
1/11

securelist.com /cosmicstrand-uefi-firmware-rootkit/106973/

CosmicStrand: the discovery of a sophisticated UEFI
firmware rootkit

Authors

 GReAT

Introduction
Rootkits are malware implants which burrow themselves in the deepest corners of the operating system.
Although on paper they may seem attractive to attackers, creating them poses significant technical
challenges and the slightest programming error has the potential to completely crash the victim machine.
In our APT predictions for 2022, we noted that despite these risks, we expected more attackers to reach
the sophistication level required to develop such tools. One of the main draws towards malware nested in
such low levels of the operating system is that it is extremely difficult to detect and, in the case of
firmware rootkits, will ensure a computer remains in an infected state even if the operating system is
reinstalled or the user replaces the machine’s hard drive entirely.

In this report, we present a UEFI firmware rootkit that we called CosmicStrand and attribute to an
unknown Chinese-speaking threat actor. One of our industry partners, Qihoo360, published a blog post
about an early variant of this malware family in 2017.

Affected devices
Although we were unable to discover how the victim machines were infected initially, an analysis of their
hardware sheds light on the devices that CosmicStrand can infect. The rootkit is located in the firmware

https://securelist.com/cosmicstrand-uefi-firmware-rootkit/106973/
https://securelist.com/author/great/
https://securelist.com/advanced-threat-predictions-for-2022/104870/
https://bbs.360.cn/thread-14959110-1-1.html


2/11

images of Gigabyte or ASUS motherboards, and we noticed that all these images are related to designs
using the H81 chipset. This suggests that a common vulnerability may exist that allowed the attackers to
inject their rootkit into the firmware’s image.

In these firmware images, modifications have been introduced into the CSMCORE DXE driver, whose
entry point has been patched to redirect to code added in the .reloc section. This code, executed during
system startup, triggers a long execution chain which results in the download and deployment of a
malicious component inside Windows.

Looking at the various firmware images we were able to obtain, we assess that the modifications may
have been performed with an automated patcher. If so, it would follow that the attackers had prior access
to the victim’s computer in order to extract, modify and overwrite the motherboard’s firmware. This could
be achieved through a precursor malware implant already deployed on the computer or physical access
(i.e., an evil maid attack scenario). Qihoo’s initial report indicates that a buyer might have received a
backdoored motherboard after placing an order at a second-hand reseller. We were unable to confirm
this information.

Overview of the infection process
Before getting into the various components that compose this rootkit, we would like to provide a high-
level view of what it tries to accomplish. The goal of this execution chain is to deploy a kernel-level
implant into a Windows system every time it boots, starting from an infected UEFI component.

UEFI malware authors face a unique technical challenge: their implant starts running so early in the boot
process that the operating system (in this case Windows) is not even loaded in memory yet – and by the
time it is, the UEFI execution context will have terminated. Finding a way to pass down malicious code all
the way through the various startup phases is the main task that the rootkit accomplishes.

The workflow consists in setting hooks[1] in succession, allowing the malicious code to persist until after
the OS has started up. The steps involved are:

The initial infected firmware bootstraps the whole chain.
The malware sets up a malicious hook in the boot manager, allowing it to modify Windows’ kernel
loader before it is executed.
By tampering with the OS loader, the attackers are able to set up another hook in a function of the
Windows kernel.
When that function is later called during the normal start-up procedure of the OS, the malware
takes control of the execution flow one last time.
It deploys a shellcode in memory and contacts the C2 server to retrieve the actual malicious
payload to run on the victim’s machine.

These steps are summed up in the following graph:



3/11

UEFI implant – detailed analysis

MD5 DDFE44F87FAC7DAEEB1B681DEA3300E9
SHA1 9A7291FC90F56D8C46CC78397A6F36BB23C60F66
SHA256 951F74882C1873BFE56E0BFF225E3CD5D8964AF4F7334182BC1BF0EC9E987A0A
Link time Wednesday, 12.08.2015 12:17:57 UTC
File type EFI Boot Service DXE Driver
File size 96.84 KB
GUID A062CF1F-8473-4AA3-8793-600BC4FFE9A8 (CSMCORE)

Having established what the malware implant tries to accomplish, we can now look into more detail at
how each of these steps is performed.

1. The whole execution chain begins with an EFI driver. It appears to be a patched version of a
legitimate one named CSMCORE (intended to facilitate the boot of the machine in legacy mode via
the MBR), where the attackers have modified the pointer to the HandleProtocol boot service

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20124904/CosmicStrand_UEFI_malware_01.png
https://opentip.kaspersky.com/DDFE44F87FAC7DAEEB1B681DEA3300E9/?utm_source=SL&utm_medium=SL&utm_campaign=SL


4/11

function. Every time this function is called, the execution is redirected to attacker-supplied code that
tries to determine which component called it (it is looking for a specific one to infect – efi). By
examining the function arguments as well as the bytes located at the return address, CosmicStrand
can identify the exact “call” it is looking for.

2. This specific point in the execution was chosen because at this stage the boot manager is loaded in
memory, but isn’t yet running. CosmicStrand seizes this chance to patch a number of bytes in its
Archpx64TransferTo64BitApplicationAsm

3. That function is later called during the normal OS startup process, also at a strategic time: by then
the Windows OS loader is also present in memory and can in turn be modified.

4. When it runs, Archpx64TransferTo64BitApplicationAsm locates a function from the OS loader
(OslArchTransferToKernel) by looking for a specific byte pattern. CosmicStrand then adds a hook at
the very end of it.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20124935/CosmicStrand_UEFI_malware_02.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125005/CosmicStrand_UEFI_malware_03.png


5/11

5. OslArchTransferToKernel is called just before execution is transferred from the Windows loader to
the Windows kernel, which makes it a traditional hooking point for rootkits of that sort.

6. Before the Windows kernel has had a chance to run, CosmicStrand sets up yet another hook in the

ZwCreateSection Malicious code is copied[2] into the image of ntoskrnl.exe in memory, and the first
bytes of ZwCreateSection are overwritten to redirect to it. We note that the attackers were careful to
place the malicious code inside the slack space of ntoskrnl.exe’s .text section, which makes this
redirection a lot less conspicuous in the eyes of possible security products.

At this point, CosmicStrand also seemingly attempts to disable PatchGuard, a security mechanism
introduced to prevent modifications in key structures of the Windows kernel in memory. To do so, it

locates ntoskrnl.exe’s KiFilterFiberContext function[3] and modifies it so it returns without
performing any work. It is worth noting that the localization of this function, also achieved by
searching for hardcoded patterns, is very exhaustive and even contains patterns corresponding to
the Redstone 1 release from August 2016.

7. The Windows kernel then starts, and ends up calling the hooked ZwCreateSection function while
running normally. When that happens, CosmicStrand gains control of the execution again, and
restores the original code before running more malicious code.

8. The ZwCreateSection hook’s primary purpose is to collect the addresses of API functions provided
by the kernel, and create a sort of import table for the next component. Using the resolved

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125112/CosmicStrand_UEFI_malware_04.png
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://en.wikipedia.org/wiki/Windows_10_version_1607
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125145/CosmicStrand_UEFI_malware_05.png


6/11

functions, it also allocates a buffer in the kernel’s address space where it maps a shellcode, before
calling it.

Kernel shellcode
All the steps described so far only served the purpose of propagating code execution from the UEFI down
to the Windows kernel. This shellcode is the first actually malicious component of the chain so far. It sets
up a thread notify routine that gets invoked each time a new thread is created. CosmicStrand waits until
one turns up in winlogon.exe, and then executes a callback in this high-privilege context.

There, CosmicStrand sleeps for 10 minutes and tests the internet connectivity of the infected machine.
CosmicStrand doesn’t rely on high-level API functions to generate network traffic, but instead interacts
directly with the Transport Device Interface: it generates the needed IRPs (I/O request packets) and
passes them to the network stack by sending IOCTLs to the TCP or UDP device object. DNS requests
are performed in this fashion, using either Google’s DNS server (8.8.8[.]8) or a custom one
(222.222.67[.]208).

CosmicStrand retrieves its final payload by sending a specifically crafted UDP (preferably) or TCP packet
to its C2 server, update.bokts[.]com. The reply is expected to return in one or several packets containing
chunks of 528 bytes following this structure:

Offset (bytes) Description
0-4 Magic number
4-8 Total length of the payload
8-12 Length of the current chunk
12-16 CRC32 checksum of the current chunk
16-* Payload chunk

The various chunks are reassembled into a series of bytes that are mapped into kernel space and
interpreted as a shellcode. Unfortunately, we were not able to obtain a copy of data coming from the C2
server. We did, however, find a user-mode sample in-memory on one of the infected machines we could
study, and believe it is linked with CosmicStrand. This sample is an executable that runs command lines
in order to create a user (“aaaabbbb”) on the victim’s machine and add it to the local administrators
group.

We can infer from this that shellcodes received from the C2 server might be stagers for attacker-supplied
PE executables, and it is very likely that many more exist.

Older CosmicStrand variants

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreatethreadnotifyroutine
https://www.codeproject.com/Articles/9974/Driver-Development-Part-5-Introduction-to-the-Tran
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125244/CosmicStrand_UEFI_malware_06.png


7/11

During the course of our investigation, we also discovered older versions of this rootkit. They feature the
same deployment process and their minute differences pertain to the kernel shellcode.

It attempts to hijack a thread from exe instead of winlogon.exe.
The C2 domain contacted to obtain additional shellcode in order to run is different (erda158[.]to).
The older variant printed debugging messages every time a new process was created in the
system.

Based on our analysis of the infrastructure used for the two variants, we estimate that the older one saw
use between the end of 2016 and mid-2017, and the current one was active in 2020.

Infrastructure
We are aware of two C2 servers, one for each variant. According to passive DNS data available for them,
these domains had a long lifetime and resolved to IP addresses during limited timeframes – outside of
which the rootkit would have been inoperative. It is therefore interesting to note that while the attackers
opted to deploy an extremely persistent implant, the actual exploitation of the victim machines may not
have lasted more than a few months. It is, however, possible that these domains were occasionally
reactivated for very short durations, and that this information would not have been recorded by passive
DNS systems.

Domain IP First seen Last seen ASN

www.erda158[.]top
58.84.53[.]194 2016-12-27 2017-04-26 AS48024 (NEROCLOUD)
115.239.210[.]27 2017-04-30 2017-06-24 AS58461 (CHINANET)

update.bokts[.]com
23.82.12[.]30 2020-05-03 2020-05-03 AS30633 (Leaseweb USA)
23.82.12[.]31 2020-07-25 2020-07-25 AS30633 (Leaseweb USA)
23.82.12[.]32 2020-03-09 2020-07-25 AS30633 (Leaseweb USA)

Careful readers will notice the three-year gap between the activity periods of the two domains. It is
possible that during that time, the attackers were controlling the victim’s machines using user-mode
components deployed through CosmicStrand, or (more likely) that other variants and C2 servers that we
did not yet discover exist somewhere.

Victims
We were able to identify victims of CosmicStrand in China, Vietnam, Iran and Russia. A point of interest
is that all the victims in our user base appear to be private individuals (i.e., using the free version of our
product) and we were unable to tie them to any organization or even industry vertical.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125314/CosmicStrand_UEFI_malware_07.png


8/11

Attribution
Several data points lead us to believe that CosmicStrand was developed by a Chinese-speaking threat
actor, or by leveraging common resources shared among Chinese-speaking threat actors. Specifically, a
number of code patterns featured in CosmicStrand were also observed in another malware family, the
MyKings botnet (e.g., MD5 E31C43DD8CB17E9D68C65E645FB3F6E8). This botnet, used to deploy
cryptominers, was documented by Sophos in 2020 where they noted the presence of several Chinese-
language artifacts.

Similarities with CosmicStrand include:

The use of an MBR rootkit to establish stealthy persistence in MyKings.
CosmicStrand and MyKings use identical tags when they allocate memory in kernel mode (Proc
and GetM).
Both families generate network packets the same way, and leverage the UDP and TCP device
objects directly.
The API hashing code used in the two of them is identical, as evidenced by the screenshot below.
As far as we know, this algorithm was only ever found in two other rootkits, MoonBounce and
xTalker – also tied to Chinese-speaking threat actors.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125341/CosmicStrand_UEFI_malware_08.png
https://opentip.kaspersky.com/E31C43DD8CB17E9D68C65E645FB3F6E8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/sophoslabs-uncut-mykings-report.pdf
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/


9/11

In addition to this code similarity, the fact that the hardcoded fallback DNS server used by CosmicStrand
is located in CHINANET-BACKBONE (AS4134) could be perceived as a very low-confidence sign that
the attackers are part of the Chinese-speaking nexus. Beyond this tie, we have decided that we do not
have sufficient information that would allow us to link CosmicStrand to an existing cluster.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/07/20125416/CosmicStrand_UEFI_malware_09.png


10/11

Conclusions

CosmicStrand is a sophisticated UEFI firmware rootkit that allows its owners to achieve very durable
persistence: the whole lifetime of the computer, while at the same time being extremely stealthy. It
appears to have been used in operation for several years, and yet many mysteries remain. How many
more implants and C2 servers could still be eluding us? What last-stage payloads are being delivered to
the victims? But also, is it really possible that CosmicStrand has reached some of its victims through
package “interdiction”? In any case, the multiple rootkits discovered so far evidence a blind spot in our
industry that needs to be addressed sooner rather than later.

The most striking aspect of this report is that this UEFI implant seems to have been used in the wild since
the end of 2016 – long before UEFI attacks started being publicly described. This discovery begs a final
question: if this is what the attackers were using back then, what are they using today?

The GReAT team would like to extend its special thanks to their former colleague, Mark Lechtik,
for his key involvement in this research.

[1] A hook is a modification to the normal flow of execution of a program. It aims to execute additional
code provided by the attacker before or after a given function. In some environments, function hooking is
provided for legitimate purposes and can be set up easily through conventional programming
mechanisms. In other cases, where they are not explicitly supported, attackers can still achieve hooking
by overwriting (and later on, restoring) the code that is about to be executed. Both cases are leveraged
by this rootkit.

[2] Here we skip the implementation details and shellcode tricks used by the rootkit in order to obtain the
address of the malicious code. The precise workflow of this part is left as an exercise to the reader, and
documented extensively in our private report on this activity.

[3] More information about this function is available in research from other vendors.

Drivers
Firmware
Malware Descriptions
Malware Technologies
Rootkits
UEFI

Authors

 GReAT

CosmicStrand: the discovery of a sophisticated UEFI firmware rootkit

https://www.theguardian.com/books/2014/may/12/glenn-greenwald-nsa-tampers-us-internet-routers-snowden?r
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf
https://securelist.com/tag/drivers/
https://securelist.com/tag/firmware/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/rootkits/
https://securelist.com/tag/uefi/
https://securelist.com/author/great/


11/11

Your email address will not be published. Required fields are marked *

Cancel

https://undefined/cosmicstrand-uefi-firmware-rootkit/106973/#respond

