
1/13

www.welivesecurity.com /2022/03/23/mustang-panda-hodur-old-tricks-new-korplug-variant/

Mustang Panda’s Hodur: Old tricks, new Korplug variant
⋮ 3/23/2022

ESET researchers have discovered Hodur, a previously undocumented Korplug variant spread by Mustang Panda,
that uses phishing lures referencing current events in Europe, including the invasion of Ukraine

Alexandre Côté Cyr
23 Mar 2022 - 09:00AM

ESET researchers have discovered Hodur, a previously undocumented Korplug variant spread by Mustang Panda,
that uses phishing lures referencing current events in Europe, including the invasion of Ukraine

ESET researchers discovered a still-ongoing campaign using a previously undocumented Korplug variant, which they
named Hodur due to its resemblance to the THOR variant previously documented by Unit 42 in 2020. In Norse
mythology, Hodur is Thor’s blind half-brother, who is tricked by Loki into killing their half-brother Baldr.

Key findings in this blogpost:

As of March 2022, this campaign is still ongoing and goes back to at least August 2021.
Known victims include research entities, internet service providers, and European diplomatic missions.
The compromise chain includes decoy documents that are frequently updated and relate to events in Europe.
The campaign uses a custom loader to execute a new Korplug variant.
Every stage of the deployment process utilizes anti-analysis techniques and control-flow obfuscation, which
sets it apart from other campaigns.
ESET researchers provide an in-depth analysis of the capabilities and commands of this new variant.

Victims of this campaign are likely lured with phishing documents abusing the latest events in Europe such as
Russia’s invasion of Ukraine. This resulted in more than three million residents fleeing the war to neighboring
countries, leading to an unprecedented crisis on Ukraine’s borders. One of the filenames related to this campaign is
Situation at the EU borders with Ukraine.exe.

Other phishing lures mention updated COVID-19 travel restrictions, an approved regional aid map for Greece, and a
Regulation of the European Parliament and of the Council. The last one is a real document available on the European
Council’s website. This shows that the APT group behind this campaign is following current affairs and is able to
successfully and swiftly react to them.

https://www.welivesecurity.com/2022/03/23/mustang-panda-hodur-old-tricks-new-korplug-variant/
https://www.welivesecurity.com/author/acotecyr/
https://www.welivesecurity.com/author/acotecyr/
https://unit42.paloaltonetworks.com/thor-plugx-variant/
https://data2.unhcr.org/en/situations/ukraine

2/13

Figure 1. Countries affected by Mustang Panda in this campaign

Affected countries:

Mongolia
Vietnam
Myanmar
Greece
Russia
Cyprus
South Sudan
South Africa

Affected verticals:

Diplomatic missions
Research entities
Internet service providers (ISP)

Analysis

Based on code similarities and the many commonalities in Tactics, Techniques, and Procedures (TTPs), ESET
researchers attribute this campaign with high confidence to Mustang Panda (also known as TA416, RedDelta, or
PKPLUG). It is a cyberespionage group mainly targeting governmental entities and NGOs. Its victims are mostly, but
not exclusively, located in East and Southeast Asia with a focus on Mongolia. The group is also known for its
campaign targeting the Vatican in 2020.

While we haven’t been able to identify the verticals of all victims, this campaign seems to have the same targeting
objectives as other Mustang Panda campaigns. Following the APT’s typical victimology, most victims are located in
East and Southeast Asia, along with some in European and African countries. According to ESET telemetry, the vast
majority of targets are located in Mongolia and Vietnam, followed by Myanmar, with only a few in the other affected
countries.

Mustang Panda’s campaigns frequently use custom loaders for shared malware including Cobalt Strike, Poison Ivy,
and Korplug (also known as PlugX). The group has also been known to create its own Korplug variants. Compared to
other campaigns using Korplug, every stage of the deployment process utilizes anti-analysis techniques and control-
flow obfuscation.

This blogpost contains a detailed analysis of this previously unseen Korplug variant used in this campaign. This
activity is part of the same campaign recently covered by Proofpoint, but we provide additional historical and targeting
information.

Toolset

Mustang Panda is known for its elaborate custom loaders and Korplug variants, and the samples used in this
campaign showcase this perfectly.

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-1.-Countries-affected-by-Mustang-Panda-in-this-campaign-1.png
https://www.recordedfuture.com/reddelta-targets-catholic-organizations/
https://www.proofpoint.com/us/blog/threat-insight/good-bad-and-web-bug-ta416-increases-operational-tempo-against-european

3/13

Compromise chains seen in this campaign follow the typical Korplug pattern: a legitimate, validly signed, executable
vulnerable to DLL search-order hijacking, a malicious DLL, and an encrypted Korplug file are deployed on the target
machine. The executable is abused to load the module, which then decrypts and executes the Korplug RAT. In some
cases, a downloader is used first to deploy these files along with a decoy document. This process is illustrated in
Figure 2.

Figure 2. Overview of the deployment process for the Hodur Korplug variant.

What sets this campaign apart is the heavy use of control-flow obfuscation and anti-analysis techniques at every
stage of the deployment process. The following sections describe the behavior of each stage and take a deeper look
at the defense evasion techniques used in each of them.

Initial access

We haven’t been able to observe the initial deployment vector, but our analysis points to phishing and watering hole
attacks as likely vectors. In instances where we saw a downloader, the filenames used suggest a document with an
interesting subject for the target. Such examples include:

COVID-19 travel restrictions EU reviews list of third countries.exe
State_aid__Commission_approves_2022-2027_regional_aid_map_for_Greece.exe
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.exe
Situation at the EU borders with Ukraine.exe

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-2.-Overview-of-the-deployment-process-for-the-Hodur-Korplug-variant..png

4/13

To further the illusion, these binaries download and open a document that has the same name but with a .doc or .pdf
extension. The contents of these decoys accurately reflect the filename. As shown in Figure 3, at least one of them is
a publicly accessible legitimate document from the European Parliament.

Figure 3. First page of the decoy document for the REGULATION OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL.exe downloader. It’s a real document available on the European Council’s
website.

Downloader

Although its complexity has increased over the course of the campaign, the downloader is fairly straightforward. This
increase in complexity comes from additional anti-analysis techniques, which we cover later in this section.

It first downloads four files over HTTPS: a decoy document, a legitimate executable, a malicious module and an
encrypted Korplug file. The combination of those last three components to execute a payload via DLL side-loading is
sometimes referred to as a trident and is a technique commonly used by Mustang Panda, and with Korplug loaders in
general. Both the server addresses and file paths are hardcoded in the downloader executable. Once everything is
downloaded, and the decoy document opened to distract the victim, the downloader uses the following command line
to launch the legitimate executable:

cmd /c ping 8.8.8.8 -n 70&&”%temp%\<legitimate executable>”

This ping command both checks internet connectivity and introduces a delay (through the -n 70 option) before
executing the downloaded, legitimate executable.

The downloader uses multiple anti-analysis techniques, many of which are also used in the loader and final payload.
Additional obfuscation has been added to new versions over the course of the campaign without otherwise changing
their goal.

In early versions of the downloader, junk code and opaque predicates were used to hinder analysis, as shown in
Figure 4, but the server and filenames are plainly visible in cleartext.

Figure 4. Control flow obfuscation in early versions of the downloader

https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-3.-First-page-of-the-decoy-document-for-the-REGULATION-OF-THE-EUROPEAN-PARLIAMENT-AND-OF-THE-COUNCIL.exe-downloader.-It%E2%80%99s-a-real-document-available-on-the-European-Council%E2%80%99s-website..png
https://www.welivesecurity.com/2020/12/10/luckymouse-ta428-compromise-able-desktop/
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-4.-Control-flow-obfuscation-in-early-versions-of-the-downloader.png

5/13

In later versions, the files on the server are RC4 encrypted, using the base 10 string representation of the file size as
the key, and then hex-encoded. This process is illustrated in the Python snippet below. The opposite operations are
performed client-side by the downloader to recover the plaintext files. This is likely done to bypass network-level
protections.

from Crypto.cipher import ARC4
key = “%d” % len(plaintext)
rc4 = ARC4.new(key)
cipher_content = rc4.encrypt(plaintext).hex().upper()

These versions replace the use of cleartext strings with encrypted stack strings. They are still hardcoded in the file,
but the obfuscation surrounding them, and the use of different keys, makes it hard to decrypt them statically in an
automated manner. This same technique is used heavily in the subsequent stages. Encrypted stack strings are also
used to obfuscate calls to Windows API functions.

First, the name of the target function is decrypted and passed to a function. This function obtains a pointer to the
InMemoryOrderModuleList field of the PEB (Process Environment Block). It then iterates over the loaded modules,
passing each handle to GetProcAddress along with the function name until the target function is successfully
resolved. Part of this process can be seen in Figure 5.

Figure 5. Obfuscation of Windows API calls in the downloader. The screenshot shows a call to WriteFile, but the same pattern is used
for all API functions.

Loader

As is common with Korplug, the loader is a DLL that exploits a side-loading vulnerability in a legitimate, signed
executable. We have observed many different applications being abused in this campaign, for instance a vulnerable
SmadAV executable previously seen by Qurium in a campaign attributed to Mustang Panda that targeted Myanmar.

The loader exports multiple functions. The exact list varies depending on the abused application, but in all cases, only
one of them does anything of consequence. In all of the loaders we observed, this is the exported function with the
highest load address. All the other exports, and the library’s entry point, either return immediately or execute some
do-nothing junk code. Many of these exports have names that consist of random lowercase letters and point to the
same address as shown in Table 1.

Table 1. Functions exported by a Hodur loader. The createSystemFontsUsingEDL export is the one that loads the
final malware stage in this version.

Name Ordinal Function RVA
CreatePotPlayerExW 1 0x00007894
RunPotPlayer 2 0x000166A5
createSystemFontsUsingEDL 3 0x00016779
gGegcerhwyvxtkrtyawvugo 4 0x00007894
liucigvyworf 5 0x00007639
ojohjinbgdfqtcwxojeusoneslciyxtiyjuieaugadjpd 6 0x000077CA
soeevhiywsypipesxfhgxboleahfwvlqcqp 7 0x00007894
srkeqffanuhiuwahbmatdurggpffhbkcpukyxgxmosn 8 0x00007894
thggvmrv 9 0x00007701

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-5.-Obfuscation-of-Windows-API-calls-in-the-downloader.-The-screenshot-shows-a-call-to-WriteFile-but-the-same-pattern-is-used-for-all-API-functions..png
https://www.qurium.org/alerts/targeted-malware-against-crph/

6/13

The loader function obtains the directory from which the DLL is running using GetModuleFileNameA and tries to open
the encrypted Korplug file it contains. That filename is hardcoded in the loader. It reads the file’s contents into a
locally allocated buffer and decrypts it. The loader makes this buffer executable using VirtualProtect before calling
into it at offset 0x00.

Windows API function calls are obfuscated with a different technique than that used in the downloader. Unlike the
loader, which contains the names of its functions (as shown in Table 1 above), only the 64-bit hashes of the Windows
API function calls are present in the binary. To resolve those functions, the loader traverses the export lists of all
loaded libraries via the InMemoryOrderModuleList of the PEB. Each export’s name is hashed, then compared to the
expected value. The FNV-1a hash algorithm, recently brought back into the mainstream by the Sunburst backdoor,
has previously been used by Mustang Panda, in Korplug loaders documented by XORHEX, to resolve
GetProcAddress and LoadLibraryA, although it was not identified by name in that analysis. In this version, however, it
is used for all API functions.

Korplug backdoor

Korplug (also known as PlugX) is a RAT used by multiple APT groups. In spite of it being so widely used, or perhaps
because of it, few reports extensively describe its commands and the data it exfiltrates. Its functionality is not constant
between variants, but there does seem to exist a significant overlap in the list of commands between the version we
analyzed and other sources such as the Avira report from January 2020 and the plugxdecoder project on GitHub.

As previously mentioned, the variant used in this campaign bears many similarities to the THOR variant, which is why
we have named it Hodur. The similarities include the use of the Software\CLASSES\ms-pu registry key, the same
format for C&C servers in the configuration, and use of the Static window class.

As expected for Korplug payloads, this stage is only ever decrypted in memory by the loader. Only the encrypted
version is written to disk in a file with a .dat extension.

Unless stated otherwise, all hardcoded strings discussed in this section are stored as encrypted stack strings.

In this module, Windows API functions are obfuscated through a combination of the methods used in previous
stages. LoadLibraryA and GetProcAddress are resolved via the FNV-1a hashing technique and stack strings are
decrypted and passed to them to obtain the target function.

Loading

Once decrypted, the payload is a valid DLL that exports a single function. In almost all observed samples from this
campaign, this function is named StartProtect. However, launching it directly via this export or its entry point will not
execute the main payload and the loading process is quite intricate.

As explained in the previous section, the file is decrypted in memory as a continuous blob by the loader and the
execution starts at offset 0x00. The PE header contains shellcode, shown in Figure 6, that calls a specific offset that
corresponds to the module’s single export.

Figure 6. Shellcode in the PE header that calls the exported function

This function parses the PE blob in memory and manually maps it as a library into a newly allocated buffer. This
includes mapping the various sections, resolving imports and, finally, using DLL_PROCESS_ATTACH to call the DLL
entry point. Once again, opaque predicates and junk code are used to obfuscate the purpose of this function.

The entry point of the properly loaded library is then called with the non-standard value of 0x04 for the fdwReason
parameter (only values from 0x00 to 0x03 are currently defined). This special value is required to get it to execute its
main payload. This simple check prevents the RAT from being trivially executed directly with a generic tool like
rundll32.exe.

https://www.mandiant.com/resources/sunburst-additional-technical-details
https://blog.xorhex.com/blog/reddeltaplugxchangeup/
https://www.avira.com/en/blog/new-wave-of-plugx-targets-hong-kong
https://github.com/kcreyts/plugxdecoder
https://www.welivesecurity.com/wp-content/uploads/2022/03/Figure-6.-Shellcode-in-the-PE-header-that-calls-the-exported-function.png
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

7/13

The backdoor first decrypts its configuration using the string 123456789 as a repeating XOR key. Once decrypted,
the configuration block starts with ########. The layout of the configuration varies slightly between samples, but they
all contain at least the following fields:

Installation directory name. Also used as the name of the registry key created for persistence. This value
roughly corresponds to the name of the abused application with three random letters appended (e.g.,
FontEDLZeP or AdobePhotosGQp)
Mutex name
A value that is either a version or ID string
List of C&C servers. Each entry includes IP address, port number, and a number indicating the protocol to use
with that C&C

The backdoor then checks the path from which it is running using GetModuleFileNameW. If this matches
%userprofile%\<installation directory> or %allusersprofile%\<installation directory>, the RAT functionality will be
executed. Otherwise, it will go through the installation process.

Installation

To install itself, the malware creates the aforementioned directory under %allusersprofile%. Using SetFileAttributesW,
it is then marked as hidden and system. The vulnerable executable, loader module, and encrypted Korplug files are
copied to the new directory.

Next, persistence is established. Earlier samples achieved this by creating a scheduled task to be run at boot via
schtasks.exe. Newer samples add a registry entry to Software\Microsoft\Windows\CurrentVersion\Run, trying the
HKLM hive first, then HKCU. This entry has the same name as the installation directory with its value set to the newly
copied executable’s path.

Once persistence has been set up, the malware launches the executable from its new location and exits.

RAT

The RAT functionality of the Hodur variant used in this campaign mostly lines up with other Korplug variants, with
some additional commands and characteristics. As we have previously stated, though, detailed analyses of Korplug
commands are few and far between, so we aim to provide such an analysis in the hopes of aiding future analysts.

When in this mode, the backdoor iterates through the list of C&C servers in its configuration until it reaches the end or
receives an Uninstall command. For each of those servers, it processes commands until it receives a Stop command
or encounters an error.

Hodur’s initial handshake can be done over HTTPS or TCP. This is determined by a value in the configuration for that
particular C&C server. Subsequent communication is always done over TCP using a custom protocol that we
describe in this section, along with the commands that can be issued. Hodur uses sockets from the Windows Sockets
API (Winsock) that support overlapped I/O.

Following the initial handshake, Hodur’s communications involve TCP messages that consist of a header, with the
structure described in Table 2, followed by a message body that is usually compressed using LZNT1 and always
encrypted with RC4. Messages whose Command number header field have the 0x10000000 bit set (those that
contain file contents for the ReadFile and WriteFile commands, described in Table 3) have encrypted but not
compressed message bodies. All encrypted message bodies use the hardcoded key sV!e@T#L$PH% with a four-
byte random nonce (the value at offset 0x00 in the header) appended to it.

Table 2. Header format used for communication between the C&C and the backdoor

Offset Field Description
0x00 Nonce Random nonce appended to the RC4 key.

0x04 Command
number

This field indicates the command to run or the command that caused this response to
be sent.

0x08 Length of
body

Length of the message body. It seems that this field isn’t checked by the client for
messages from the C&C server.

0x0C Command
exit status

The return or error value of the command that was run. This field is not checked by the
client in messages received from the C&C server.

Hodur’s C&C message headers are transmitted in the clear, followed by variably sized (the value at offset 0x08 of the
header) message bodies. The format of the message body varies per command, but once decrypted and
decompressed, values of variable length (like strings) are always at a message body’s end and their offset in the
body is stored as an integer in the corresponding message field.

Like the version described by Avira, Hodur has two groups of commands – 0x1001 and 0x1002 – each with its own
handler. The C&C server can set which group to listen for by sending the corresponding ID as the command number

https://docs.microsoft.com/en-us/windows/win32/winsock/overlapped-i-o-2

8/13

when a client is not already in one of the two modes. It will continue to listen for the same group until it receives the
Stop command, or an error occurs (including receiving a message with an invalid Command number in its header).

The first group, 0x1001, contains commands for managing the execution of the backdoor and doing initial
reconnaissance on a newly compromised host. As these commands take no arguments, messages sent by the C&C
server consist only of the headers. Table 3 contains a list of these commands. The GetSystemInfo command is
described in more detail below. Note that no command names are present in the RAT; they were either taken from
previous analyses or provided by us.

Table 3. Commands in group 0x1001

ID Name Description Data in client
response

0x1000 Ping Sent by the client when it starts listening for commands
from this group.

Between 0 and 64
random bytes

0x1001 GetSystemInfo Get information about the system. See Table 4

0x1002 ListenThread Start a new thread that listens for group 0x1002
commands. None

0x1004 ResetConnection Terminate with WSAECONNRESET. N/A

0x1005 Uninstall Delete persistence registry keys, remove itself and
created folders. None

0x1007 Stop
Set registry key
System\CurrentControlSet\Control\ Network\allow to 1 and
exit.

N/A

The GetSystemInfo command collects extensive information about the system, as detailed in Table 4. If it doesn’t
already exist, the Software\CLASSES\ms-pu\CLSID registry key is set to the current timestamp, trying HKLM first
then HKCU. The value of this key is then sent in the response.

Table 4. Response body format for the GetSystemInfo response

Offset Value Offset Value
0x00 Magic bytes 0x20190301 0x38 Suite mask
0x04 Client IP address of the C&C socket 0x3A Product type
0x08 Server IP address of the C&C socket 0x3C 0x01 if the process is running as WOW64
0x0C RAM in KB 0x40 System time – year
0x10 CPU clock rate in MHz 0x42 System time – month
0x14 Display width in pixels 0x44 Timestamp of first run (offset)
0x18 Display height in pixels 0x46 Service pack version string (offset)
0x1C Default locale 0x48 Unknown
0x20 Current tick count 0x4A Username (offset)
0x24 OS major version 0x4C Computer name (offset)
0x28 OS minor version 0x4E Mutex name (offset)
0x2C OS build number 0x50 Unknown
0x30 OS platform ID 0x52 List of machine IP addresses (offset)
0x34 Service pack major version 0x54 Always two 0x00 bytes
0x36 Service pack minor version

The 0x1002 group contains commands that provide RAT functionality, as detailed in Table 5. Some of these take
parameters provided in the command’s message body. The FindFiles command is described in more detail below.
Again, note that no command names are present in the RAT; they were either taken from previous analyses or
provided by us.

Table 5. Commands in group 0x1002

ID Name Description Data in C&C
request Data in client response

0x1002 Ping
Sent by the client when it
starts listening for
commands from this group.

N/A None

0x3000 ListDrives

List all mapped drives (A: to
Z:) and their properties.

All 26 entries are sent back
in one message body.
Drives that aren’t present
have all fields set to 0x00.

None

· Drive type
· Total size
· Space available to user
· Free space
· Volume name (offset)
· File system name (offset)

9/13

ID Name Description Data in C&C
request Data in client response

0x3001

ListDirectory

List the contents of the
specified directory. The
client sends one response
message per entry.

Directory path

· Is a directory?
· File attributes
· File size
· Creation time
· Last write time
· Filename (offset)
· 8.3 filename (offset)

0x3002
Sent by the client when it
has finished executing the
ListDirectory command.

N/A None

0x3004

ReadFile

Read a file in chunks of
0x4000 bytes.

· Creation time
·
Last access time
· Last write time
· Has offset
· Offset in file
· File size
· File path

0x10003005 Chunk of read file data. N/A Read data

0x10003006
Sent by the client when it
has finished executing the
ReadFile command.

N/A None

0x3007

WriteFile

Write to a file and restore
previous timestamp.

Creates parent directories if
they don’t exist.

· Creation time
· Last access
time
· Last write time
· Has offset
· Offset in file
· File path
(offset)

None

0x10003008 Sent by the server with data
to write to the file. Data to write N/A

0x10003009
Sent by the server when
the WriteFile operation is
complete.

None N/A

0x300A CreateDirectory Create a directory. Directory path None

0x300B CanReadFile Try to open a file with read
permissions. File path None

0x300C DesktopExecute Execute a command on a
hidden desktop.

Command line
to execute

PROCESS_INFORMATION
structure for the created
process.

0x300D FileOperation Perform a file operation
using SHFileOperation.

· wFunc
· fFlags
· pFrom (offset)
· pTo (offset)

None

0x300E GetEnvValue Get the value of an
environment variable.

Environment
variable Environment variable value.

0x300F CreateProgramDataDir
Creates the directory
%SYSTEM%\ProgramData,
optionally with a
subdirectory.

Subdirectory
relative path
(optional)

None

0x3102 FindFiles
Recursively search a
directory for files matching
a given pattern.

· Starting
directory
· Search pattern

See response body format
in Table 6.

0x7002
RemoteShell

Start an interactive remote
cmd.exe session. None None

0x7003 Result of the last command
run. N/A Command output

FindFiles command

Starting from the provided directory, this command searches for files whose names match the given pattern. This
pattern supports the same wildcard characters as the Windows FindFirstFile API. For each matching file, the client
sends a response message with its body in the format described in Table 6.

Table 6. Format of the response body for the FindFiles command

Offset Value Offset Value
0x00 File attributes 0x24 Folder path (offset)
0x04 File size in bytes 0x26 Filename (offset)
0x0C Creation time 0x28 8.3 filename (offset)

10/13

Offset Value Offset Value
0x1C Last write time

One response message with an empty body is sent once the search is completed.

Conclusion
The decoys used in this campaign show once more how quickly Mustang Panda is able to react to world events. For
example, an EU regulation on COVID-19 was used as a decoy only two weeks after it came out, and documents
about the war in Ukraine started being used in the days following the beginning of the launch of the invasion. This
group also demonstrates an ability to iteratively improve its tools, including its signature use of trident downloaders to
deploy Korplug.

For any inquiries about our research published on WeLiveSecurity, please contact us at threatintel@eset.com.

ESET Research now also offers private APT intelligence reports and data feeds. For any inquiries about this service,
visit the ESET Threat Intelligence page.

IoCs

SHA-1 Filename ESET detection name D
69AB6B9906F8DCE03B43BEBB7A07189A69DC507B coreclr.dll Win32/Agent.ADMW Korp

10AE4784D0FFBC9CD5FD85B150830AEA3334A1DE N/A Win32/Korplug.TC
Dec
(dum
mem

69AB6B9906F8DCE03B43BEBB7A07189A69DC507B coreclr.dll Win32/Agent.ADMW Korp
4EBFC035179CD72D323F0AB357537C094A276E6D PowerDVD18.exe Win32/Delf.UTN Korp

FDBB16B8BA7724659BAB5B2E1385CFD476F10607 N/A Win32/Korplug.TB
Dec
(dum
mem

7E059258CF963B95BDE479D1C374A4C300624986 N/A Win32/Korplug.TC
Dec
(dum
mem

7992729769760ECAB37F2AA32DE4E61E77828547 SHELLSEL.ocx Win32/Agent.ADMW Korp
F05E89D031D051159778A79D81685B62AFF4E3F9 SymHp.exe Win32/Delf.UTN Korp
AB01E099872A094DC779890171A11764DE8B4360 BoomerangLib.dll Win32/Korplug.TH Korp
CDB15B1ED97985D944F883AF05483990E02A49F7 PotPlayer.dll Win32/Agent.ADYO Korp
908F55D21CCC2E14D4FF65A7A38E26593A0D9A70 SmadHook32.dll Win32/Agent.ADMW Korp
477A1CE31353E8C26A8F4E02C1D378295B302C9E N/A Win32/Agent.ADMW Korp
52288C2CDB5926ECC970B2166943C9D4453F5E92 SmadHook32c.dll Win32/Agent.ADMW Korp
CBD875EE456C84F9E87EC392750D69A75FB6B23A SHELLSEL.ocx Win32/Agent.ADMW Korp
2CF4BAFE062D38FAF4772A7D1067B80339C2CE82 Adobe_Caps.dll Win32/Agent.ADMW Korp
97C92ADD7145CF9386ABD5527A8BCD6FABF9A148 DocConvDll.dll Win32/Agent.ADYO Korp

39863CECA1B0F54F5C063B3015B776CDB05971F3 N/A Win32/Korplug.TD
Dec
(dum
mem

0D5348B5C9A66C743615E819AEF152FB5B0DAB97 FontEDL.exe clean
Vuln
legit
File
exec

C8F5825499315EAF4B5046FF79AC9553E71AD1C0 Silverlight.Configuration.exe clean

Vuln
legit
Micr
Silve
Con
Utilit

D4FFE4A4F2BD2C19FF26139800C18339087E39CD PowerDVDLP.exe clean
Vuln
legit
Pow
exec

65898ACA030DCEFDA7C970D3A311E8EA7FFC844A Symantec.exe clean

Vuln
legit
Sym
AntiV
exec

7DDB61872830F4A0E6BF96FAF665337D01F164FC Adobe Stock Photos
CS3.exe clean

Vuln
legit
Stoc
exec

https://www.welivesecurity.com/mailto:threatintel@eset.com
https://www.eset.com/int/business/services/threat-intelligence/

11/13

SHA-1 Filename ESET detection name D

C13D0D669365DFAFF9C472E615A611E058EBF596
COVID-19 travel restrictions
EU reviews list of third
countries.exe

Win32/Agent_AGen.NJ Dow

062473912692F7A3FAB8485101D4FCF6D704ED23
REGULATION OF THE
EUROPEAN PARLIAMENT
AND OF THE
COUNCIL.exe

Win32/TrojanDownloader.Agent.GDL Dow

2B5D6BB5188895DA4928DD310C7C897F51AAA050 log.dll Win32/Agent.ACYW Korp
511DA645A7282FB84FF18C33398E67D7661FD663 2.exe Win32/Agent.ADPL Korp
59002E1A58065D7248CD9D7DD62C3F865813EEE6 log.dll Win32/Agent.ADXE Korp
F67C553678B7857D1BBC488040EA90E6C52946B3 KINGSTON.exe Win32/Agent.ADXZ Korp

58B6B5FD3F2BFD182622F547A93222A4AFDF4E76 PotPlayer.exe clean
Vuln
legit
exec

Network

Domain IP First seen Notes
103.56.53[.]120 2021‑06‑15 Korplug C&C
154.204.27[.]181 2020‑10‑05 Korplug C&C.
43.254.218[.]42 2021‑02‑09 Download server.
45.131.179[.]179 2020‑10‑05 Korplug C&C.
176.113.69[.]91 2021-04-19 Korplug C&C.

upespr[.]com 45.154.14[.]235 2022-01-17 Download server.
urmsec[.]com 156.226.173[.]23 2022‑02‑23 Download server.

101.36.125[.]203 2021-06-01 Korplug C&C.
185.207.153[.]208 2022‑02‑03 Download server.
154.204.27[.]130 2021-12-14 Korplug C&C.
92.118.188[.]78 2022-01-27 Korplug C&C.

zyber-i[.]com 107.178.71[.]211 2022-03-01 Download server.

locvnpt[.]com 103.79.120[.]66 2021-05-21 Download server. This domain was previously used in a 2020
campaign documented by Recorded Future.

MITRE ATT&CK techniques
This table was built using version 10 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.001 Acquire Infrastructure:
Domains

Mustang Panda has registered domains for use as
download servers.

T1583.003 Acquire Infrastructure:
Virtual Private Server

Some download servers used by Mustang Panda
appear to be on shared hosting.

T1583.004 Acquire Infrastructure:
Server

Mustang Panda uses servers that appear to be
exclusive to the group.

T1587.001 Develop Capabilities:
Malware

Mustang Panda has developed custom loader and
Korplug versions.

T1588.006 Obtain Capabilities:
Vulnerabilities

Multiple DLL hijacking vulnerabilities are used in the
deployment process.

T1608.001 Stage Capabilities: Upload
Malware

Malicious payloads are hosted on the download
servers.

Execution

T1059.003
Command and Scripting
Interpreter: Windows
Command Shell

Windows command shell is used to execute commands
sent by the C&C server.

T1106 Native API Mustang Panda uses CreateProcess and ShellExecute
for execution.

T1129 Shared Modules Mustang Panda uses LoadLibrary to load additional
DLLs at runtime. The loader and RAT are DLLs.

T1204.002 User Execution: Malicious
File

Mustang Panda relies on the user executing the initial
downloader.

T1574.002 Hijack Execution Flow:
DLL Side-Loading

The downloader obtains and launches a vulnerable
application so it loads and executes the malicious DLL
that contains the second stage.

Persistence
T1547.001

Boot or Logon Autostart
Execution: Registry Run
Keys / Startup Folder

Korplug can persist via registry Run keys.

T1053.005 Scheduled Task/Job:
Scheduled Task

Korplug can persist by creating a scheduled task that
runs on startup.

https://www.recordedfuture.com/reddelta-cyber-threat-operations/
https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v10/techniques/T1583/001
https://attack.mitre.org/versions/v10/techniques/T1583/003
https://attack.mitre.org/versions/v10/techniques/T1583/004
https://attack.mitre.org/versions/v10/techniques/T1587/001
https://attack.mitre.org/versions/v10/techniques/T1588/006
https://attack.mitre.org/versions/v10/techniques/T1608/001
https://attack.mitre.org/versions/v10/techniques/T1059/003
https://attack.mitre.org/versions/v10/techniques/T1106
https://attack.mitre.org/versions/v10/techniques/T1129
https://attack.mitre.org/versions/v10/techniques/T1204/002
https://attack.mitre.org/versions/v10/techniques/T1574/002
https://attack.mitre.org/versions/v10/techniques/T1547/001
https://attack.mitre.org/versions/v10/techniques/T1053/005

12/13

Tactic ID Name Description

Defense
Evasion

T1140 Deobfuscate/Decode Files
or Information

The Korplug file is encrypted and only decrypted at
runtime, and its configuration data is encrypted with
XOR.

T1564.001 Hide Artifacts: Hidden Files
and Directories

Directories created during the installation process are
set as hidden system directories.

T1564.003 Hide Artifacts: Hidden
Window

Korplug can run commands on a hidden desktop.
Multiple hidden windows are used during the
deployment process.

T1070 Indicator Removal on Host Korplug’s uninstall command deletes registry keys that
store data and provide persistence.

T1070.004 Indicator Removal on Host:
File Deletion Korplug can remove itself and all created directories.

T1070.006 Indicator Removal on Host:
Timestomp

When writing to a file, Korplug sets the file’s timestamps
to their previous values.

T1036.004
Masquerading:
Masquerade Task or
Service

Scheduled tasks created for persistence use legitimate-
looking names.

T1036.005
Masquerading: Match
Legitimate Name or
Location

File and directory names match expected values for the
legitimate app that is abused by the loader.

T1112 Modify Registry Korplug can create, modify, and remove registry keys.

T1027 Obfuscated Files or
Information

Some downloaded files are encrypted and stored as
hexadecimal strings.

T1027.005
Obfuscated Files or
Information: Indicator
Removal from Tools

Imports are hidden by dynamic resolution of API
function names.

T1055.001
Process Injection:
Dynamic-link Library
Injection

Some versions of the Korplug loader inject the Korplug
DLL into a newly launched process.

T1620 Reflective Code Loading Korplug parses and loads itself into memory.

Discovery

T1083 File and Directory
Discovery

Korplug can list files and directories along with their
attributes and content.

T1082 System Information
Discovery

Korplug collects extensive information about the system
including uptime, Windows version, CPU clock rate,
amount of RAM and display resolution.

T1614 System Location Discovery Korplug retrieves the system locale using
GetSystemDefaultLCID.

T1016 System Network
Configuration Discovery

Korplug collects the system hostname and IP
addresses.

T1016.001
System Network
Configuration Discovery:
Internet Connection
Discovery

The downloader pings Google’s DNS server to check
internet connectivity.

T1033 System Owner/User
Discovery Korplug obtains the current user’s username.

T1124 System Time Discovery Korplug uses GetSystemTime to retrieve the current
system time.

Collection

T1005 Data from Local System Korplug collects extensive data about the system it’s
running on.

T1025 Data from Removable
Media

Korplug can collect metadata and content from all
mapped drives.

T1039 Data from Network Shared
Drive

Korplug can collect metadata and content from all
mapped drives.

Command
and Control

T1071.001 Application Layer Protocol:
Web Protocols Korplug can make the initial handshake over HTTPS.

T1095 Non-Application Layer
Protocol

C&C communication is done over a custom TCP-based
protocol.

T1573.001 Encrypted Channel:
Symmetric Cryptography C&C communication is encrypted using RC4.

T1008 Fallback Channels The Korplug configuration contains fallback C&C
servers.

T1105 Ingress Tool Transfer Korplug can download additional files from the C&C
server.

T1571 Non-Standard Port
When Hodur performs its initial handshake over
HTTPS, it uses the same port (specified in the
configuration) as for the rest of the communication.

T1132.001 Data Encoding: Standard
Encoding Korplug compresses transferred data using LZNT1.

Exfiltration T1041 Exfiltration Over C2
Channel

Data exfiltration is done via the same custom protocol
used to send and receive commands.

https://attack.mitre.org/versions/v10/techniques/T1140
https://attack.mitre.org/versions/v10/techniques/T1564/001
https://attack.mitre.org/versions/v10/techniques/T1564/003
https://attack.mitre.org/versions/v10/techniques/T1070
https://attack.mitre.org/versions/v10/techniques/T1070/004
https://attack.mitre.org/versions/v10/techniques/T1070/006
https://attack.mitre.org/versions/v10/techniques/T1036/004
https://attack.mitre.org/versions/v10/techniques/T1036/005
https://attack.mitre.org/versions/v10/techniques/T1112
https://attack.mitre.org/versions/v10/techniques/T1027
https://attack.mitre.org/versions/v10/techniques/T1027/005
https://attack.mitre.org/versions/v10/techniques/T1055/001
https://attack.mitre.org/versions/v10/techniques/T1620
https://attack.mitre.org/versions/v10/techniques/T1083
https://attack.mitre.org/versions/v10/techniques/T1082
https://attack.mitre.org/versions/v10/techniques/T1614
https://attack.mitre.org/versions/v10/techniques/T1016
https://attack.mitre.org/versions/v10/techniques/T1016/001
https://attack.mitre.org/versions/v10/techniques/T1033
https://attack.mitre.org/versions/v10/techniques/T1124
https://attack.mitre.org/versions/v10/techniques/T1005
https://attack.mitre.org/versions/v10/techniques/T1025
https://attack.mitre.org/versions/v10/techniques/T1039
https://attack.mitre.org/versions/v10/techniques/T1071/001
https://attack.mitre.org/versions/v10/techniques/T1095/
https://attack.mitre.org/versions/v10/techniques/T1573/001
https://attack.mitre.org/versions/v10/techniques/T1008
https://attack.mitre.org/versions/v10/techniques/T1105
https://attack.mitre.org/versions/v10/techniques/T1571
https://attack.mitre.org/versions/v10/techniques/T1132/001
https://attack.mitre.org/versions/v10/techniques/T1041

13/13

