
1/14

www.welivesecurity.com /2022/07/19/i-see-what-you-did-there-look-cloudmensis-macos-spyware/

I see what you did there: A look at the CloudMensis macOS spyware
⋮ 7/19/2022

Previously unknown macOS malware uses cloud storage as its C&C channel and to exfiltrate documents, keystrokes,
and screen captures from compromised Macs

Marc-Etienne M.Léveillé
19 Jul 2022 - 11:30AM

Previously unknown macOS malware uses cloud storage as its C&C channel and to exfiltrate documents, keystrokes,
and screen captures from compromised Macs

In April 2022, ESET researchers discovered a previously unknown macOS backdoor that spies on users of the
compromised Mac and exclusively uses public cloud storage services to communicate back and forth with its
operators. Following analysis, we named it CloudMensis. Its capabilities clearly show that the intent of its operators is
to gather information from the victims’ Macs by exfiltrating documents, keystrokes, and screen captures.

Apple has recently acknowledged the presence of spyware targeting users of its products and is previewing
Lockdown Mode on iOS, iPadOS and macOS, which disables features frequently exploited to gain code execution
and deploy malware. Although not the most advanced malware, CloudMensis may be one of the reasons some users
would want to enable this additional defense. Disabling entry points, at the expense of a less fluid user experience,
sounds like a reasonable way to reduce the attack surface.

This blogpost describes the different components of CloudMensis and their inner workings.

CloudMensis overview

https://www.welivesecurity.com/2022/07/19/i-see-what-you-did-there-look-cloudmensis-macos-spyware/
https://www.welivesecurity.com/author/marc-etienne/
https://www.welivesecurity.com/author/marc-etienne/
https://www.apple.com/newsroom/2022/07/apple-expands-commitment-to-protect-users-from-mercenary-spyware/

2/14

CloudMensis is malware for macOS developed in Objective-C. Samples we analyzed are compiled for both Intel and
Apple silicon architectures. We still do not know how victims are initially compromised by this threat. However, we
understand that when code execution and administrative privileges are gained, what follows is a two-stage process
(see Figure 1), where the first stage downloads and executes the more featureful second stage. Interestingly, this
first-stage malware retrieves its next stage from a cloud storage provider. It doesn’t use a publicly accessible link; it
includes an access token to download the MyExecute file from the drive. In the sample we analyzed, pCloud was
used to store and deliver the second stage.

Figure 1. Outline of how CloudMensis uses cloud storage services

Artifacts left in both components suggest they are called execute and Client by their authors, the former being the
downloader and the latter the spy agent. Those names are found both in the objects’ absolute paths and ad hoc
signatures.

https://www.pcloud.com/
https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-1.-Outline-of-how-CloudMensis-uses-cloud-storage-services.png

3/14

Figure 2. Partial strings and code signature from the downloader component, execute

Figure 3. Partial strings and code signature from the spy agent component, Client

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-2.-Partial-strings-and-code-signature-from-the-downloader-component-execute.png
https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-3.-Partial-strings-and-code-signature-from-the-spy-agent-component-Client.png

4/14

Figures 2 and 3 also show what appear to be internal names of the components of this malware: the project seems to
be called BaD and interestingly resides in a subdirectory named LeonWork. Further, v29 suggests this sample is
version 29, or perhaps 2.9. This version number is also found in the configuration filename.

The downloader component

The first-stage malware downloads and installs the second-stage malware as a system-wide daemon. As seen in
Figure 4, two files are written to disk:

1. /Library/WebServer/share/httpd/manual/WindowServer: the second-stage Mach-O executable, obtained from
the pCloud drive

2. /Library/LaunchDaemons/.com.apple.WindowServer.plist: a property list file to make the malware persist as a
system-wide daemon

At this stage, the attackers must already have administrative privileges because both directories can only be modified
by the root user.

Figure 4. CloudMensis downloader installing the second stage

Cleaning up after usage of a Safari exploit

The first-stage component includes an interesting method called removeRegistration that seems to be present to
clean up after a successful Safari sandbox escape exploit. A first glance at this method is a bit puzzling considering
that the things it does seem unrelated: it deletes a file called root from the EFI system partition (Figure 5), sends an
XPC message to speechsynthesisd (Figure 6), and deletes files from the Safari cache directory. We initially thought
the purpose of removeRegistration was to uninstall previous versions of CloudMensis, but further research showed
that these files are used to launch sandbox and privilege escalation exploits from Safari while abusing four
vulnerabilities. These vulnerabilities were discovered and well documented by Niklas Baumstark and Samuel Groß in
2017. All four were patched by Apple the same year, so this distribution technique is probably not used to install
CloudMensis anymore. This could explain why this code is no longer called. It also suggests that CloudMensis may
have been around for many years.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-4.-CloudMensis-downloader-installing-the-second-stage.png
https://phoenhex.re/2017-07-06/pwn2own-sandbox-escape

5/14

Figure 5. Decompiled code showing CloudMensis mounting the EFI partition

Figure 6. Sending an XPC message to speechsynthesisd

The spy agent component

The second stage of CloudMensis is a much larger component, packed with a number of features to collect
information from the compromised Mac. The intention of the attackers here is clearly to exfiltrate documents,
screenshots, email attachments, and other sensitive data.

CloudMensis uses cloud storage both for receiving commands from its operators and for exfiltrating files. It supports
three different providers: pCloud, Yandex Disk, and Dropbox. The configuration included in the analyzed sample
contains authentication tokens for pCloud and Yandex Disk.

Configuration

One of the first things the CloudMensis spy agent does is load its configuration. This is a binary structure that is
14,972 bytes long. It is stored on disk at ~/Library/Preferences/com.apple.iTunesInfo29.plist, encrypted using a
simple XOR with a generated key (see the Custom encryption section).

If this file does not already exist, the configuration is populated with default values hardcoded in the malware sample.
Additionally, it also tries to import values from what seem to be previous versions of the CloudMensis configuration at:

~/Library/Preferences/com.apple.iTunesInfo28.plist
~/Library/Preferences/com.apple.iTunesInfo.plist

The configuration contains the following:

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-5.-Decompiled-code-showing-CloudMensis-mounting-the-EFI-partition.png
https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-6.-Sending-an-XPC-message-to-speechsynthesisd.png

6/14

Which cloud storage providers to use and authentication tokens
A randomly generated bot identifier
Information about the Mac
Paths to various directories used by CloudMensis
File extensions that are of interest to the operators

The default list of file extensions found in the analyzed sample, pictured in Figure 7, shows that operators are
interested in documents, spreadsheets, audio recordings, pictures, and email messages from the victims’ Macs. The
most uncommon format is perhaps audio recordings using the Adaptive Multi-Rate codec (using the .amr and .3ga
extensions), which is specifically designed for speech compression. Other interesting file extensions in this list are
.hwp and .hwpx files, which are documents for Hangul Office (now Hancom Office), a popular word processor among
Korean speakers.

Figure 7. File extensions found in the default configuration of CloudMensis

Custom encryption

CloudMensis implements its own encryption function that its authors call FlowEncrypt. Figure 8 shows the
disassembled function. It takes a single byte as a seed and generates the rest of the key by performing a series of
operations on the most recently generated byte. The input is XORed with this keystream. Ultimately the current
byte’s value will be the same as one of its previous values, so the keystream will loop. This means that even though
the cipher seems complex, it can be simplified to an XOR with a static key (except for the first few bytes of the
keystream, before it starts looping).

https://office.hancom.com/
https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-7.-File-extensions-found-in-the-default-configuration-of-CloudMensis.png

7/14

Figure 8. Disassembled FlowEncrypt method

Bypassing TCC

Since the release of macOS Mojave (10.14) in 2018, access to some sensitive inputs, such as screen captures,
cameras, microphones and keyboard events, are protected by a system called TCC, which stands for Transparency,
Consent, and Control. When an application tries to access certain functions, macOS prompts the user whether the
request from the application is legitimate, who can grant or refuse access. Ultimately, TCC rules are saved into a
database on the Mac. This database is protected by System Integrity Protection (SIP) to ensure that only the TCC
daemon can make any changes.

CloudMensis uses two techniques to bypass TCC (thus avoiding prompting the user), thereby gaining access to the
screen, being able to scan removable storage for documents of interest, and being able to log keyboard events. If SIP
is disabled, the TCC database (TCC.db) is no longer protected against tampering. Thus, in this case CloudMensis
add entries to grant itself permissions before using sensitive inputs. If SIP is enabled but the Mac is running any
version of macOS Catalina earlier than 10.15.6, CloudMensis will exploit a vulnerability to make the TCC daemon
(tccd) load a database CloudMensis can write to. This vulnerability is known as CVE-2020–9934 and was reported
and described by Matt Shockley in 2020.

The exploit first creates a new database under ~/Library/Application Support/com.apple.spotlight/Library/Application
Support/com.apple.TCC/ unless it was already created, as shown in Figure 9.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-8.-Disassembled-FlowEncrypt-method.png
https://nvd.nist.gov/vuln/detail/CVE-2020-9934
https://medium.com/@mattshockl/cve-2020-9934-bypassing-the-os-x-transparency-consent-and-control-tcc-framework-for-4e14806f1de8

8/14

Figure 9. Checking it the illegitimate TCC database file already exists

Then, it sets the HOME environment variable to ~/Library/Application Support/com.apple.spotlight using launchctl
setenv, so that the TCC daemon loads the alternate database instead of the legitimate one. Figure 10 shows how it is
done using NSTask.

Figure 10. Mangling the HOME environment variable used by launchd with launchctl and restarting tccd

Communication with the C&C server

To communicate back and forth with its operators, the CloudMensis configuration contains authentication tokens to
multiple cloud service providers. Each entry in the configuration is used for a different purpose. All of them can use
any provider supported by CloudMensis. In the analyzed sample, Dropbox, pCloud, and Yandex Disk are supported.

The first store, called CloudCmd by the malware authors according to the global variable name, is used to hold
commands transmitted to bots and their results. Another, which they call CloudData, is used to exfiltrate information
from the compromised Mac. A third one, which they call CloudShell, is used for storing shell command output.
However, this last one uses the same settings as CloudCmd.

Before it tries fetching remote files, CloudMensis first uploads an RSA-encrypted report about the compromised Mac
to /January/ on CloudCmd. This report includes shared secrets such as a bot identifier and a password to decrypt to-
be-exfiltrated data.

Then, to receive commands, CloudMensis fetches files under the following directory in the CloudCmd storage:
/Febrary/<bot_id>/May/. Each file is downloaded, decrypted, and dispatched to the AnalizeCMDFileName method.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-9.-Checking-it-the-illegitimate-TCC-database-file-already-exists.png
https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-10.-Mangling-the-HOME-environment-variable-used-by-launchd-with-launchctl-and-restarting-tccd.png

9/14

Notice how both February and Analyze are spelled incorrectly by the malware authors.

The CloudData storage is used to upload larger files requested by the operators. Before the upload, most files are
added to a password-protected ZIP archive. Generated when CloudMensis is first launched, the password is kept in
the configuration, and transferred to the operators in the initial report.

Commands

There are 39 commands implemented in the analyzed CloudMensis sample. They are identified by a number
between 49 and 93 inclusive, excluding 57, 78, 87, and 90 to 92. Some commands require additional arguments.
Commands allow the operators to perform actions such as:

Change values in the CloudMensis configuration: cloud storage providers and authentication tokens, file
extensions deemed interesting, polling frequency of cloud storage, etc.
List running processes
Start a screen capture
List email messages and attachments
List files from removable storage
Run shell commands and upload output to cloud storage
Download and execute arbitrary files

Figure 11 shows command with identifier 84, which lists all jobs loaded by launchd and uploads the results now or
later, depending on the value of its argument.

10/14

Figure 11. Command 84 runs launchctl list to get launchd jobs

Figure 12 shows a more complex example. Command with identifier 60 is used to launch a screen capture. If the first
argument is 1, the second argument is a URL to a file that will be downloaded, stored, and executed by
startScreenCapture. This external executable file will be saved as windowserver in the Library folder of FaceTime’s
sandbox container. If the first argument is zero, it will launch the existing file previously dropped. We could not find
samples of this screen capture agent.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-11.-Command-84-runs-launchctl-list-to-get-launchd-jobs.png

11/14

Figure 12. Command 60: Start a screen capture

It’s interesting to note that property list files to make launchd start new processes, such as
com.apple.windowServer.plist, are not persistent: they are deleted from disk after they are loaded by launchd.

Metadata from cloud storage

Metadata from the cloud storages used by CloudMensis reveals interesting details about the operation. Figure 13
shows the tree view of the storage used by CloudMensis to send the initial report and to transmit commands to the

bots as of April 22nd, 2022.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-12.-Command-60-Start-a-screen-capture.png

12/14

Figure 13. Tree view of the directory listing from the CloudCmd storage

This metadata gave partial insight into the operation and helped draw a timeline. First, the pCloud accounts were

created on January 19th, 2022. The directory listing from April 22nd shows that 51 unique bot identifiers created
subdirectories in the cloud storage to receive commands. Because these directories are created when the malware is
first launched, we can use their creation date to determine the date of the initial compromise, as seen in Figure 14.

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-13.-Tree-view-of-the-directory-listing-from-the-CloudCmd-storage.png

13/14

Figure 14. Subdirectory creation dates under /Febrary (sic)

This chart shows a spike of compromises in early March 2022, with the first being on February 4th. The last spike
may be explained by sandboxes running CloudMensis, once it was uploaded to VirusTotal.

Conclusion

CloudMensis is a threat to Mac users, but its very limited distribution suggests that it is used as part of a targeted
operation. From what we have seen, operators of this malware family deploy CloudMensis to specific targets that are
of interest to them. Usage of vulnerabilities to work around macOS mitigations shows that the malware operators are
actively trying to maximize the success of their spying operations. At the same time, no undisclosed vulnerabilities
(zero-days) were found to be used by this group during our research. Thus, running an up-to-date Mac is
recommended to avoid, at least, the mitigation bypasses.

We still do not know how CloudMensis is initially distributed and who the targets are. The general quality of the code
and lack of obfuscation shows the authors may not be very familiar with Mac development and are not so advanced.
Nonetheless a lot of resources were put into making CloudMensis a powerful spying tool and a menace to potential
targets.

IoCs

Files

SHA-1 Filename Description ESET detection
name

D7BF702F56CA53140F4F03B590E9AFCBC83809DB mdworker3 Downloader
(execute) OSX/CloudMensis.A

0AA94D8DF1840D734F25426926E529588502BC08 WindowServer,
myexe

Spy agent
(Client) OSX/CloudMensis.A

C3E48C2A2D43C752121E55B909FC705FE4FDAEF6 WindowServer,
MyExecute

Spy agent
(Client) OSX/CloudMensis.A

Public key

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsGRYSEVvwmfBFNBjOz+Q

https://www.welivesecurity.com/wp-content/uploads/2022/07/Figure-14.-Subdirectory-creation-dates-under-Febrary-sic.png

14/14

pax5rzWf/LT/yFUQA1zrA1njjyIHrzphgc9tgGHs/7tsWp8e5dLkAYsVGhWAPsjy

1gx0drbdMjlTbBYTyEg5Pgy/5MsENDdnsCRWr23ZaOELvHHVV8CMC8Fu4Wbaz80L

Ghg8isVPEHC8H/yGtjHPYFVe6lwVr/MXoKcpx13S1K8nmDQNAhMpT1aLaG/6Qijh

W4P/RFQq+Fdia3fFehPg5DtYD90rS3sdFKmj9N6MO0/WAVdZzGuEXD53LHz9eZwR

9Y8786nVDrlma5YCKpqUZ5c46wW3gYWi3sY+VS3b2FdAKCJhTfCy82AUGqPSVfLa

mQIDAQAB

-----END PUBLIC KEY-----

Paths used

/Library/WebServer/share/httpd/manual/WindowServer
/Library/LaunchDaemons/.com.apple.WindowServer.plist
~/Library/Containers/com.apple.FaceTime/Data/Library/windowserver
~/Library/Containers/com.apple.Notes/Data/Library/.CFUserTextDecoding
~/Library/Containers/com.apple.languageassetd/loginwindow
~/Library/Application Support/com.apple.spotlight/Resources_V3/.CrashRep

MITRE ATT&CK techniques

This table was built using version 11 of the MITRE ATT&CK framework.

Tactic ID Name Description

Persistence T1543.004
Create or Modify System
Process: Launch
Daemon

The CloudMensis downloader installs the second stage as
a system-wide daemon.

Defense
Evasion T1553 Subvert Trust Controls CloudMensis tries to bypass TCC if possible.

Collection

T1560.002 Archive Collected Data:
Archive via Library

Archive Collected Data: Archive via Library CloudMensis
uses SSZipArchive to create a password-protected ZIP
archive of data to exfiltrate.

T1056.001 Input Capture:
Keylogging CloudMensis can capture and exfiltrate keystrokes.

T1113 Screen Capture CloudMensis can take screen captures and exfiltrate them.
T1005 Data from Local System CloudMensis looks for files with specific extensions.

T1025 Data from Removable
Media

CloudMensis can search removable media for interesting
files upon their connection.

T1114.001 Email Collection: Local
Email Collection

CloudMensis searches for interesting email messages and
attachments from Mail.

Command
and Control

T1573.002
Encrypted Channel:
Asymmetric
Cryptography

The CloudMensis initial report is encrypted with a public
RSA-2048 key.

T1573.001 Encrypted Channel:
Symmetric Cryptography

CloudMensis encrypts exfiltrated files using password-
protected ZIP archives.

T1102.002
Web Service:
Bidirectional
Communication

CloudMensis uses Dropbox, pCloud, or Yandex Drive for
C&C communication.

Exfiltration T1567.002
Exfiltration Over Web
Service: Exfiltration to
Cloud Storage

CloudMensis exfiltrates files to Dropbox, pCloud, or Yandex
Drive.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v11/techniques/T1543/004/
https://attack.mitre.org/versions/v11/techniques/T1553/
https://attack.mitre.org/versions/v11/techniques/T1560/002/
https://github.com/ZipArchive/ZipArchive
https://attack.mitre.org/versions/v11/techniques/T1056/001/
https://attack.mitre.org/versions/v11/techniques/T1113/
https://attack.mitre.org/versions/v11/techniques/T1005/
https://attack.mitre.org/versions/v11/techniques/T1025/
https://attack.mitre.org/versions/v11/techniques/T1114/001/
https://attack.mitre.org/versions/v11/techniques/T1573/002/
https://attack.mitre.org/versions/v11/techniques/T1573/001/
https://attack.mitre.org/versions/v11/techniques/T1102/002/
https://attack.mitre.org/versions/v11/techniques/T1567/002/

