ascii fullword

 $a4 = "GetDriveRoot" ascii fullword

 $a5 = "sendsession" wide fullword

 $b1 = "ListDrives" wide fullword

 $b2 = "Del OK" wide fullword

 $b3 = "createEmailDraft" ascii fullword

 $b4 = "delMail" ascii fullword

 condition:

 all of ($a*) and 2 of ($b*)

}

Read more

The SHADOWPAD malware family

rule Windows_Trojan_ShadowPad_1 {

	 meta:

	 	 author = "Elastic Security"

	 	 creation_date = "2023-01-23"

	 	 last_modified = "2023-01-31"

	 	 description = "Target SHADOWPAD obfuscation loader+payload"

	 	 os = "Windows"

	 	 arch = "x86"

	 	 category_type = "Trojan"

	 	 family = "ShadowPad"

	 	 threat_name = "Windows.Trojan.ShadowPad"

	 	 license = "Elastic License v2"

	 strings:

	 	 $a1 = { 87 0? 24 0F 8? }

	 	 $a2 = { 9C 0F 8? }

	 	 $a3 = { 03 0? 0F 8? }

	 	 $a4 = { 9D 0F 8? }

	 	 $a5 = { 87 0? 24 0F 8? }

	 condition:

	 	 all of them

}

rule Windows_Trojan_Shadowpad_2 {

	 meta:

	 	 author = "Elastic Security"

18/18

	 	 creation_date = "2023-01-31"

	 	 last_modified = "2023-01-31"

	 	 description = "Target SHADOWPAD loader"

	 	 os = "Windows"

	 	 arch = "x86"

	 	 category_type = "Trojan"

	 	 family = "Shadowpad"

	 	 threat_name = "Windows.Trojan.Shadowpad"

	 	 license = "Elastic License v2"

	 strings:

	 	 $a1 = "{%8.8x-%4.4x-%4.4x-%8.8x%8.8x}"

	 condition:

	 	 all of them

}

rule Windows_Trojan_Shadowpad_3 {

	 meta:

	 	 author = "Elastic Security"

	 	 creation_date = "2023-01-31"

	 	 last_modified = "2023-01-31"

	 	 description = "Target SHADOWPAD payload"

	 	 os = "Windows"

	 	 arch = "x86"

	 	 category_type = "Trojan"

	 	 family = "Shadowpad"

	 	 threat_name = "Windows.Trojan.Shadowpad"

	 	 license = "Elastic License v2"

	 strings:

	 	 $a1 = "hH#whH#w" fullword

	 	 $a2 = "Yuv~YuvsYuvhYuv]YuvRYuvGYuv1:tv<Yuvb#tv1Yuv-8tv&Yuv" fullword

	 	 $a3 = "pH#wpH#w" fullword

	 	 $a4 = "HH#wHH#wA" fullword

	 	 $a5 = "xH#wxH#w:$" fullword

	 	 $re1 = /(HTTPS|TCP|UDP):\/\/[^:]+:443/

	 condition:

	 	 4 of them

}

Indicators
Artifacts are available from the previously published REF2924 research.

https://www.elastic.co/security-labs/siestagraph-new-implant-uncovered-in-asean-member-foreign-ministry#observables

