
1/27

www.ptsecurity.com
/ww-en/analytics/pt-esc-threat-intelligence/apt-cloud-atlas-unbroken-threat/

APT Cloud Atlas: Unbroken Threat
Positive Technologies ⋮ ⋮ 12/9/2022

Published on 9 December 2022

Introduction
Specialists at the PT Expert Security Center have been monitoring the Cloud Atlas group since May 2019. According
to our data, its attacks have been targeting the government sector of the following countries:

Russia
Belarus
Azerbaijan
Turkey
Slovenia

The goals of the group are espionage and theft of confidential information.

The group typically uses phishing emails with malicious attachments as the initial vector for their attacks.

In the third quarter of 2022, during our investigation we identified a phishing campaign targeting employees of
Russian government agencies. The attackers used targeted mailing based on the professional field of the recipients,
even though we found no publicly available information about them.

We first knew about the attackers back in 2014, when Kaspersky researchers published a report. Since then, their
tools have not changed much (you can find more about them in the "Malware analysis" section). However, there has
not yet been a detailed analysis and description of the functionality of these tools.

In this report, we'll discuss the main techniques of the Cloud Atlas group, and take an in-depth look at the tools they
use.

Analysis of the documents found

As in previous years, the group begins its attack by sending phishing emails, using current geopolitical issues that are
directly related to the target country as a bait text. An example of an email with malicious content that was sent as
part of the campaign in 2022 is shown in Figure 1. Pay special attention to the sender's address: the attackers
disguised themselves as the news portal Lenta.ru, well-known in Russia and the CIS. However, email addresses with
such a domain can be created with Rambler (Figure 2).

Figure 1. The email

https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/apt-cloud-atlas-unbroken-threat/
https://securelist.com/cloud-atlas-redoctober-apt-is-back-in-style/68083/
https://lenta.ru/

2/27

Figure 2. A registration window with the @lenta.ru domain name

Most often, the text is taken from the media or from publicly available official documents. Also, for example, in a 2019
attack aimed at Azerbaijan, a text related to the "Indestructible Brotherhood 2019" training exercises in Tajikistan was
used, while in the 2020 attacks on organizations in Belarus, the emails contained a text related to the presidential
elections.

Figure 3 shows an example of a document which downloads a malicious template (here is a link to the page with the
document's contents).

https://news.ru/near-east/pochemu-islamskij-mir-ne-daet-zapadu-izolirovat-rossiyu/

3/27

Figure 3. The malicious document

In all cases, the malicious attachment was a document (in either DOC or DOCX format) that implements a Template
Injection attack. In such attacks, the document does not contain macros or any other malicious code, and, in most of
the observed cases when the DOC format was used, it may not be flagged by static analysis tools such as antiviruses
(see Figure 4).

4/27

Figure 4. The document with a link to the template is not detected as malicious

The document contains only a link to the template, which is located on a remote server. When the document is
opened, the template is automatically downloaded from the remote server.

Figure 5. An example of a template link in Cloud Atlas documents

It's the template that may be malicious, containing a macro or exploit. This download method is a legitimate function
of Microsoft Office, but attackers can take advantage of it. For example, the same technique is used by the
Gamaredon group in their attacks.

In most cases of a successful connection, an empty document was returned in response. However, in some attacks,
we managed to detect the download of a malicious template in the form of an RTF file containing an exploit for the
CVE-2017-11882 vulnerability.

Researchers at Palo Alto discovered a similar malware delivery chain in 2018. In these attacks, the downloaded RTF
templates contained an exploit for the CVE-2017-11882 vulnerability, as well as a simple PowerShell backdoor, which
was dubbed PowerShower.

We paid special attention to the DOC documents used in this attack: a characteristic feature of all the documents
containing a malicious download was a link to malicious content inside the 1Table or 0Table stream (Figure 9,
highlighted in green).

After studying the DOC format and comparing malicious documents with regular ones, we found a number of patterns
in the infected files.

First, the DOC format requires the 1Table or 0Table stream in any document, along with the mandatory
WordDocument stream (Figure 6).

Figure 6. DOC format content

Second, each document contains a special FIB (File Information Block) structure—in Figure 7, the fragment is
highlighted in yellow—in which there is a base.fWhichTblStm parameter. Setting this bit to 0 or 1 determines which of
the given streams should be used in the document.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-11882
https://unit42.paloaltonetworks.com/unit42-inception-attackers-target-europe-year-old-office-vulnerability/
https://interoperability.blob.core.windows.net/files/MS-DOC/%5bMS-DOC%5d.pdf

5/27

Figure 7. An FIB fragment in a document

Figure 8 shows the structure of an FIB taken from the documentation. Particular attention should be paid to the
structure highlighted in red. The G bit interests us here the most (highlighted in green). This is the base.fWhichTblStm
parameter.

Figure 8. A fragment of an FIB structure

Finally, the last thing that we discovered: links to malicious templates are always located at approximately the same
offsets relative to the hex strings in the Table stream. (We were not much interested in the format of the stream itself
yet.) In Figure 9, the strings of bytes are shown in yellow and red. Using these, we calculated various malicious
template link offsets. This allowed us to quite effectively detect the use of this technique in a specific implementation.

6/27

Figure 9. A malicious link inside a Table stream

Attack chain analysis
In the course of our research, we identified several attack chains (Figure 10), which differed in the number of stages
required to load the main functionality, as well as the tools used at each stage. Nevertheless, the use of these chains
is not new for this group.

Figure 10. Flow chart of the identified attack chains

The first thing we noticed was a remote template downloading an RTF document with an exploit, which in turn
downloads and launches an HTA file. An example of the contents is shown in Figure 11.

7/27

Figure 11. The contents of the HTA file

An examination of the document and its contents revealed that a vulnerability in Equation Editor was used to launch
the exploit payload. The shellcode (highlighted in red in Figure 12) is located inside one of the document's objects
and is executed in the context of the EQNEDT32.EXE process.

Figure 12. The encrypted shellcode

The bulk of the shellcode is stored in encrypted form and decrypted after control is transferred to it.

Figure 13 shows the decrypted shellcode, with the first 13 bytes responsible for decrypting the main part of the
shellcode (the loop statement is decrypted at the first iteration). For decryption, XOR is used with a two-byte key
embedded in the code.

8/27

Figure 13. The decrypted shellcode

The direct link to the HTA file (through which the loading is performed) is stored in the body of the shellcode (Figure
14) and is additionally XOR-encrypted with the one-byte value of 0x12.

9/27

Figure 14. The link to the malicious HTA file

As seen in Figure 11, the HTA file is designed to create on the disk the VBS scripts with the payload for subsequent
stages, as well as an LNK file with the main payload containing the code for loading binary modules. Thus, the main
task of the VBS macros (in our case, both macros had similar names: unbroken.vbs and unbroken.vbs.vbs) is to
deobfuscate the contents of the LNK file (shown in Figure 15) and transfer control to it, after which the payload which
was downloaded by the LNK file code is launched (we will discuss this in the "Malware analysis" section).

Figure 15. The LNK file

It is also worth noting that malicious documents which exploit the same vulnerabilities in Equation Editor and contain
identical object names (for example, "weaseoijsd",highlighted in red in Figure 16) in RTF documents were analyzed
by Cisco Talos Intelligence specialists and attributed to the Bitter APT group.

Figure 16. The object name in the RTF file

The second chain that we found is downloading malicious PowerShell scripts via remote templates (Figure 17), which
in turn download malicious components (mostly Base64-encoded).

https://blog.talosintelligence.com/2022/05/bitter-apt-adds-bangladesh-to-their.html

10/27

Figure 17. The script that loads the payload

We also encountered cases of an intermediate .NET loader that downloaded a payload from a remote server and
transferred control to it.

This .NET loader is decoded from Base64 and launched by a PowerShell script (Figure 18).

Figure 18. The script for decoding and launching the necessary export

The export (Figure 19), activated from the loader, takes all the necessary parameters for network communication,
including the connection encryption key (highlighted in yellow in Figure 18).

Figure 19. The export activated from the loader

The communication is encrypted with a simple XOR operation with the transferred key (Figure 20).

Figure 20. The encryption of the communication inside the loader

Malware analysis

Initial module

The main task of the initial stage is to decrypt the loader of the main functionality and transfer control to it. We should
mention that all such samples that we discovered are quite large and also obfuscated. The loader, in turn, is stored
exclusively in the process memory and is not present on the disk at all. The loader is decrypted in parts, via single-

11/27

byte XOR with different keys (Figure 21). It is also striking that the decryption code is "diluted" with various
operations. This is obviously to make searching for and identifying data decryption procedures more complicated.

Figure 21. Partial decryption of the loader

We also noted that almost all of the functions that decrypt the loader contain a large amount of polymorphic code.
This performs various operations with strings located inside the image, stack strings, as well as with their individual
elements (Figure 22 shows an example). However, these operations do not have any effect on the decrypted data
itself. They are used to calculate various variables and constants that affect the decryption parameters (data size,
offsets, and so on), as well as to complicate the analysis process. The decrypted data is copied to a pre-allocated
memory area as a valid PE image, after which control is transferred to it.

Figure 22. An example of polymorphic code

Main loader

12/27

The loader, in turn, is responsible for reading the data from the file containing the main payload, as well as for its
decryption and unpacking.

First, the loader decrypts the configuration located in its body. The decryption algorithm (Figure 23) is single-byte
XOR with an embedded key. After decryption, the configuration is validated.

We noted that the configuration has not changed since previous studies—it contains the same data and parameters
(Figure 23).

Figure 23. Decrypting the loader configuration

13/27

Figure 24. The loader configuration

Next, the loader reads the file created at the initial stage of the installation, after which it decrypts and unpacks the
data contained in it.

It's at this stage where the first differences from earlier samples appear: to hide the payload, AES in CBC mode is
used, after which the data is unpacked by LZNT1 (it used to be LZMA).

The unpacking algorithm is rather interesting: the data is unpacked not as a single byte array, but by chunks of
various sizes. Figure 25 shows the addition of the header_start_chunk offset to the zero offset of each chunk (for the
first of them, an additional offset of 4), after which the unpacking function is activated.

Thus, the structure of the first chunk in the decrypted load can be represented as follows:

14/27

struct first_comprChunk

{

DWORD signature;

WORD sizeOfCurrChunk; // in fact compressed buffer size

BYTE data[sizeOfCurrChunk]; //compressed data

};

Correspondingly, the remaining chunks do not have the first DWORD field and have the following structure:

struct comprChunk

{

WORD compressedBuffSize;

BYTE data[sizeOfCurrChunk];

};

Each chunk is unpacked independently of the others, without any padding, strictly according to the offsets from its
headers.

Figure 25. Unpacking the decrypted data

The final stage of the loader involves loading the unpacked data as a valid PE image, searching for the required
export by the ordinal name, and transferring control to it (Figure 26).

15/27

Figure 26. Overview of the loader functionality

Payload

The data received at the loader stage is the payload of the malware. Its main functionality is to initialize the
connection to the control server and load various modules from it.

Curiously enough, the payload module also has a configuration inside which is identical to the one in the loader, but
in this case it is AES-encrypted and gets decrypted after control is transferred to the main module.

Next, the malware generates a communication packet that is sent to the server to establish a connection. This packet
contains information about the infected machine and is most likely designed to identify targets that are of interest for
attackers.

The structure of the packet is shown below (Figure 27).

struct Message

{

DWORD lenOfPacket;

DWORD sizeOf_OSVERSIONINFO;

BYTE data_OSVERSIONINFO[sizeOf_OSVERSIONINFO - 4];

DWORD volumeInformation;

BYTE timestamp[16]; // GetLocalTime

WORD GetUserDefaultLCID;

WORD GetSystemDefaultLCID;

DWORD len_of_1_field;

DWORD len_of_2_field;

DWORD len_of_3_field;

DWORD len_of_4_field;

char username; //1_field

char PcName; //2_field

char executePath; //3_field

char applicationName; //4_field

char argvParam;

DWORD lenOf_curr currFileSystem;

char currFileSystem[lenOf_curr currFileSystem];

};

16/27

Figure 27. An example of a generated packet

The malware sends the generated packet to the control server, using the CLSID_IServerXMLHTTPRequest2 COM
object for communication (Figure 28).

Figure 28. The object initialization code

The restored table of this object's virtual methods can be described by the following structure:

struct IServerXmlHttpRequest2Vtbl

{

int QueryInterface;

int AddRef;

int Release;

int GetTypeInfoCount;

int GetTypeInfo;

int GetIDsOfNames;

int Invoke;

int open;

int setRequestHeader;

int getResponseHeader;

int getAllResponseHeaders;

int send;

int abort;

int get_status;

int get_statusText;

int get_responseXML;

int get_responseText;

int get_responseBody;

int get_responseStream;

int get_readyState;

int put_onreadystatechange;

int setTimeouts;

int waitForResponse;

int getOption;

int setOption;

17/27

int setProxy;

int setProxyCredentials;

};

It should be noted that the protocol for communicating between the malware and the server supports five types of
requests (Figure 29), each of which is used at a certain stage of communication.

Figure 29. Types of requests from the malware to the control server

For example, after a PROPFIND request that installs the directory contents on the remote server, a GET request is
made to load the module contained on the control server. Curiously, if the loading is successful, this module is
deleted (Figure 30).

Figure 30. A fragment of the communication with the control server

If the communication is successful, binary data is loaded (Figure 31) containing a specific module in obfuscated form.

18/27

Figure 31. Loading a module from the server

The same procedures are used for obfuscating the data as for extracting the payload with the loader: AES-CBC
encryption and LZNT1 compression.

The functions responsible for the payload extraction procedure, as well as the encryption keys and initialization
vectors used to encrypt the communication, are identical to those used to extract the payload in the loader.

In the course of our research, we managed to obtain a sample that the malware downloads from the control server
(examples of the server contents are shown in Figures 32 and 33).

Figure 32. The directories on the remote server

Figure 33. The file containing the module on the server

The loaded module is decrypted and unpacked (Figure 34), and placed in the memory as a PE image, just as in the
case of the loader. It's also worth noting that the ordinal name (which is used to search for the export to call) is
identical to the one used to transfer control to the payload.

19/27

Figure 34. A fragment of decrypted and unpacked data

20/27

The decrypted payload is an executable module, which is preceded by a configuration. Based on the content of the
configuration, the main functionality of the loaded module becomes clear: to steal files from an infected computer
according to certain parameters.

In particular, attackers are interested in files with these extensions: *.doc, *.docx, *.xls, *.xlsx, *.pdf, *.rtf, *.contact,
*.odt, *.jpg, *.jpeg. Accordingly, the paths needed to search for the files are also present in the configuration. These
can be both disk names and network paths to remote machines.

Functionality of the loaded module

The first thing that interested us was that the function that transfers control to the code of the loaded module in the
first argument (Figure 35) passes a pointer to the function which communicates with the control server.

Figure 35. A code fragment for calling the downloaded module

Analyzing this function allowed us to understand that in this case the communication scheme is identical to the one
described above: data is transferred by function calls from the table of virtual methods of the same COM object (in
this case, PUT is used as the communication method).

Other than this, the analysis of the loaded module reveals nothing of interest. It simply performs a recursive search in
the directories of certain paths.

It's worth noting that for each type of disk connected to the computer, a different type of search is used (Figure 36). It
is also possible to steal files from remote servers—in this case, usernames and passwords (stored in the malware
configuration) are transferred as parameters.

21/27

Figure 36. Different types of search implemented in the malware

Let's also have a look at the function responsible for analyzing the contents of the scanned directories (Figure 37). It's
worth noting that the function itself does not read the file directly. Instead, the pointer to the read function
(pfnReadFile in the figure) is transferred through the global context—the structure that is initialized at the initial stage
of the application—and the function is called this way.

22/27

Figure 37. The function for searching files in a directory

Network infrastructure

All the domains that we discovered in the 2019–2021 attacks were registered through the anonymous registrar
bitdomain[.]biz. This resource guarantees complete anonymity and payment on the service is made exclusively in
bitcoins.

After analyzing the SOA records of the domains, we found that the admin email address field contains perfectly
normal email addresses. In some cases, they turned out to be the registrant addresses that we found in WHOIS.
Therefore, in those domains where WHOIS was hidden by the privacy settings, it can be assumed that the email in
the SOA is the email of the registrant.

Domain email
mynewtemplate.com adam_s92@protonmail.com
new-template.com piterjesten@protonmail.com
upgrade-office.com p.borovin@protonmail.com
upgrade-office.org pavel.savin1992@bk.ru
msofficeupdate.org g.j.dodson@protonmail.com
officeupgrade.org alex.sval@tutanota.com

newoffice-template.com j.konnoban@email.cz
template-new.com e.darmanin@inbox.lv

When analyzing the 2022 campaign, we found a pattern: all the control servers registered by the attackers are used
only to load remote templates.

List of the detected servers:

checklicensekey.com
comparelicense.com
driver-updated.com
sync-firewall.com
system-logs.com
technology-requests.net
translate-news.net

https://undefined/mailto:adam_s92@protonmail.com
https://undefined/mailto:piterjesten@protonmail.com
https://undefined/mailto:p.borovin@protonmail.com
https://undefined/mailto:pavel.savin1992@bk.ru
https://undefined/mailto:g.j.dodson@protonmail.com
https://undefined/mailto:alex.sval@tutanota.com
https://undefined/mailto:j.konnoban@email.cz
https://undefined/mailto:e.darmanin@inbox.lv

23/27

We also discovered an interesting fact: the attackers disguised one of the control servers (technology-requests.net),
trying to make it look like the site https://www.hoosierheightsindianapolis.com (Figure 38).

Figure 38. The legitimate site

Figure 39 shows what the malicious site looked like on July 26, according to webcache.googleusercontent.com.

Figure 39. The site from which the malicious content was downloaded

The malicious tools communicate through a cloud service (similar to previous years), namely OpenDrive
(https://www.opendrive.com). The service is used for both storing the malware modules to be loaded and for loading
the collected data. In this case, a temporary mailbox is used for logins.

Conclusion

The Cloud Atlas group has been active for many years, carefully thinking through every aspect of their attacks. The
group's toolkit has not changed for years—they try to hide their malware from researchers by using one-time payload
requests and validating them. The group avoids network and file attack detection tools by using legitimate cloud
storage and well-documented software features, in particular in Microsoft Office.

The attackers also carefully choose their victims and target their attacks: the group used targeted mailings based on
the professional field of the recipients, but we noted the absence of any publicly available information about the
recipients, which could indicate a well-prepared attack.

We predict that the group will continue to operate, increasing the complexity of its tools and attack techniques due to
the fact that it has once again attracted the attention of researchers.

Authors: Denis Kuvshinov, Aleksandr Grigorian, Daniil Koloskov, Positive Technologies

https://www.hoosierheightsindianapolis.com/
https://www.opendrive.com/

24/27

The article's authors thank the incident response and threat intelligence teams PT Expert Security Center for their
help in drafting the story.

Detection of CloudAtlas group activity by Positive Technologies
products
MP SIEM

The following correlation rules analyze triggered processes and help identify the described activity:

Suspicious_Connection
Malicious_Office_Document
Windows_Autorun_Modification

The following correlation rules analyze the triggered scripts and help detect the described activity:

Execute_Malicious_Powershell_Cmdlet
Execute_Malicious_Command

Implementation of D3FEND techniques in MP SIEM, which will help in detecting CloudAtlas grouping activity

D3FEND
ID

Name of technique
D3FEND Description

D3-PA Process Analysis CloudAtlas group activity can be identified through the rules of process
analysis.

D3-SEA Script Execution
Analysis

CloudAtlas group activity can be detected through the analysis rules of the
launched scripts.

PT NAD

PT NAD contains a CloudAtlas reputation list, which will help in identifying CloudAtlas grouping activity.

Implementation of D3FEND techniques in PT NAD, which will help in detecting CloudAtlas activity.

D3FEND
ID

Name of technique
D3FEND Description

D3-DNSTA DNS Traffic Analysis Using reputation lists to detect Cloud Atlas group activity

D3-FC File Carving Extracting from traffic the files downloaded by the Cloud Atlas
group

PT Sandbox

PT Sandbox verdicts on CloudAtlas grouping activity:

Trojan.Win32.Generic.a
Trojan.Win32.RegLOLBins.a
Backdoor.Win32.CloudAtlas.a
Trojan-Downloader.Win32.Generic.a

Network traffic analysis rules to help detect CloudAtlas grouping activity:

LOADER [PTsecurity] Possible CloudAtlas
SUSPICIOUS [PTsecurity] PROPFIND method in http request
SUSPICIOUS [PTsecurity] MKCOL method in http request

Yara-rules, which will help in detecting CloudAtlas grouping activity:

PTESC_tool_win_ZZ_OfficeTemplate__Downloader__DOC
PTESC_exploit_win_ZZ_MalDoc__CVE201711882__Rtf__CA

Implementation of D3FEND techniques in PT Sandbox, which will help in detecting CloudAtlas grouping activity

D3FEND
ID

Name of technique
D3FEND Description

D3-PA Process Analysis Analysis of the behavior of processes created by malicious applications of
the Cloud Atlas group

D3-FA File Analysis Analysis of Cloud Atlas group files to determine their status and
functionality

D3-NTA Network Traffic
Analysis CloudAtlas activity can be detected through traffic analysis

Yara

https://www.ptsecurity.com/ww-en/products/mpsiem/
https://d3fend.mitre.org/technique/d3f:ProcessAnalysis/
https://d3fend.mitre.org/technique/d3f:ScriptExecutionAnalysis/
https://www.ptsecurity.com/ww-en/products/network-attack-discovery/
https://d3fend.mitre.org/technique/d3f:DNSTrafficAnalysis/
https://d3fend.mitre.org/technique/d3f:FileCarving/
https://www.ptsecurity.com/ww-en/products/sandbox/
https://d3fend.mitre.org/technique/d3f:ProcessAnalysis/
https://d3fend.mitre.org/technique/d3f:FileAnalysis/
https://d3fend.mitre.org/technique/d3f:NetworkTrafficAnalysis/

25/27

rule PTESC_tool_win_ZZ_OfficeTemplate__Downloader__DOC

{

	 strings:

	 	 $a = {00 A5 06 6E 04 B4}

	 	 $b = {FF FF FF 7F FF FF FF 7F}

	 	 $c = {B4 00 B4 00 81 81 12 30 00}

	 	 $pref_1 = {68 00 74 00 74 00 70 00 3A 00 2F 00 2F}

	 	 $pref_2 = {68 00 74 00 74 00 70 00 73 00 3A 00 2F 00 2F}

	 condition:

	 	 uint16be (0) == 0xd0cf and (for any i in (300 .. 400) : (uint8be

(@a + i) == 0x68 and uint8be (@a + i + 2) == 0x74 and uint8be (@a + i + 4) ==

0x74 and uint8be (@a + i + 6) == 0x70) or for any j in (100 .. 200) : (uint8be (

@b + j) == 0x68 and uint8be (@b + j + 2) == 0x74 and uint8be (@b + j + 4) == 0x74

and uint8be (@b + j + 6) == 0x70) or for any k in (200 .. 400) : (uint8be (@c +

k) == 0x68 and uint8be (@c + k + 2) == 0x74 and uint8be (@c + k + 4) == 0x74 and

uint8be (@c + k + 6) == 0x70)) and ((for any l in (14 .. 70) : (uint8be (

@pref_1 + l) == 0x2f)) or (for any y in (16 .. 70) : (uint8be (@pref_2 + y)

== 0x2f)))

}

rule PTESC_exploit_win_ZZ_MalDoc__CVE201711882__Rtf__CA

{

 strings:

 $equation = "4571756174696F6E" nocase ascii //180000004571756174696F6E

 $msftedit = "generator Msftedit 6.39.15" nocase ascii //generator Msftedit

6.39.15.1401

 $objclass = "objclass weaseoijsd" nocase ascii

 condition:

 uint32be (0) == 0x7B5C7274 and ($equation and ($msftedit or $objclass) or (for any

i in (50..350) : (uint8be (@equation + i) == 0x64 and uint8be (@equation + i + 2) ==

0x64 and uint8be (@equation + i + 4) == 0x64 and uint8be (@equation + i + 6) ==

0x38)))

}

IOCs

File indicators

Name SHA-256
Методические рекомендации для
грузоотправителей-грузополучателей (2022).doc
(Guidelines for consignors-consignees (2022).doc)

f2c4281e4d6c11173493b759adfb0eb798ce46650076e7633cf086b6d59fdb

Будьте_бдительны_Корпоративное_уведомление.doc
(Stay_alert_Corporate_Notice.doc) 482aeb3db436e8d531b2746a513fe9a96407cf4458405680a49605e13685

Иранские оценки визита В. Путина в Тегеран.doc
(Iranian assessments of V. Putin's visit to Tehran.doc) 2f97374c76ae10c642a57a8b13d25cbdc070c9098c951ea418d1533ac01d

Почему исламский мир не дает Западу изолировать
Россию.doc (Why the Islamic world does not allow the
West to isolate Russia.doc)

3cf2bda35e88c59bb89e7fdc8fcfd4c46b2b9186e61325d2924e049d775b74

leptophis[1].doc c0e154b10d70b99b5616a2eda6bfe188a49f85ed3aa92d48ec9ce709df9d5
lep[1].hta a4194555b19ea32680cc23f8f7d42da02b82eba8b64cb5f4630110f4e2c1dd
unbroken.vbs 59066dc428cde7cc55f3c24c2658d3e288f3f072811d86243a85af14bd4827
unbroken.vbs.vbs 4cb6e224b6b03a2f6ac1ac23e6bf097067018b90493ee94f210f66fbbbbdce
list.ps1 2233c0d4030cc728c2219b1e9c4c05cb262e2ddc7f4ac2f2924767396418c
office.ps1 7fcf7c1dad362283d0a27993df4764e2bbb11857842b80f63d63449b9f2f1fa
office.ps1 d9fc6504c8970fefc441c77965937c382b029f1278918d1f54d196859e9f6e7
rtcpsvc.dll 3e7b066c26ba98d285a41043c739be8767606d9df057ee2f7bcddb7862c00
lockrail.dll c5d1de206445f508c1af5f213e46b915b536e4b36ef917c4e826a982dd47c3
holeincorner 8215e918ca3a77424dadac1aebc9a44b8f9840cd1389df0399a9fa4eb6329
Salzgitters.avi b8dc70b9ffe06c9ecaf0216ea7948fe718143db10641a23297652693ea026a
Schultes.wmv f4e710f515249e8c08ae76284bfb280070e1fd2308e9d9321d92163dfc73be

26/27

Network indicators:

api-help.com
driver-updated.com
sync-firewall.com
system-logs.com
technology-requests.net
translate-news.net
checklicensekey.com
comparelicense.com
msupdatecheck.com
protocol-list.com

Payload filenames (from the configuration):

callicrates
tinh
amianthium
mandarinduck
cushioning
kingsclover

Email addresses from which malicious emails were sent:

MITRE TTPs

ID Name Description
Resource Development

T1583 Acquire Infrastructure The Cloud Atlas group used servers to store remote
templates, as well as cloud storage as a control server

T1585 Establish Accounts The Cloud Atlas group registered cloud service accounts
and tempmail mailboxes

Initial Access

T1566.001 Phishing: Spearphishing Attachment The Cloud Atlas group sent phishing emails with malicious
content
Execution

T1204.002 User Execution: Malicious File The Cloud Atlas group sent emails with malicious DOC and
DOCX files

T1559.001 Inter-Process Communication:
Component Object Model The Cloud Atlas group used COM components in their tools

T1059.001 Command and Scripting Interpreter:
PowerShell

The Cloud Atlas group used PowerShell scripts to load and
run their components

T1059.005 Command and Scripting Interpreter:
Visual Basic

The Cloud Atlas group used Visual Basic scripts to load
and run their components

T1203 Exploitation for Client Execution The Cloud Atlas group used vulnerabilities in Microsoft
Office components to launch their malicious components

Persistence

T1547.001 Boot or Logon Autostart Execution:
Registry Run Keys / Startup Folder

The Cloud Atlas group used registry keys (autorun) for
persistence

Defense Evasion

T1221 Template Injection The Cloud Atlas group used a remote template injection
technique to hide the malicious payload

T1140 Deobfuscate/Decode Files or
Information

The Cloud Atlas group encrypts its components to protect
them from discovery and analysis
Collection

T1025 Data from Removable Media The Cloud Atlas group used tools to collect information
from various remote devices

T1039 Data from Network Shared Drive The Cloud Atlas group used tools to collect information
from various network devices

T1005 Data from Local System The Cloud Atlas group used tools to collect information
from the file system

T1560.002 Archive Collected Data: Archive via
Library

The Cloud Atlas group applies LZNT1 compression to
collected data using the WinAPI library

T1560.003 Archive Collected Data: Archive via
Custom Method

The Cloud Atlas group used custom data encryption
algorithms

T1119 Automated Collection The Cloud Atlas group used methods of automatic data
collection from infected machines

Command and Control (C2)

T1573.001 Encrypted Channel: Symmetric
Cryptography

The Cloud Atlas group used AES encryption to hide
network communication

T1041 Exfiltration Over C2 Channel The Cloud Atlas group used a C2 channel to transfer

27/27

collected data

T1102 Web Service The Cloud Atlas group used the OpenDrive cloud service
as a control server

General TTP countermeasures used by CloudAtlas
Basic protective measures

D3FEND
ID

Name of
technique
D3FEND

Description

D3-
SYSVA

System
Vulnerability
Assessment

Since CloudAtlas exploits vulnerabilities, it is necessary to monitor the vulnerability
of systems in the infrastructure and update vulnerable software in a timely manner

D3-SU Software
Update

Since CloudAtlas exploits vulnerabilities, it is necessary to monitor the vulnerability
of systems in the infrastructure and update vulnerable software in a timely manner

D3-OTF Outbound
Traffic Filtering Restrict network traffic to untrusted servers from IOC lists

D3-
DNSDL DNS Denylisting Block resolution of DNS names from IOC lists

Additional protective measures

D3FEND
ID

Name of
technique
D3FEND

Description

D3-SRA
Sender

Reputation
Analysis

CloudAtlas group uses free email services, so as an additional measure of protection
against phishing, you can specially mark emails from external free services to attract
additional attention of the user

D3-
UDTA

User Data
Transfer
Analysis

CloudAtlas grouping downloads data through compromised workstations, so you can
use profiling of the amount of data transferred to the Internet by the user to detect
anomalies in the case of massive data exfiltration

https://d3fend.mitre.org/technique/d3f:SystemVulnerabilityAssessment/
https://d3fend.mitre.org/technique/d3f:SoftwareUpdate/
https://d3fend.mitre.org/technique/d3f:OutboundTrafficFiltering/
https://d3fend.mitre.org/technique/d3f:DNSDenylisting/
https://d3fend.mitre.org/technique/d3f:SenderReputationAnalysis/
https://d3fend.mitre.org/technique/d3f:UserDataTransferAnalysis/

