
1/11

securelist.com /a-new-secret-stash-for-fileless-malware/106393/

A new secret stash for “fileless” malware

 Denis Legezo

In February 2022 we observed the technique of putting the shellcode into Windows event logs for the first
time “in the wild” during the malicious campaign. It allows the “fileless” last stage Trojan to be hidden from
plain sight in the file system. Such attention to the event logs in the campaign isn’t limited to storing
shellcodes. Dropper modules also patch Windows native API functions, related to event tracing (ETW)
and anti-malware scan interface (AMSI), to make the infection process stealthier.

Besides event logs there are numerous other techniques in the actor’s toolset. Among them let us
distinguish how the actor takes initial recon into consideration while developing the next malicious stages:
the C2 web domain name mimicking the legitimate one and the name in use belonging to the existing and
software used by the victim. For hosting the attacker uses virtual private servers on Linode, Namecheap,
DreamVPS.

One more visible common approach is the use of a lot of anti-detection decryptors. Actor uses different
compilers, from Microsoft’s cl.exe or GCC under MinGW to a recent version of Go. Also, to avoid
detection, some modules are signed with a digital certificate. We believe it is issued by the actor, because
our telemetry doesn’t show any legitimate software signed with it, only malicious code used in this
campaign.

Regarding last stage Trojans: the actor decided not to stick to just one – there are HTTP and named pipe
based ones. Obviously besides the event logs the actor is obsessed with memory injection – lots of RAT
commands are related to it and are used heavily. Along with the aforementioned custom modules and
techniques, several commercial pentesting tools like Cobalt Strike and SilentBreak’s toolset are used.

https://securelist.com/a-new-secret-stash-for-fileless-malware/106393/
https://securelist.com/author/denislegezo/

2/11

Actually, as we don’t have commercial versions of the latter it’s hard to say which enumerated techniques
came from the product and which are home-brewed. For sure, third-party code from GitHub is also in
use: we registered at least BlackBone for legitimate processes in memory patching.

The infection chain
We started the research from the in-memory last stager and then, using our telemetry, were able to
reconstruct several infection chains. What piqued our attention was the very targeted nature of the
campaign and the vast set of tools in use, including commercial ones.

The variety of the campaign’s techniques and modules looks impressive. Let us divide it into classes to
technically describe this campaign. Actually, we need to cover the following sets of modules: commercial
pentesting suites, custom anti-detection wrappers around them and last stage Trojans.

Commercial tool
sets

SilentBreaks’s toolset
Cobalt Strike

Anti-detection
wrappers

Go decryptor with heavy usage of the syscall library. Keeps Cobalt Strike
module encoded several times, and AES256 CBC encrypted blob. We haven’t
previously observed Go usage with Cobalt Strike
A library launcher, compiled with GCC under MinGW environment. The only
possible reason for this stage is anti-detection
AES decryptor, compiled with Visual Studio compiler

Last stage RAT

HTTP-based Trojan. Possible original names are ThrowbackDLL.dll and
drxDLL.dll, but code is more complex than old publicly available version of
SilentBreak’s Throwback
Named pipes-based Trojan. Possible original names are monolithDLL.dll and
SlingshotDLL.dll. Based on file names there is a possibility that last stage
modules are parts of a commercial Slingshot version

Once again, some modules which we consider custom, such as wrappers and last stagers, could
possibly be parts of commercial products. So now after some classification we are ready to analyze
modules one by one.

Initial infection

The earliest phase of attack we observed took place in September 2021. The spreading of the Cobalt
Strike module was achieved by persuading the target to download the link to the .rar on the legitimate site
file.io, and run it themselves. The digital certificate for the Cobalt Strike module inside is below (during the
campaign with the same one, 15 different stagers from wrappers to last stagers were signed):

1

2

3

4

Organization: Fast Invest ApS

E-mail: sencan.a@yahoo.com

Thumbprint 99 77 16 6f 0a 94 b6 55 ef df 21 05 2c 2b 27 9a 0b 33 52 c4

Serial 34 d8 cd 9d 55 9e 81 b5 f3 8d 21 d6 58 c4 7d 72

Due to the different infection scenarios for all the targeted hosts we will describe just one of the observed
ones. Having an ability to inject code into any process using Trojans, the attackers are free to use this

3/11

feature widely to inject the next modules into Windows system processes or trusted applications such as
DLP.

Keeping in mind truncated process injections, and even mimicking web domain registration, we could
describe the attack process as quite iterative: initial recon with some modules and then preparation of
additional attacks.

Commercial tool sets
Regarding the commercial tools, traces of SilentBreak and Cobalt Strike toolset usage in this campaign
are quite visible. Trojans named ThrowbackDLL.dll and SlingshotDLL.dll remind us of Throwback and
Slingshot, which are both tools in SilentBreak’s framework, while the “sb” associated with the dropper
(sb.dll) could be an abbreviation of the vendor’s name.

Here we want to mention that several .pdb paths inside binaries contain the project’s directory
C:\Users\admin\source\repos\drx\ and other modules not named after Throwback or Slingshot, such as
drxDLL.dll. However, encryption functions are the same as in the publicly available Throwback code.

Anti-detection wrappers

For the anti-detection wrappers, different compilers are in use. Besides MSVC, Go compiler 1.17.2 and
GCC under MinGW have been used. Decryptors differ a lot; the features they contain are listed in the
table below:

Anti-detection technique Usage

Several compilers The same AES256 CBC decryption could be done with Go and C++
modules

Whitelisted launchers Autorunned copy of WerFault.exe maps the launcher into process
address space

Digital certificate 15 files are signed with “Fast Invest” certificate. We didn’t observe
any legitimate files signed with it

Patch logging exports of
ntdll.dll

To be more stealthy, Go droppers patch logging-related API
functions like EtwEventWriteFull in self-address space with empty
functionality

Keep shellcode in event logs
This is the main innovation we observed in this campaign.
Encrypted shellcode with the next stager is divided into 8 KB blocks
and saved in the binary part of event logs

C2 web domain mimicking Actor registered a web domain name with ERP in use title

This layer of infection chain decrypts, maps into memory and launches the code. Not all of them are
worth describing in detail, but we will cover the Go decryptor launcher for Cobalt Strike. All corresponding
hashes are listed in the appendix.

Function names in the main package are obfuscated. Main.init decodes Windows API function names
from kernel32.dll and ntdll.dll libraries (WriteProcessMemory and other functions) related to event log
creation. Each of these names in the binary are base64-encoded four times in a row. Using
WriteProcessMemory, the dropper patches with “xor rax, rax; ret” code the following functions in memory:
EtwNotificationRegister, EtwEventRegister, EtwEventWriteFull, EtwEventWriteFull, EtwEventWrite.

4/11

In Main.start the malware checks if the host is in the domain and only works if it’s true. Then it
dynamically resolves the addresses of the aforementioned functions. The next stager is encrypted with
AES256 (CBC mode), the key and IV are encoded with base64.

With such an approach, it requires the researcher to code some script to gather the encrypted parts of
the next module. After decryption, to get the final portable executable, data has to be converted further.

Last stager types
Last stagers have two communication mechanisms – over HTTP with RC4 encryption and unencrypted
with named pipes. The latter way is technically able to communicate with any network visible external
host, but under Windows named pipes are built upon the SMB protocol, which would barely open for
external networks. So these modules most probably serve for lateral movement.

Feature HTTP-based trojan Named pipes-based trojan

C2 communication Active connection to a randomly
chosen C2 from a hardcoded list Passive mode

Encryption XOR-based, RC4 Plaintext
Self version in beacon 1.1 No
Natural language artifacts Unused argument “dave” No
Command set Quite basic, 7 of them More profound, 20 of them
Injection functionality Yes and much in use Yes and much in use

Quite unusual among the
commands

Sleep time randomization:
(random between 0,9 – 1,1) *
sleep time

Get minutes since last user input

After this introduction into the set of malware, we will now describe the infection chain: dropper injection
with Cobalt Strike pentesting suite.

Dropper in DLL, search order hijacking

We start custom module analysis from the wrapper-dropper dynamic library. This code is injected into
Windows processes such as explorer.exe. At its single entry point after being loaded into the virtual
address space of the launcher process, the dropper removes files created by previous stages or
executions.

Firstly, the module copies the original legitimate OS error handler WerFault.exe to C:\Windows\Tasks.
Then it drops one of the encrypted binary resources to the wer.dll file in the same directory for typical DLL
search order hijacking. For the sake of persistence, the module sets the newly created WerFault.exe to
autorun, creating a Windows Problem Reporting value in the
Software\Microsoft\Windows\CurrentVersion\Run Windows system registry branch.

5/11

The dropper not only puts the launcher on disk for side-loading, but also writes information
messages with shellcode into existing Windows KMS event log

The dropped wer.dll is a loader and wouldn’t do any harm without the shellcode hidden in Windows event
logs. The dropper searches the event logs for records with category 0x4142 (“AB” in ASCII) and having
the Key Management Service as a source. If none is found, the 8KB chunks of shellcode are written into
the information logging messages via the ReportEvent() Windows API function (lpRawData parameter).
Created event IDs are automatically incremented, starting from 1423.

Launcher in wer.dll

This launcher, dropped into the Tasks directory by the first stager, proxies all calls to wer.dll and its
exports to the original legitimate library. At the entry point, a separate thread combines all the
aforementioned 8KB pieces into a complete shellcode and runs it. The same virtual address space,
created by a copy of the legitimate WerFault.exe, is used for all this code.

To prevent WerFault continuing its error handling process, the DLL patches the launcher’s entry
point with typical Blackbone trampolines

The way to stop the legitimate launcher’s execution isn’t traditional. In the main thread, wer.dll finds its
entry point and patches it with a simple function. WaitAndExit() on the screenshot above would just call
WaitForSingleObject() with the log gathering thread id and then exit, meaning no real WerFault.exe error
handling code could ever be executed: the spoofed DLL mapped into its address space would block it.

Shellcode into Windows event logs
The launcher transmits control to the very first byte of the gathered shellcode. Here, three arguments for
the next function are prepared:

Address of next stage Trojan. It is also contained within the data extracted from the event logs
The standard ROR13 hash of exported function name Load inside this Trojan (0xE124D840)
Addresses of the string “dave” and constant “4”, which become the arguments of the exported
function, found by hash

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/04/28153130/SilentBreak_APT_toolset_01.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/04/28153202/SilentBreak_APT_toolset_02.png

6/11

The parsing of the next Windows portable executable to locate its entry point is quite typical. To make the
next stage Trojan less visible, the actor wiped the “MZ” magic in its header. After calling the code at the
Trojan’s entry point, the shellcode also searches for the requested export and invokes it.

Besides searching for the entry point and calling it, the shellcode also searches for a Trojan
export by hardcoded hash and runs the found function with arguments “dave” and “4”

HTTP Trojan
For last stagers we will be a bit more detailed than for auxiliary modules before. The C++ module
obviously used the code from SilentBreak’s (now NetSPI’s) Throwback public repository: XOR-based
encryption function, original file name for some samples, e.g., ThrowbackDLL.dll, etc. Let us start here
with the aforementioned Load() exported function. It’s just like the patching of WerFault above (the
function waits on the main Trojan thread) but it ignores any parameters, so “dave” and “4” are unused. It
is possible this launcher supports more modules than just this one, which would require parameters.

Target fingerprinting

The module decrypts C2 domains with a one- byte XOR key. In the case of this sample there is only one
domain, eleed[.]online. The Trojan is able to handle many of them, separated by the “|” character and
encrypted. For further communications over plain HTTP, the Trojan chooses a random C2 from this set
with user agent “Mozilla 5.0”.

The malware generates a fingerprinting string by gathering the following information, also separated by
“|’:

Values of MachineGUID from the SOFTWARE\Microsoft\Cryptography

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2022/04/28153243/SilentBreak_APT_toolset_03.png
https://github.com/silentbreaksec/Throwback

7/11

Computer name
Local IP addresses obtained with GetAdaptersInfo
Architecture (x86 or x64)
OS version
Whether the current process has SeDebugPrivilege

The fingerprinter also appends “1.1” to the string (which could be the malware version) and the sleep time
from the current config.

Encrypted HTTP communication with C2

Before HTTP communications, the module sends empty (but still encrypted) data in an ICMP packet to
check connection, using a hardcoded 32-byte long RC4 key. Like any other strings, this key is encrypted
with the Throwback XOR-based algorithm.

If the ping of a control server with port 80 available is successful, the aforementioned fingerprint data is
sent to it. In reply, the C2 shares the encrypted command for the Trojan’s main loop.

Trojan commands

Code Command features
0 Fingerprint the target again.

1 Execute command. The Trojan executes the received command in the new process and
sends the result back to the C2.

2 Download from a URL and save to the given path.

3
Set a new sleep time. This time in minutes is used as a timeout if the C2 hasn’t replied
with a command to execute yet. Formula for randomization is (random number between
0,9 – 1,1) * sleep time.

4 Sleep the given number of minutes without changing the configuration.
5 List processes with PID, path, owner, name and parent data.

6
Inject and run shellcode into the target process’ address space. To inject into the same
process, the command argument should be “local”. Like the shellcode in the event logs,
this one would run the provided PE’s entry point and as well as a specific export found
by hash.

99 Terminates the session between trojan and C2.

Another Trojan in use during this campaign is named pipe-based and has a more profound command
system, including privilege escalation, screenshotting, inactivity time measurement, etc. Here, we come
to the infection chain end. We continue with another last stage Trojan type, which we observed injected
into processes like edge.exe.

Named pipes-based Trojan

The Trojan location is C:\Windows\apds.dll. The original legitimate Microsoft Help Data Services Module
library with the same name is in C:\Windows\System32. The main Trojan working cycle is in a separate
thread. The malware also exports a Load() function, whose only purpose is to wait for a working thread,
which is typical for this campaign’s modules.

8/11

First, the main trojan thread gets the original apds.dll and exports and saves it into an allocated new heap
buffer right after the Trojan’s image in memory. Then the Trojan edits the self-exported functions data in a
way that allows it to call the original apds.dll exports through the crafted stubs like the following, where
the address is the one parsed from the real apds.dll:

1

2

48B8<addr> MOV RAX,<addr>

FFE0 JMP RAX

This trampoline code is taken from the Blackbone Windows memory hacking library
(RemoteMemory::BuildTrampoline function). DLL hijacking isn’t something new, we have seen such a
technique used to proxy legitimate functions many times, but recreating self-exports with just short stubs
to call the original legitimate functions is unusual. The module then creates a duplex-named pipe,
“MonolithPipe”, and enters its main loop.

Work cycle

After the aforementioned manipulations with exported functions, the module lightly fingerprints the host
with architecture and Windows version information. The Trojan also initializes a random 11-byte ASCII
string using the rare constant mentioned, e.g., here in the init_keys function. The result serves as a
unique session id.

The malware connects to the hardcoded domain on port 443 (in this case https://opswat[.]info:443) and
sends POST requests to submit.php on the C2 side. HTTPS connection options are set to accept self-
signed certificates on the server side. The C2 communication in this case is encrypted with an RC4
algorithm with the Dhga(81K1!392-!(43<KakjaiPA8$#ja key. In the case of the named pipes- based
Trojan, the common commands are:

Code Command features
0 Set the “continue” flag to False and stop working.
1 N/A, reserved so far.
2 Get time since the last user input in minutes.
3 Get current process information: PID, architecture, user, path, etc.
4 Get host domain and user account.
5 Impersonate user with credentials provided.
6 Get current process’s available privileges.
7 Execute command with the cmd.exe interpreter.
8 Test connection with a given host (address and port) using a raw TCP socket.
9 Get running processes information: path, owner, name, parent, PID, etc.
10 Impersonate user with the token of the process with a provided ID.
11 List files in directory.
12 Take a screenshot.
13 Drop content to file.
14 Read content from file
15 Delete file.
16 Inject provided code into process with the given name.
17 Run shellcode from the C2.
18 N/A, reserved so far.

9/11

19 Run PowerShell script. During this campaign we observed Invoke-ReflectivePEInjection
to reflectively load Mimikatz in memory and harvest credentials.

We have now covered the three layers of the campaign. Interestingly, we observed a Trojan with a
complete command set as in the table above, but still using RC4-encrypted HTTP communications with
the C2 instead of named pipes. The last stage samples look like a modular platform, whose capabilities
the actor is able to combine according to their current needs.

Infrastructure

Domain IP First seen ASN
eleed[.]online 178.79.176[.]136 Jan 15, 2022 63949 – Linode
eleed[.]cloud 178.79.176[.]136 – 63949 – Linode
timestechnologies[.]org 93.95.228[.]97 Jan 17, 2022 44925 – The 1984
avstats[.]net 93.95.228[.]97 Jan 17, 2022 44925 – The 1984
mannlib[.]com 162.0.224[.]144 Aug 20, 2021 22612 – Namecheap
nagios.dreamvps[.]com 185.145.253[.]62 Jan 17, 2022 213038 – DreamVPS
opswat[.]info 194.195.241[.]46 Jan 11, 2022 63949 – Linode
– 178.79.176[.]1 – 63949 – Linode

Attribution

The code, which we consider custom (Trojans, wrappers), has no similarities with previously known
campaigns or previously registered SilentBreak toolset modules. Right now we prefer not to name the
activity and instead stick to just “SilentBreak” given it is the most used among the tools here. If new
modules appear and allow us to connect the activity to some actor we will update the name accordingly.

Conclusions

We consider the event logs technique, which we haven’t seen before, the most innovative part of this
campaign. With at least two commercial products in use, plus several types of last-stage RAT and anti-
detection wrappers, the actor behind this campaign is quite capable. There is the possibility that some of
the modules we described here as custom ones are part of a commercial toolset as well. The code is
quite unique, with no similarities to known malware. We will continue to monitor similar activity.

In the Targeted Malware Reverse Engineering training course, Kaspersky experts share its best and most
valuable practices to build a safer world. Learn more about targeted malware with Denis Legezo and
other GReAT experts at: https://kas.pr/bgy7

Indicators of Compromise
File Hashes (malicious documents, trojans, emails, decoys)

Dropper
 822680649CDEABC781903870B34FB7A7

 345A8745E1E3AE576FBCC69D3C8A310B

https://kas.pr/bgy7
https://opentip.kaspersky.com/822680649CDEABC781903870B34FB7A7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/345A8745E1E3AE576FBCC69D3C8A310B/?utm_source=SL&utm_medium=SL&utm_campaign=SL

10/11

EF825FECD4E67D5EC5B9666A21FBBA2A
FA5943C673398D834FB328CE9B62AAAD

Logs code launcher
2080A099BDC7AA86DB55BADFFBC71566
0D415973F958AC30CB25BD845319D960
209A4D190DC1F6EC0968578905920641
E81187E1F2E6A2D4D3AD291120A42CE7

HTTP Trojan
ACE22457C868DF82028DB95E5A3B7984
1CEDF339A13B1F7987D485CD80D141B6
24866291D5DEEE783624AB51516A078F
13B5E1654869985F2207D846E4C0DBFD

Named pipes trojan and similar
59A46DB173EA074EC345D4D8734CB89A
0B40033FB7C799536C921B1A1A02129F
603413FC026E4713E7D3EEDAB0DF5D8D

Anti-detection wrappers/decryptors/launchers, not malicious by themselves
42A4913773BBDA4BC9D01D48B4A7642F
9619E13B034F64835F0476D68220A86B
0C0ACC057644B21F6E76DD676D4F2389
16EB7B5060E543237ECA689BDC772148
54271C17684CA60C6CE37EE47B5493FB
77E06B01787B24343F62CF5D5A8F9995
86737F0AE8CF01B395997CD5512B8FC8
964CB389EBF39F240E8C474E200CAAC3
59A46DB173EA074EC345D4D8734CB89A
A5C236982B0F1D26FB741DF9E9925018
D408FF4FDE7870E30804A1D1147EFE7C
DFF3C0D4F6E2C26936B9BD82DB5A1735
E13D963784C544B94D3DB5616E50B8AE
E9766C71159FC2051BBFC48A4639243F
F3DA1E157E3E344788886B3CA29E02BD

Host-based IoCs

C:\Windows\Tasks\wer.dll
 C:\Windows\Tasks\WerFault.exe copy of the legit one to sideload the malicious .dll

 Named pipe MonolithPipe
 Event logs with category 0x4142 in Key Management Service source. Events ID auto increments starting

from 1423.

PDB paths

https://opentip.kaspersky.com/EF825FECD4E67D5EC5B9666A21FBBA2A/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/FA5943C673398D834FB328CE9B62AAAD/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/2080A099BDC7AA86DB55BADFFBC71566/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/0D415973F958AC30CB25BD845319D960/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/209A4D190DC1F6EC0968578905920641/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/E81187E1F2E6A2D4D3AD291120A42CE7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/ACE22457C868DF82028DB95E5A3B7984/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/1CEDF339A13B1F7987D485CD80D141B6/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/24866291D5DEEE783624AB51516A078F/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/13B5E1654869985F2207D846E4C0DBFD/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/59A46DB173EA074EC345D4D8734CB89A/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/0B40033FB7C799536C921B1A1A02129F/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/603413FC026E4713E7D3EEDAB0DF5D8D/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/42A4913773BBDA4BC9D01D48B4A7642F/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/9619E13B034F64835F0476D68220A86B/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/0C0ACC057644B21F6E76DD676D4F2389/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/16EB7B5060E543237ECA689BDC772148/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/54271C17684CA60C6CE37EE47B5493FB/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/77E06B01787B24343F62CF5D5A8F9995/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/86737F0AE8CF01B395997CD5512B8FC8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/964CB389EBF39F240E8C474E200CAAC3/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/59A46DB173EA074EC345D4D8734CB89A/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/A5C236982B0F1D26FB741DF9E9925018/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/D408FF4FDE7870E30804A1D1147EFE7C/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/DFF3C0D4F6E2C26936B9BD82DB5A1735/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/E13D963784C544B94D3DB5616E50B8AE/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/E9766C71159FC2051BBFC48A4639243F/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/F3DA1E157E3E344788886B3CA29E02BD/?utm_source=SL&utm_medium=SL&utm_campaign=SL

11/11

C:\Users\admin\source\repos\drx\x64\Release\sb.pdb
C:\Users\admin\source\repos\drx\x64\Release\zOS.pdb
C:\Users\admin\source\repos\drx\x64\Release\ThrowbackDLL.pdb
C:\Users\admin\source\repos\drx\x64\Release\drxDLL.pdb
C:\Users\admin\source\repos\drx\x64\Release\monolithDLL.pdb

