
1/12

www.fortinet.com /blog/threat-research/please-confirm-you-received-our-apt

Please Confirm You Received Our APT
⋮ 5/11/2022

Because we are constantly monitoring the threat landscape, FortiGuard Labs has the opportunity to see many unique
and novel attacks. Recently, one of our sample collectors was able to find one such incident. It began with a
spearphishing email to a diplomat in Jordan. Like many of these attacks, the email contained a malicious attachment.
However, the attached threat was not a garden-variety malware. Instead, it had the capabilities and techniques
usually associated with advanced persistent threats (APTs). Based on the techniques used in this attack, it appears to
be another campaign launched by APT34. The rest of this blog will analyze the attack chain associated with this
email and the traits that set it apart from average malware, such as DNS tunneling and stateful programming.

Affected Platforms: Microsoft Windows

 Impacted Users: Targeted Windows users
 Impact: Collects sensitive information from the compromised machine

 Severity Level: Medium

Spearphishing Email

This spearphishing attack targeted a Jordanian diplomat, with the sender pretending to be a colleague from the IT
department of the same governmental organization.

Figure 1. Spearphishing email

Looking at the headers of the email, we can determine that the email originated from outside the organization. But
while it came from an external email address, it used the first and last name of an employee in the IT department.
The alert diplomat decided to forward this to the real employee. This may have been done to verify the authenticity of
the original email or, more likely, for further analysis within the IT department. As suggested in the email body, the
attached Excel file contained a confirmation form for the targeted diplomat to fill out.

For those technically inclined, the next few sections break down the “how” and “what happened” of this malware.
Other readers should feel free to skip to the “C2 Servers” section for details on how to protect your organization.

https://www.fortinet.com/blog/threat-research/please-confirm-you-received-our-apt
https://www.fortinet.com/resources/cyberglossary/advanced-persistent-threat?utm_source=blog&utm_medium=+&utm_campaign=apt
https://www.fortinet.com/resources/cyberglossary/malware?utm_source=blog&utm_campaign=malware

2/12

Malicious Excel File

The attached Excel file contains a malicious VBA (Visual Basic Application) macro as opposed to the Excel
MacroSheets that other malware such as Emotet and QBot typically use. In many cases, a malicious macro may
install some sort of stager, such as those deployed by Cobalt Strike or Metasploit. In other cases, the macro may use
living-off-the-land techniques to download and execute a second-stage binary. Another option a macro may use is to
simply drop and run a malicious binary. In this attack, the macro uses the latter option. This, however, was where
similarities to other phishing attacks end.

Figure 2. Macro opening

One of the unique techniques seen in this macro is the toggling of sheet visibility. In most attacks involving Excel, no
hidden sheets are used. And in those cases where hidden sheets are used, the hidden sheet typically holds the
malicious code. In this attack, however, the visibility of two sheets is quickly switched as soon as the workbook is
opened. One possible reason for this may be as an anti-emulation technique. Emulators (such as the freely available
ViperMonkey) may or may not support all Excel functionality, such as the hiding of sheets.

Incidentally, lines 16 and 17 are commented out. Perhaps these lines were used for testing purposes or were part of
a different lure, one in which TeamViewer (remote access and control software used for device maintenance) was
used.

The astute observer may have also noticed line 25 in the previous image. Line 25 calls a function that contacts the
C2 server.

Figure 3. C2 contact

Unlike most malicious macros, this one uses WMI (Windows Management Instrumentation) to ping the C2 server
instead of a more commonly used tool, such as PowerShell or CMD. Furthermore, this function is called multiple
times during macro execution. It basically works as a state monitor to keep track of what’s happening during the
attack. The tMsg variable changed during different stages of the attack, allowing the attackers to view their network

3/12

logs to see the state of their macro. The rds variable is a random four-digit number, with the same four digits used
consistently throughout the macro state check-in process.

C2 Macro State
qwzbabz[four-digits].joexpediagroup[.]com Macro start
qwzbbbz[four-digits].joexpediagroup[.]com Connected successfully to task scheduler
qwzbaez[four-digits].joexpediagroup[.]com Successfully created malicious PE file
qwzbbez[four-digits].joexpediagroup[.]com Successfully created XML config file
qwzbcez[four-digits].joexpediagroup[.]com Successfully created signed Microsoft PE file
qwzbdez[four-digits].joexpediagroup[.]com Double-check malicious PE file was created
qwzbeez[four-digits].joexpediagroup[.]com Successful manual execution of malicious PE file
qwzafzz[four-digits].joexpediagroup[.]com Begin task scheduler configuration for persistence
qwzbbfz[four-digits].joexpediagroup[.]com Successfully created scheduled task

Figure 4. Table of states

As alluded to in the table above, the macro has the capability to create three files. A malicious PE file was created
as %LocalAppData%\MicrosoftUpdate\update.exe. A configuration file was created
as %LocalAppData%\MicrosoftUpdate\update.exe.config. And the third
file, %LocalAppData%\MicrosoftUpdate\Microsoft.Exchange.WebServices.dll, was signed and clean.

While the malware authors decided to store these three files inside the Excel file, they again chose to do so in a way
that is not commonly seen.

 Figure 5. Form caption

Three user forms are stored inside the Excel file. Each user form has a label, and each label has a caption. As seen
in the image above, the caption contains base64 encoded data. Form1 contains the malicious update.exe file. Form2
contains the configuration file. And Form3 contains the clean Microsoft file. We will explore these files further later in
this blog.

The malware authors also used the Excel macro to create a persistence method for their update.exe file. They
accomplished this by setting a scheduled task.

4/12

Figure 6. Scheduled task

The task is named MicrosoftUpdate and repeats every 4 hours. The macro also uses
deprecated IdleSettings properties, such as Duration (which starts the task only if the computer has been idle for ten
minutes) and WaitTimeout (which determines how long to wait for an idle condition). This task was set to allow 20
days to complete. Taking into account the date of the email and assuming the task ran immediately, the task would
run until at least May 16, 2022.

In addition to the visibility switch technique described earlier, a second technique was also seen in this macro to
possibly avoid automated analysis. This macro does this by checking for the existence of a mouse. If a mouse is not
connected, the macro does not create any of the three files. There are a couple of instances where a mouse would
not be attached to a computer. First, a mouse is not necessarily needed if the computer is controlled remotely. The
only mouse needed would be installed on the controlling computer. And second, a mouse is not needed if an analysis
machine is simply processing and emulating Office files. A script can be created to automatically perform all the
actions necessary without a mouse.

As far as malicious macros go, this one contains several techniques not normally seen in most attacks. This suggests
that more time and care have been given to developing this portion of the attack. In the next section, we will look at
the files that were created by this macro.

Dropped Files

As explained earlier, this malicious Excel macro includes the ability to create three files. In this section, we will look at
them individually, starting with the two benign files.

A signed file was embedded inside the Excel file and dropped to the following
location: %LocalAppData%\MicrosoftUpdate\Microsoft.Exchange.WebServices.dll. Another innocuous file was
dropped as %LocalAppData%\MicrosoftUpdate\update.exe.config. Its contents are to be used as configuration data.
Here are the contents after decoding:

Figure 7. Config data

The third file is the actual malware. It was created in the same location as the two previously dropped files,
as %LocalAppData%\MicrosoftUpdate\update.exe. It was a .NET binary and contained the main payload.

5/12

This malware binary was certainly developed by the same group that created the Excel macro, as there are
similarities between the two. One similarity deals with the idea of states and the tracking of what was happening at
any given point in time within the execution flow. Since .NET is a more robust programming language than the
scripting nature of VBA, the malware binary has a much easier way of keeping state.

Figure 8. Dictionary of states

The figure above shows a partial state dictionary defined by the malware. Depending on the execution flow and what
state the malware lands in, certain delays are introduced.

6/12

 Figure 9. Delay times in
milliseconds

These delays are executed by calling the Sleep() function. In .NET, Sleep() accepts values in milliseconds. In certain
cases, for example, from DelayMinAlive to DelayMaxAlive, the malware can sleep anywhere from 6 to 8 hours!

While this malware sleeps in certain program states, other program states require it to contact the C2 server. Like the
Excel macro, it contacts seemingly random subdomains. However, in actuality, it uses a domain generation algorithm
(DGA) to calculate a subdomain.

Figure 10. DGA

The malware constructs the DGA by first randomly assigning a value to _AgentID. This value is then fed as a seed
into the RandomMersenneTwister function, highlighted above. It then performs further calculations using
the haruto string as well as the strings found in the CharsDomain and CharsCounter variables. Once a subdomain
string is generated, the malware randomly chooses one of three domains to concatenate with
(joexpediagroup[.]com, asiaworldremit[.]com, or uber-asia[.]com).

Once the URL is generated, the next step the malware takes is to check for the C2 server’s DNS data.

https://en.wikipedia.org/wiki/Domain_generation_algorithm

7/12

Figure 11. DNS

When DNS is queried for a domain, a DNS server returns an IP address that points to the requested domain. The
malware then checks the first octet of the IP address to ensure the value is at least 128 to be considered valid.
Perhaps this is a way for the malware to avoid internal IP addresses, such as the 127[.]0[.]0[.]1 local loopback
address or the 10[.]0[.]0[.]0 internal subnet. Lines 260-261 are used to define the byte
array DnsClass._ReceiveData with a size defined by the remaining octets. For example, a DNS test server is set up
to return the IP address 192[.]5[.]4[.]3 for any DNS requests. That means the byte array has a size of 0x050403.
Later in the malware’s execution flow, this data from the DNS request is used to define TaskClass properties.

Figure 12. DNS tunneling

Specifically on line 245, TaskClass.ListData is set to the received data from the DNS request. In the end, this
basically means that this malware is receiving tasks inside a DNS response. Apparently, this malware uses DNS
tunneling to communicate with its C2. APT34 has historically used DNS for communications as well.

Several types of tasks are defined for this malware.

8/12

 Figure 13. Task types

This malware has the ability to take a DNS response and create an arbitrary file on the infected machine if that was
the task the malware authors wanted to perform. File and CompressedFile are task types used to create a file. The
remaining task types are used to send backdoor commands to the malware. These backdoor commands are meant
to be executed through PowerShell or through the Windows CMD interpreter. The following table lists supported
commands.

Command Interpreter Payload
1 PS Get-NetIPAddress -AddressFamily IPv4 | Select-Object IPAddress
2 PS Get-NetNeighbor -AddressFamily IPv4 | Select-Object "IPADDress"
3 CMD whoami
4 PS [System.Environment]::OSVersion.VersionString
5 CMD net user
7 PS Get-ChildItem -Path "C:\Program Files" | Select-Object Name
8 PS Get-ChildItem -Path 'C:\Program Files (x86)' | Select-Object Name
9 PS Get-ChildItem -Path 'C:' | Select-Object Name
10 CMD hostname

11 PS Get-NetTCPConnection | Where-Object {$_.State -eq "Established"} | Select-Object
"LocalAddress", "LocalPort", "RemoteAddress", "RemotePort"

12 PS
$(ping -n 1 10.65.4.50 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.4.51 | findstr /i ttl) -eq
$null;$(ping -n 1 10.65.65.65 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.53.53 | findstr /i
ttl) -eq $null;$(ping -n 1 10.65.21.200 | findstr /i ttl) -eq $null

13 PS nslookup ise-posture.mofagov.gover.local | findstr /i Address;nslookup webmail.gov.jo |
findstr /i Address

14 PS
$(ping -n 1 10.10.21.201 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.19.201 | findstr /i ttl) -
eq $null;$(ping -n 1 10.10.19.202 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.24.200 |
findstr /i ttl) -eq $null

15 PS
$(ping -n 1 10.10.10.4 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.50.10 | findstr /i ttl) -eq
$null;$(ping -n 1 10.10.22.50 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.45.19 | findstr /i
ttl) -eq $null

16 PS
$(ping -n 1 10.65.51.11 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.6.1 | findstr /i ttl) -eq
$null;$(ping -n 1 10.65.52.200 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.6.3 | findstr /i ttl)
-eq $null

17 PS
$(ping -n 1 10.65.45.18 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.28.41 | findstr /i ttl) -eq
$null;$(ping -n 1 10.65.36.13 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.51.10 | findstr /i
ttl) -eq $null

18 PS
$(ping -n 1 10.10.22.42 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.23.200 | findstr /i ttl) -
eq $null;$(ping -n 1 10.10.45.19 | findstr /i ttl) -eq $null;$(ping -n 1 10.10.19.50 | findstr
/i ttl) -eq $null

19 PS $(ping -n 1 10.65.45.3 | findstr /i ttl) -eq $null;$(ping -n 1 10.65.4.52 | findstr /i ttl) -eq
$null;$(ping -n 1 10.65.31.155 | findstr /i ttl) -eq $null;$(ping -n 1 ise-

9/12

posture.mofagov.gover.local | findstr /i ttl) -eq $null
20 PS Get-NetIPConfiguration | Foreach IPv4DefaultGateway | Select-Object NextHop
21 PS Get-DnsClientServerAddress -AddressFamily IPv4 | Select-Object SERVERAddresses
22 CMD systeminfo | findstr /i \"Domain\"

Figure 14. Table of backdoor commands

The 6 command is actually missing from this malware. Whether a file is uploaded or a backdoor command is
executed, there is some sort of output. This output is then formatted and compressed using .NET’s compression
mode. After the result is encoded with base32, this new result is then incorporated into the DGA. Base32 is also the
same encoding scheme that APT34 has used.

Figure 15. DNS exfiltration

This is how the malware exfiltrated the data. It may look like a simple DNS request in a network log, but the exfiltrated
data is actually built into the DNS request.

With the amount of work put into developing this malware, it does not appear to be the type to execute once and then
delete itself, like other stealthy infostealers. Perhaps to avoid triggering any behavioral detections, this malware also
does not create any persistence methods. Instead, it relies on the Excel macro to create persistence by way of a
scheduled task. Since Excel is a signed binary, maintaining persistence in this way may be missed by some
behavioral detection engines. The problem with using a scheduled task as a persistence mechanism, however, is that
it runs the risk of having multiple copies of itself running concurrently. To avoid this problem, the malware creates a
mutex. A mutex (mutual exclusion object) is a program object that is created so multiple program threads can take
turns sharing the same resource. In its most basic definition, it is simply a locking mechanism. If a mutex with a value
of 726a06ad-475b-4bc6-8466-f08960595f1e already exists on the system, it means there is already a previous
instance of the malware running on the infected computer. As a result, if a scheduled task starts another copy of the
malware, the malware detects the mutex, and it is terminated immediately.

C2 Servers

https://en.wikipedia.org/wiki/Lock_(computer_science)

10/12

This malware has the ability to contact three domains (joexpediagroup[.]com, asiaworldremit[.]com, uber-asia[.]com).
Similarly, the Excel macro is able to contact the joexpediagroup[.]com domain.

Uber-asia[.]com

This domain, which may be imitating Uber rideshare for Asia, was registered slightly more than two months ago, on
February 27, 2022. According to passive DNS records, this domain resolves to 127[.]0[.]0[.]1. Interestingly enough,
VirusTotal was able to record a DNS entry.

Figure 16. Virustotal DNS results

This certainly fits the format used by the malware. The subdomain appears to be a DGA. The first octet of the IP
address is greater than 128, and the remaining octets define the size of the command to be executed. Unfortunately,
the rest of the DNS data is not available. This suggests that the malware operators are closely monitoring this C2
server and only activate it when necessary.

Joexpediagroup[.]com

This domain, which may be imitating Expedia travel for Jordan, was created earlier this year, on January 20, 2022.
Sometime after April 20, 2022, this domain also started resolving to 127[.]0[.]0[.]1, most likely for the same reason as
above. Prior to that, however, the domain resolved to 45[.]11[.]19[.]47. The server also had SSH port 22 open. Our
own Fortinet telemetry detected someone connecting to this IP address from the country of Jordan.

Asiaworldremit[.]com

This domain, which may be imitating WorldRemit for Asia, was created on the same day as the first C2 server, on
February 27, 2022. Around April 19, 2022, this domain also resolved to 127[.]0[.]0[.]1. Prior to that, however, it
resolved to 193[.]239[.]84[.]207. In the past, this IP address has been used by the NSO group with their Pegasus
spyware. According to our telemetry, this IP address has also been used by APT34/OilRig/Helix Kitten and GoziIFSB.
It has also been used as a VPN address. Passive DNS records indicate the IP address is currently hosting several
suspiciously-named domains, some of which are listed below.

Registered Domain Attempting to masquerade as
astrazeneeca[.]com AstraZeneca
astrazencea[.]com AstraZeneca
hsbcbkcn[.]com HSBC Bank China
valtronics-ae[.]com Valtronics AE
ntu-sg-edu[.]com Nanyang Technological University Singapore
theworldbank[.]uk World Bank Group
coinbasedeutschland[.]comCoinbase for Germany

11/12

cisco0[.]com Cisco

Figure 17. Fake domains

The three C2 domains used by this malware seem to have a similar naming convention as the other domains found
on this IP address.

Conclusion
The amount of effort put into developing this attack is much higher than the average run-of-the-mill phishing/spam
campaign, putting it on the level of an APT attack. From the start, the attackers posed as a valid user and kept the
email short without any grammatical errors. They then proceeded to use an Excel macro with advanced techniques,
including possible anti-analysis techniques with the mouse check and the sheet visibility switch.

Furthermore, while state programming is rarely used in malware, in this attack, both the Excel macro and the
malware make use of it. After checking in, the malware sleeps for 6-8 hours. One likely reason might be that the
threat actors expected the diplomat to open the spearphishing email in the morning and then leave at the end of the
day. At that point, the attackers would be free to operate.

While using DNS tunneling for C2 communications is nothing new, it is rarely seen in practice. Their backdoor also
supports a long list of very specific commands. From the looks of things, the threat actors did their homework since
their backdoor commands clearly demonstrate they already had prior knowledge of their target’s internal network
infrastructure. This indicates that the threat actors most likely gained limited access somewhere else before this
spearphishing attempt was made.

Looking at their C2 servers, two out of the three seem to be tightly controlled. They were only brought up at specific
times. The third C2 server has been lumped in with various other domains to further complicate proper attribution.
Given all the breadcrumbs, this campaign looks to be another one launched by APT34. They have demonstrated they
possess the resources necessary to infiltrate a government network and are no strangers to using more advanced
techniques.

Fortinet Protections

Fortinet customers are protected from this malware by FortiGuard’s Web Filtering, AntiVirus, FortiMail, FortiClient,
FortiEDR, and CDR (content disarm and reconstruction) services:

The FortiGuard Antivirus service detects and blocks the malicious Excel file as MSExcel/Agent.7CCA!tr and the
malware binary as MSIL/Agent.A52D!tr.

The malicious macros inside the Excel sample can be disarmed by the FortiGuard CDR (content disarm and
reconstruction) service.

FortiEDR detects the Excel file and the malware binary as malicious based on their behavior.

Fortinet customers are protected from this malicious Excel file and malware binary by FortiGuard AntiVirus, which is
included in FortiMail. It detects all malicious macro file types, including Excel 4.0 Macro samples.

All relevant URLs have been rated as "Malicious Websites" by the FortiGuard Web Filtering service.

IOCs

Files

Indicator SHA256
Confirmation Receive Document.xls 82A0F2B93C5BCCF3EF920BAE425DD768371248CDA9948D5A8E70F3C34E9F
Microsoft.Exchange.WebServices.dll 7EBBEB2A25DA1B09A98E1A373C78486ED2C5A7F2A16EEC63E576C99EFE0
update.exe.config C744DA99FE19917E09CD1ECC48B563F9525DAD3916E1902F61B79BDA3529
update.exe E0872958B8D3824089E5E1CFAB03D9D98D22B9BCB294463818D721380075A

Other

Indicator Value
Mutex 726a06ad-475b-4bc6-8466-f08960595f1e

https://www.fortinet.com/support-and-training/support-services/fortiguard-security-subscriptions/web-filtering.html?utm_source=blog&utm_campaign=web-filtering
https://www.fortinet.com/products/email-security/fortimail.html?utm_source=blog&utm_campaign=fortimail-main-page
https://www.fortinet.com/products/endpoint-security/forticlient.html?utm_source=blog&utm_campaign=endpoint-web-page
https://www.fortinet.com/products/endpoint-security/fortiedr.html?utm_source=blog&utm_campaign=fortiedr
https://www.fortinet.com/products/endpoint-security/fortiedr.html?utm_source=blog&utm_campaign=fortiedr
https://www.fortinet.com/products/email-security/fortimail.html?utm_source=blog&utm_campaign=fortimail-main-page

12/12

C2 domain joexpediagroup[.]com
C2 domain asiaworldremit[.]com
C2 domain uber-asia[.]com

Mitre TTPs

Initial Access
T1566.001 Spearphishing
Execution
T1059.001 PowerShell
T1059.003 Windows Command Shell
T1053.005 Scheduled Task
T1204.002 Malicious File
T1047 Windows Management Instrumentation
Persistence
T1053.005 Scheduled Task
Defense Evasion
T1480 Execution Guardrails
Discovery
T1087.001 Local Account
T1083 File and Directory Discovery
T1049 System Network Connections Discovery
Command and Control
T1071.004 DNS
T1132.002 Non-Standard Encoding
T1568.002 Domain Generation Algorithms
Exfiltration
T1041 Exfiltration Over C2 Channel

Learn more about Fortinet’s FortiGuard Labs threat research and intelligence organization and the FortiGuard
Security Subscriptions and Services portfolio.

https://www.fortinet.com/fortiguard/labs?utm_source=blog&utm_campaign=fortiguard-labs
https://www.fortinet.com/fortiguard/labs?tab=security-bundles&utm_source=blog&utm_campaign=security-bundles

