
1/13

www.welivesecurity.com
/2022/09/06/worok-big-picture/

Worok: The big picture
⋮ 9/6/2022

Focused mostly on Asia, this new cyberespionage group uses undocumented tools, including steganographically
extracting PowerShell payloads from PNG files

Thibaut Passilly
6 Sep 2022 - 11:30AM

Focused mostly on Asia, this new cyberespionage group uses undocumented tools, including steganographically
extracting PowerShell payloads from PNG files

ESET researchers recently found targeted attacks that used undocumented tools against various high-profile
companies and local governments mostly in Asia. These attacks were conducted by a previously unknown espionage
group that we have named Worok and that has been active since at least 2020. Worok’s toolset includes a C++
loader CLRLoad, a PowerShell backdoor PowHeartBeat, and a C# loader PNGLoad that uses steganography to
extract hidden malicious payloads from PNG files.

Who is Worok?

During the ProxyShell (CVE-2021-34523) vulnerability disclosure in early 2021, we observed activity from various
APT groups. One exhibited characteristics common with TA428:

Activity times
Targeted verticals
Usage of ShadowPad

The rest of the toolset is very different: for example, TA428 took part in the Able Desktop compromise in 2020. We
consider that the links are not strong enough to consider Worok to be the same group as TA428, but the two groups
might share tools and have common interests. We decided to create a cluster and named it Worok. The name was
chosen after a mutex in a loader used by the group. Further activity with variants of the same tools was then linked to
this group. According to ESET’s telemetry, Worok has been active since late 2020 and continues to be active as of
this writing.

Back in late 2020, Worok was targeting governments and companies in multiple countries, specifically:

A telecommunications company in East Asia
A bank in Central Asia
A maritime industry company in Southeast Asia
A government entity in The Middle East
A private company in southern Africa

There was a significant break in observed operations from 2021-05 to 2022-01, but Worok activity returned in 2022-
02, targeting:

An energy company in Central Asia
A public sector entity in Southeast Asia

Figure 1 presents a visual heatmap of the targeted regions and verticals.

https://www.welivesecurity.com/2022/09/06/worok-big-picture/
https://www.welivesecurity.com/author/tpassilly/
https://www.welivesecurity.com/author/tpassilly/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-34523
https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/

2/13

Figure 1. Map of the targeted regions and verticals

Considering the targets’ profiles and the tools we’ve seen deployed against these victims, we think Worok’s main
objective is to steal information.

Technical analysis

While the majority of initial accesses are unknown, in some cases through 2021 and 2022 we have seen exploits
used against the ProxyShell vulnerabilities. In such cases, typically webshells have been uploaded after exploiting
these vulnerabilities, in order to provide persistence in the victim’s network. Then the operators used various implants
to gain further capabilities.

Once access had been acquired, the operators deployed multiple, publicly available tools for reconnaissance,
including Mimikatz, EarthWorm, ReGeorg, and NBTscan, and then deployed their custom implants: a first-stage
loader, followed by a second stage .NET loader (PNGLoad). Unfortunately, we have not been able to retrieve any of
the final payloads. In 2021, the first-stage loader was a CLR assembly (CLRLoad), while in 2022 it has been
replaced, in most cases, by a full-featured PowerShell backdoor (PowHeartBeat) – both execution chains are
depicted in Figure 2. These three tools are described in detail in the following subsections.

https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-1.-Map-of-the-targeted-regions-and-verticals.png
https://blog.gentilkiwi.com/mimikatz
https://rootkiter.com/EarthWorm/en/index.html
https://github.com/sensepost/reGeorg
https://github.com/charlesroelli/nbtscan

3/13

Figure 2. Worok compromise chains

CLRLoad: CLR assembly loader

CLRLoad is a generic Windows PE that we have seen in both 32-and 64-bit versions. It is a loader written in C++ that
loads the next stage (PNGLoad), which must be a Common Language Runtime (CLR) assembly DLL file. That code
is loaded from a file located on disk in a legitimate directory, presumably to mislead victims or incident responders
into thinking it is legitimate software.

Some CLRLoad samples start by decoding the full path of the file whose content they will load as the next stage.
These file paths are encoded with a single-byte XOR, with a different key in every sample. Decoded or cleartext,
these file paths are absolute, with the following being those we have encountered:

C:\Program Files\VMware\VMware Tools\VMware VGAuth\xsec_1_5.dll
C:\Program Files\UltraViewer\msvbvm80.dll
C:\Program Files\Internet Explorer\Jsprofile.dll
C:\Program Files\WinRar\RarExtMgt.dll
C:\Program Files (x86)\Foxit Software\Foxit Reader\lucenelib.dll

Next, a mutex is created and we’ve seen a different name in every sample. The loader checks for this mutex; if found,
it exits, because the loader is already running. In one of the samples, the mutex Wo0r0KGWhYGO was encountered,
which gave the group its name of Worok.

CLRLoad then loads a CLR assembly from the possibly decoded file path. As unmanaged code, CLRLoad achieves
this via CorBindToRuntimeEx Windows API calls in 32-bit variants, or CLRCreateInstance calls in 64-bit variants.

PowHeartBeat: PowerShell backdoor

PowHeartBeat is a full-featured backdoor written in PowerShell, obfuscated using various techniques such as
compression, encoding, and encryption. Based on ESET telemetry, we believe PowHeartBeat replaced CLRLoad in
more recent Worok campaigns as the tool used to launch PNGLoad.

The first layer of the backdoor code consists of multiple chunks of base64-encoded PowerShell code. Once the
payload is reconstructed, it is executed via IEX. Once decoded, another layer of obfuscated code is executed, which
we can see in Figure 3.

https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-2.-Worok-compromise-chains.png
https://docs.microsoft.com/en-us/dotnet/standard/clr

4/13

Figure 3. Excerpt of the decoded main function of the second layer of PowHeartBeat

The second layer of the backdoor first base64 decodes the next layer of its code, which is then decrypted with Triple
DES (CBC mode). After decryption, this code is decompressed using the gzip algorithm, thus giving the third layer of
PowerShell code, which is the actual backdoor. It is divided into two main parts: configuration, and handling backdoor
commands.

The main layer of backdoor code is also written in PowerShell and uses HTTP or ICMP to communicate with the C&C
server. It works as depicted in Figure 4.

Figure 4. PowHeartBeat’s functioning

Configuration

The configuration contains multiple fields, including version number, optional proxy configuration, and C&C address.
Table 1 describes the meanings of the configuration fields in the different versions we have observed.

Table 1. Configuration field meanings

Field name Description
nouse /
ikuyrtydyfg

(other samples)

Unused.

ClientId
Client identifier, used for the following purposes:

· As a value when constructing the Cookie header for C&C communications.

· As a cryptographic artifact for sent data encryption.

Version Version number of PowHeartBeat.

ExecTimes Number of allowed execution attempts when issuing a RunCmd (command running)
command.

UserAgent User agent used for C&C communications.
Referer Referer header used for C&C communications.

https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-3.-Excerpt-of-the-decoded-main-function-of-the-second-layer-of-PowHeartBeat.png
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Gzip
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-4.-PowHeartBeats-functioning.png

5/13

Field name Description
AcceptEncoding Unused.
CookieClientId

CookieTaskId

CookieTerminalId

Values used to construct the Cookie header for C&C communications.

UrlHttps Protocol to use for C&C communications.
UrlDomain

IPAddress

Domains

URL, domain(s), or IP address used as the C&C server. If Domains is not empty, it is
chosen instead of IPAddress. In other cases, IPAddress is taken.

UrlSendHeartBeat URL path used when the backdoor asks the C&C server for commands.

UrlSendResult URL path used when the backdoor sends the results of the command back to the C&C
server.

GetUrl Complete URL, used by PowHeartBeat to request commands from the C&C server. It is
the concatenation of the URL elements above.

PutUrl Same as GetUrl but used to send the results of the command back to the C&C server.
currentPath Unused.

ProxyEnableFlag Flag indicating whether the backdoor must use a proxy or not in order to communicate
with the C&C server.

Proxymsg Address of the proxy to use if ProxyEnableFlag is set to $true.
Interval Time in seconds that the script sleeps for between GET requests.

BasicConfigPath Path to an optional configuration file containing UpTime, DownTime, DefaultInterval, and
Domains. Those values will be overridden if the file is present.

UpTime Time of day from which the backdoor starts operating, meaning it starts making GET
requests to the C&C server.

DownTime Time of day until which the backdoor can operate, meaning the time when it stops making
requests to the C&C server.

DomainIndex
Index of the current domain name to use for communications with the C&C server. In case
a request returns an error message different from 304 (“Not modified”), DomainIndex is
increased.

SecretKey Key used to decrypt/encrypt the configuration. Configuration is encrypted with multiple-
byte XOR.

IfLog Unused.
IfLogFilePath Flag indicating whether logging is enabled.
logpath Path of the log file.

ProxyFile
File path of the optional proxy configuration. If it is empty or not found in the file system,
the backdoor retrieves the user’s proxy settings from the registry value
HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer .

IfConfig Flag indicating whether to use a configuration file.

Figure 5 shows an example of the configuration extracted from a PowHeartBeat sample (SHA-1:
757ABA12D04FD1167528FDD107A441D11CD8C427).

1

2

3

4

5

6

7

8

9

$Script:nouse = 100;

if(Test-Path $MyInvocation.MyCommand.Path){Remove-item $MyInvocation.MyCommand.Path -Force;}

$Script:ClientId = "83";

$Script:Version = "2.1.3.0003";

$Script:ExecTimes = 10;

$Script:UserAgent = "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/69.0.3487.100 Safari/537.36";

$Script:Referer = "www.adobe.com";

$Script:AcceptEncoding = "text/html,app1ication/xhtml+xml,app1ication/xml;q=0.9,*/*;q=0.8";

$Script:CookieClientId = "s_ecid";

6/13

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

$Script:CookieTaskId = "aam_uuid";

$Script:CookieTerminalId = "AAMC_adobe_0";

$Script:UrlHttps = "http://";

$Script:UrlDomain= " 118.193.78[.]22:443";

$Script:UrlSendHeartBeat = "/latest/AdobeMessagingClient.js";

$Script:UrlSendResult = "/content/dam/offers-homepage/homepage.jpg";

$Script:GetUrl = $Script:UrlHttps + $Script:UrlDomain + $Script:UrlSendHeartBeat;

$Script:PutUrl = $Script:UrlHttps + $Script:UrlDomain + $Script:UrlSendResult;

$Script:currentPath = Split-Path -Parent $MyInvocation.MyCommand.Definition;

$Script:ProxyEnableFlag = $false;

$Script:Proxymsg;

$Script:Interval = 10 ;

$Script:BasicConfigPath = "C:\ProgramData\unins.dat";

$Script:UpTime = 0;

$Script:DownTime = 24;

$Script:Domains;

$Script:DomainIndex;

$Script:SecretKey = "###ConfigKey###";

#$Script:IfLog = $true;

$Script:IfLogFilePath = "C:\ProgramData\tpncp.dat";

$Script:logpath = "C:\ProgramData\unins000.dat";

$Script:ProxyFile = "C:\ProgramData\hwrenalm.dat";

$Script:IfConfig = $false;

Figure 5. Configuration example

Data encryption

PowHeartBeat encrypts logs and additional configuration file content.

Log file content is encrypted though multiple-byte XOR with a key specified in cleartext in the sample. Interestingly,
clientId is used as a salt for the index into the key array. The key is a 256-byte array, which was identical in every
sample that we encountered. Additional configuration file content is encrypted through multiple-byte XOR with the
value from SecretKey as its key.

C&C communications

PowHeartBeat used HTTP for C&C communications until version 2.4, and then switched to ICMP. In both case the
communication is not encrypted.

7/13

HTTP

In an infinite loop, the backdoor sends a GET request to the C&C server, asking for a command to issue. The
encrypted answer is decrypted by the backdoor, which processes the command, and writes the command output to a
file whose content is then sent to the C&C server via a POST request.

The format of the GET requests is the following:

1

2

3

4

5

6

GET <UrlSendHeartBeat> HTTP/1.1

User-Agent: <UserAgent>

Referer: <Referer>

Host: <Domain>

Cookie: <CookieClientId>=<ClientId>

Connection: close

Note that the request is constructed using the eponymous configuration fields.

In the response from the C&C server, the third byte of the content is the command identifier that indicates the
command to be processed by the backdoor. We’ll call it command_id. The remaining content of the response will be
passed as an argument to the command that is processed. This content is encrypted with the algorithm shown in
Figure 6, taskId being the value of the cookie named after CookieTaskId‘s value from the configuration.

1

2

3

4

5

6

7

8

9

10

o[int] $pos = $taskId % 256;

for ($i = 0; $i -lt $tmpBytes.Value.Length; $i++)

{

 $pos = $pos + $clientId;

 if ($pos -ge 256)

 {

 $pos = $pos % 256;

 }

 $tmpBytes.Value[$i] = [byte]($tmpBytes.Value[$i] -bxor $hexEnc[$pos]);

}

Figure 6. Requests content data encryption algorithm

The response from the C&C server also contains another cookie, whose name is specified by the backdoor’s
CookieTerminalId configuration variable. The value of this cookie is repeated in the POST request from the backdoor,
and it must not be empty. After executing the backdoor command, PowHeartBeat sends the result as a POST request
to the C&C server. The result is sent as a file whose name is <command_id>.png.

ICMP

Starting from version 2.4 of PowHeartBeat, HTTP was replaced by ICMP, sent packets having a timeout of six
seconds and being unfragmented. Communication through ICMP is most likely a way to evade detection.

There is no major change in versions 2.4 and later, but we noticed some modifications in the code:

https://docs.microsoft.com/en-us/dotnet/api/system.net.networkinformation.pingoptions.dontfragment?view=net-6.0

8/13

PowHeartBeat sends a heartbeat packet at each loop that contains the string abcdefghijklmnopqrstuvwxyz,
before requesting a command. This informs the C&C server that the backdoor is ready to receive commands.
Requests to get commands performed by the backdoor contain the string abcdefghijklmnop.

Heartbeat packets have the format described in Figure 7.

Figure 7. Heartbeat packet layout

The difference between client ID and client flag is that client ID differs in every sample whereas client flag is the same
in every sample that uses ICMP. heartbeat flag indicates that the backdoor is sending a heartbeat. The response from
the C&C server has the format described in Figure 8.

Figure 8. C&C server response layout

flag here indicates whether there is a command to issue to the backdoor. Requests to get commands have the format
described in Figure 9.

Figure 9. Layout for requests to get commands

Note that the backdoor’s ICMP mode allows receiving an unlimited amount of data, divided into chunks, and the
variables data length, current position and total length are used to keep track of the transmitted data. Responses to
these requests have the format described in Figure 10.

Figure 10. Layout of responses to requests for getting commands

As in HTTP responses, the command identifier is the third byte of data.

After seven consecutive ICMP replies with empty or inconsistently formatted content, transfers between the backdoor
and C&C server are considered finished.

Concerning the requests to send the result of the issued command to the C&C server, server mode is changed for
post mode, and the final string (abcdefghijklmnop) is changed for the result data.

Backdoor commands

PowHeartBeat has various capabilities, including command/process execution and file manipulation. Table 2 lists all
commands supported by the various analyzed samples.

Table 2. PowHeartBeat command descriptions

https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-7.-Heartbeat-packet-layout.png
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-8.-CC-server-response-layout.png
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-9.-Layout-for-requests-to-get-commands.png
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-10.-Layout-of-responses-to-requests-for-getting-commands.png

9/13

Name Command
Identifier DescriptionName Command
Identifier Description

Cmd 0x02 Execute a PowerShell command.
Exe 0x04 Execute a command as a process.
FileUpload 0x06 Upload a file to the victim machine. File content is gzip-compressed.

FileDownLoad 0x08 Download a file from the victim machine, and return file path, file length, creation
time, access times, and file content to the C&C server.

FileView 0x0A

Get file information of a specific directory, in particular:

· Filenames

· File attributes

· Last write times

· File contents
FileDelete 0x0C Delete a file.
FileRename 0x0E Rename or move a file.
ChangeDir 0x10 Change the current working location of the backdoor.

Info 0x12

Get a category of information according to the specified argument:

· “Basic information”: ClientId, Version, host name, IP addresses, explorer.exe

version and size information, OS (architecture and flag indicating if the machine
is a server), Interval, current directory, drive information (name, type, free space
and total size), current time

· “Time-Interval information”: Interval and current time

· “Domain information”: decrypted configuration file content

Config 0x14 Update the configuration file content and reload the configuration.
N/A 0x63 Backdoor exit.

In case of errors on the backdoor side, the backdoor uses a specific command identifier 0x00 in the POST request to
the C&C server, thus indicating an error occurred.

Note that before sending the information back to the C&C server, the data is gzip-compressed.

PNGLoad: Steganographic loader

PNGLoad is the second-stage payload deployed by Worok on compromised systems and, according to ESET
telemetry, loaded either by CLRLoad or PowHeartBeat. While we don’t see any code in PowHeartBeat that directly
loads PNGLoad, the backdoor has the capabilities to download and execute additional payloads from the C&C
server, which is likely how the attackers have deployed PNGLoad on systems compromised with PowHeartBeat.
PNGLoad is a loader that uses bytes from PNG files to create a payload to execute. It is a 64-bit .NET executable –
obfuscated with .NET Reactor – that masquerades as legitimate software. For example, Figure 11 shows the CLR
headers of a sample masquerading as a WinRAR DLL.

Figure 11. Example of a fake WinRAR DLL

https://www.eziriz.com/dotnet_reactor.htm
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-11.-Example-of-a-fake-WinRAR-DLL.png

10/13

Once deobfuscated, only one class is present. In this class, there is a MainPath attribute containing the directory path
the backdoor searches, including its subdirectories, for files with a .png extension, as shown in Figure 12.

Figure 12. .png file listing

Each .png file located by this search of MainPath is then checked for steganographically embedded content. First, the
least-significant bit of each pixel’s R (red), G (green), B (blue), and A (alpha) values are fetched and assembled into a
buffer. Should the first eight bytes of that buffer match the magic number seen in Figure 13 and the next eight-byte
value, control, be non-null, the file passes PNGLoad’s steganographic content check. For such files, processing
continues with the remainder of the buffer decrypted with a multiple-byte XOR, using the key stored in PNGLoad’s
SecretKeyBytes attribute, and then the decrypted buffer is gzip-decompressed. The result is expected to be a
PowerShell script, which is run immediately.

Figure 13. Format of buffer PNGLoad creates from processing .png files

Interestingly, operations performed by PNGLoad are logged in a file whose path is stored in the variable LogFilePath.
Operations are only logged if a file is present whose path is specified by the internal variable IfLogFilePath.

We have not been able to obtain a sample .png file used along with PNGLoad, but the way PNGLoad operates
suggests that it should work with valid PNG files. To hide the malicious payload, Worok uses Bitmap objects in C#,
which only take pixel information from files, not the file metadata. This means that Worok can hide its malicious
payloads in valid, innocuous-looking PNG images and thus hide in plain sight.

Conclusion

Worok is a cyberespionage group that develops its own tools, as well as leveraging existing tools, to compromise its
targets. Stealing information from their victims is what we believe the operators are after because they focus on high-
profile entities in Asia and Africa, targeting various sectors, both private and public, but with a specific emphasis on
government entities. Activity times and toolset indicate possible ties with TA428, but we make this assessment with
low confidence. Their custom toolset includes two loaders – one in C++ and one in C# .NET – and one PowerShell

https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-12.-.png-file-listing.png
https://www.welivesecurity.com/wp-content/uploads/2022/08/Figure-13.-Format-of-buffer-PNGLoad-creates-from-processing-.png-files.png

11/13

backdoor. While our visibility is limited, we hope that shedding light on this group will encourage other researchers to
share information about this group.

For any inquiries about our research published on WeLiveSecurity, please contact us at threatintel@eset.com.

ESET Research now also offers private APT intelligence reports and data feeds. For any inquiries about this service,
visit the ESET Threat Intelligence page.

IOCs

Files

SHA-1 Filename ESET Detection name Comment

3A47185D0735CDECF4C7C2299EB18401BFB328D5 script PowerShell/PowHeartBeat.B PowHeartBe
2.4.3.0003.

27ABB54A858AD1C1FF2863913BDA698D184E180D script PowerShell/PowHeartBeat.A PowHeartBe
2.4.3.0003.

678A131A9E932B9436241402D9727AA7D06A87E3 script PowerShell/PowHeartBeat.B PowHeartBe
2.4.3.0003.

757ABA12D04FD1167528FDD107A441D11CD8C427 script PowerShell/PowHeartBeat.B PowHeartBe
2.1.3.0003.

54700A48D934676FC698675B4CA5F712C0373188 script PowerShell/PowHeartBeat.A PowHeartBe
1.1.3.0002.

C2F53C138CB1B87D8FC9253A7088DB30B25389AF script PowerShell/PowHeartBeat.A PowHeartBe
1.1.3.0002.

C2F1954DE11F72A46A4E823DE767210A3743B205 tmp.ps1 PowerShell/PowHeartBeat.B PowHeartBe
2.4.3.0004.

CE430A27DF87A6952D732B4562A7C23BEF4602D1 tmp.ps1 PowerShell/PowHeartBeat.A PowHeartBe
2.1.3.0004.

EDE5AB2B94BA85F28D5EE22656958E4ECD77B6FF script PowerShell/PowHeartBeat.A PowHeartBe
2.4.3.0003.

4721EEBA13535D1EE98654EFCE6B43B778F13126 vix64.dll MSIL/PNGLoader.A PNGLoader.
728A6CB7A150141B4250659CF853F39BFDB7A46C RarExtMgt.dll MSIL/PNGLoader.A PNGLoader.
864E55749D28036704B6EA66555A86527E02AF4A Jsprofile.dll MSIL/PNGLoader.A PNGLoader.
8DA6387F30C584B5FD3694A99EC066784209CA4C vssxml.dll MSIL/PNGLoader.A PNGLoader.
AA60FB4293530FBFF00D200C0D44EEB1A17B1C76 xsec_1_5.dll MSIL/PNGLoader.A PNGLoader.
B2EAEC695DD8BB518C7E24C4F37A08344D6975BE msvbvm80.dll MSIL/PNGLoader.A PNGLoader.
CDB6B1CAFEE098615508F107814179DEAED1EBCF lucenelib.dll MSIL/PNGLoader.A PNGLoader.
4F9A43E6CF37FF20AE96E564C93898FDA6787F7D vsstrace.dll Win64/CLRLoad.C CLRLoad.
F181E87B0CD6AA4575FD51B9F868CA7B27240610 ncrypt.dll Win32/CLRLoad.A CLRLoad.
4CCF0386BDE80C339EFE0CC734CB497E0B08049C ncrypt.dll Win32/CLRLoad.A CLRLoad.
5CFC0D776AF023DCFE8EDED5CADA03C6D7F9C244 wlbsctrl.dll Win64/CLRLoad.E CLRLoad.
05F19EBF6D46576144276090CC113C6AB8CCEC08 wlbsctrl.dll Win32/CLRLoad.A CLRLoad.
A5D548543D3C3037DA67DC0DA47214B2C2B15864 secur32.dll Win64/CLRLoad.H CLRLoad.
CBF42DCAF579AF7E6055237E524C0F30507090F3 dbghelp.dll Win64/CLRLoad.C CLRLoad.

File Paths

Some of the MainPath, LogFilePath and IfLogFilePath values that we encountered in PNGLoad samples:

MainPath LogFilePath IfLogFilePath
C:\Program
Files\VMware\VMware
Tools\

C:\Program Files\VMware\VMware
Tools\VMware VGAuth\readme.txt

C:\Program Files\VMware\VMware
Tools\VMware VGAuth\VMWSU_V1_1.dll

C:\Program
Files\WinRar\ C:\Program Files\WinRar\rarinstall.log C:\Program Files\WinRar\des.dat

https://undefined/mailto:threatintel@eset.com
https://www.eset.com/int/business/services/threat-intelligence/

12/13

MainPath LogFilePath IfLogFilePath
C:\Program
Files\UltraViewer\

C:\Program
Files\UltraViewer\‌CopyRights.dat C:\Program Files\UltraViewer\uvcr.dll

Network

Domain IP
None 118.193.78[.]22
None 118.193.78[.]57
airplane.travel-commercials[.]agency 5.183.101[.]9
central.suhypercloud[.]org 45.77.36[.]243

Mutexes

In CLRLoad samples, the mutex names that we encountered are:

aB82UduGX0EX

ad8TbUIZl5Ga

Mr2PJVxbIBD4

oERiQtKLgPgK

U37uxsCsA4Xm

Wo0r0KGWhYGO

xBUjQR2vxYTz

zYCLBWekRX3t

3c3401ad-e77d-4142-8db5-8eb5483d7e41

9xvzMsaWqxMy

A comprehensive list of Indicators of Compromise (IoCs) and samples can be found in our GitHub repository.

MITRE ATT&CK techniques

This table was built using version 11 of the MITRE ATT&CK framework.

Tactic ID Name Description

Reconnaissance

T1592.002 Gather Victim Host
Information: Software PowHeartBeat gathers explorer.exe's information.

T1592.001 Gather Victim Host
Information: Hardware PowHeartBeat gathers information about drives.

T1590.005
Gather Victim Network
Information: IP
Addresses

PowHeartBeat gathers IP addresses of the
compromised computer.

Resource
Development

T1583.004 Acquire Infrastructure:
Server Worok uses its own C&C servers.

T1588.002 Obtain Capabilities:
Tool

Worok deployed multiple publicly available tools on the
compromised machines.

T1583.001 Acquire Infrastructure:
Domains

Worok has registered domains to facilitate C&C
communication and staging.

T1588.005 Obtain Capabilities:
Exploits Worok has used the ProxyShell vulnerability.

T1587.001 Develop Capabilities:
Malware

Worok has developed its own malware: CLRLoad,
PNGLoad, PowHeartBeat.

T1587.003 Develop Capabilities:
Digital Certificates

Worok has created Let’s Encrypt SSL certificates in
order to enable mutual TLS authentication for malware.

Execution T1059.001
Command and
Scripting Interpreter:
PowerShell

PowHeartBeat is written in PowerShell.

https://github.com/eset/malware-ioc/tree/master/worok
https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v11/techniques/T1592/002
https://attack.mitre.org/versions/v11/techniques/T1592/001
https://attack.mitre.org/versions/v11/techniques/T1590/005
https://attack.mitre.org/versions/v11/techniques/T1583/004
https://attack.mitre.org/techniques/T1588/002/
https://attack.mitre.org/versions/v11/techniques/T1583/001
https://attack.mitre.org/versions/v11/techniques/T1588/005
https://attack.mitre.org/versions/v11/techniques/T1587/001
https://attack.mitre.org/versions/v11/techniques/T1587/003
https://attack.mitre.org/versions/v11/techniques/T1059/001

13/13

Tactic ID Name Description

Persistence T1505.003 Server Software
Component: Web Shell Worok uses the webshell ReGeorg.

Defense
Evasion

T1140 Deobfuscate/Decode
Files or Information

Worok uses various custom XOR-based schemes to
encrypt strings and logs in PowHeartBeat, PNGLoad,
and CLRLoad.

T1036.005
Masquerading: Match
Legitimate Name or
Location

PNGLoad samples are deployed in legitimate-looking
VMWare directories.

Credential
Access T1003.001

OS Credential
Dumping: LSASS
Memory

Worok uses Mimikatz to dump credentials from LSASS
memory.

Discovery

T1082 System Information
Discovery PowHeartBeat gathers OS information.

T1083 File and Directory
Discovery PowHeartBeat can list files and directories.

T1046 Network Service
Discovery

Worok uses NbtScan to obtain network information on
compromised machines.

T1124 System Time
Discovery PowHeartBeat gathers the victim’s time information.

Collection

T1005 Data from Local
System PowHeartBeat gathers data from the local system.

T1560.002
Archive Collected
Data: Archive via
Library

PowHeartBeat gzip-compresses data before sending it
to the C&C server.

Command and
Control

T1071.001
Application Layer
Protocol: Web
Protocols

Some PowHeartBeat variants use HTTP as the
communication protocol with the C&C server.

T1090.001 Proxy: Internal Proxy PowHeartBeat handles proxy configuration on the
victim’s machine.

T1001.002 Data Obfuscation:
Steganography

PNGLoad extracts pixel values from .png files to
reconstruct payloads.

T1573.002
Encrypted Channel:
Asymmetric
Cryptography

PowHeartBeat handles HTTPS communications with
the C&C server.

T1095 Non-Application Layer
Protocol

Some PowHeartBeat variants use ICMP as the
communication protocol with the C&C server.

T1132.001 Data Encoding:
Standard Encoding

Worok uses XOR encoding in PowHeartBeat, and
PNGLoad.

T1132.002 Data Encoding: Non-
Standard Encoding

Worok uses XOR encoding algorithms that make use
of an additional salt.

Exfiltration T1041 Exfiltration Over C2
Channel

PowHeartBeat uses its C&C communication channel to
exfiltrate information.

6 Sep 2022 - 11:30AM

https://attack.mitre.org/versions/v11/techniques/T1505/003
https://attack.mitre.org/versions/v11/techniques/T1140
https://attack.mitre.org/versions/v11/techniques/T1036/005
https://attack.mitre.org/versions/v11/techniques/T1003/001
https://attack.mitre.org/versions/v11/techniques/T1082
https://attack.mitre.org/versions/v11/techniques/T1083
https://attack.mitre.org/versions/v11/techniques/T1046
https://attack.mitre.org/versions/v11/techniques/T1124
https://attack.mitre.org/versions/v11/techniques/T1005
https://attack.mitre.org/versions/v11/techniques/T1560/002
https://attack.mitre.org/versions/v11/techniques/T1071/001
https://attack.mitre.org/versions/v11/techniques/T1090/001
https://attack.mitre.org/versions/v11/techniques/T1001/002
https://attack.mitre.org/versions/v11/techniques/T1573/002
https://attack.mitre.org/versions/v11/techniques/T1095
https://attack.mitre.org/versions/v11/techniques/T1132/001
https://attack.mitre.org/versions/v11/techniques/T1132/002
https://attack.mitre.org/versions/v11/techniques/T1041

