
1/14

December 30, 2021

Piece of dragon's scales
sfkino-tistory-com.translate.goog/80

TL;DR

Attacks using the golddragon/braveprince cluster of the kimsuky (aka Thallium) group continue
Recently, a routine to encode API names has been added to the golddragon/braveprince cluster malware.
Quasar-based malware, an open source RAT, was discovered by searching for additional intelligence based on strings

outline

In fact, the golddragon/braveprince clusters (personally, I call them daumrat) were thinking of posting them all around mid-
2021.. While I was spending time in the lost arc, the cisco talos team organized it well and made it public. It's sweet, but
thanks to you, I have no use for it.

So, in this post, we will briefly discuss the braveprince, password stealer malware, and Quarsar RAT-based .net malware
with name en/decoding routine added through intelligence search.

Case 1. Golddragon/braveprince malware with API Name En/Decoding logic added

When the Run function is executed through rundll.exe, it is a very typical braveprince cluster that steals information and
creates svchost.exe and iexplorer.exe to steal information via daum mail. (Personally, I call it daumrat) recently discovered
golddragon/braveprince In the malware, functions were the same as before, but we found a sample with added logic to
encrypt/decrypt DLL and API names.

WTF_10003CD0 function

get encoded dll name & api name

Inside the file, there is an api_name_table containing the encoded DLL name and the API included in the DLL. Get the
encoded DLL name by comparing the encoded api names in this table.

https://sfkino-tistory-com.translate.goog/80?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=de

2/14

decode string

The encoded DLL and API names received as arguments are decoded by the following routine.

1. Get the index of the character position to be decrypted in the key table
2. Calculate the position index value with a specific formula ((idx - 0x16) & 0x3F)
3. Replace the encoded string using the calculated value as an index in the key table

The decryption logic is implemented as follows.

def decryptor(enc_str):
 key_table = 'zcgXlSWkj314CwaYLvyh0U_odZH8OReKiNIr-JM2G7QAxpnmEVbqP5TuB9Ds6fFt'
 dec_str = ''
 for enc_chr in enc_str:
 if enc_chr == '.':
 dec_str += '.'
 else:
 idx = key_table.index(ord(enc_chr))
 dec_str += chr(key_table[(idx - 0x16) & 0x3F])

 return dec_str

3/14

The string substitution key table used by this malware is also found in other malware used by this group.
(link: https://asec.ahnlab.com/wp-content/uploads/2021/11/Kimsuky-group-APT-attack-analysis-report-AppleSeed-
PebbleDash.pdf)

Report published by Ahnlab

Case 2. Information Stealer

In a stranger intelligence search, I found a sample with a familiar scent. It is a sample that has already been analyzed and
reported by talos, so let's briefly look at the functions.

 (link: https://blog.talosintelligence.com/2021/11/kimsuky-abuses-blogs-delivers-malware.html)

%AppData%qwer.txt file does not exist if it does not exist
Create %AppData%information folder (WORKING_PATH)
Save system information in %AppData%Information folder

cmd.exe /c ipconfig/all >> [WORKING_PATH]\netinfo.dat & arp -a >> [WORKING_PATH]\netinfo.dat
cmd.exe /c systeminfo >> [WORKING_PATH]\sysinfo.dat
cmd.exe /c tasklist >> [WORKING_PATH]\procinfo.dat
[WORKING_PATH]\filelist.dat

After the svchost.exe process is created, the data in the resource area is decrypted and then injected
It is a malicious code that modified nirsoft's webpassview program to steal user information stored in the browser
and save it as a file.

[WORKING_PATH]\aaweb.txt

https://translate.google.com/website?sl=auto&tl=en&u=https://asec.ahnlab.com/wp-content/uploads/2021/11/Kimsuky-%EA%B7%B8%EB%A3%B9%EC%9D%98-APT-%EA%B3%B5%EA%B2%A9-%EB%B6%84%EC%84%9D-%EB%B3%B4%EA%B3%A0%EC%84%9C-AppleSeed-PebbleDash.pdf
https://translate.google.com/website?sl=auto&tl=en&u=https://blog.talosintelligence.com/2021/11/kimsuky-abuses-blogs-delivers-malware.html

4/14

Stealing system information

Stealing account information stored in web browsers

This malicious code does not have a routine to transmit the collected information to the outside and does not run without the
qwer.txt file, so it appears to be one of the system information collection modules executed by other malicious codes.

Case 3. .Net malware based on Quasar RAT

Case 1 While performing an intelligence search with the found key value and encoded API name, I found a dropper running
Quasar RAT. The resource structure of the file is quite complex, so I expressed it as a picture

5/14

malware resource data

The operation method of the malicious code is as follows.

If your Windows version is 10
 Drop & Execute Privilege Elevation SW (TEXT114)

If you have high privileges and WinDefender is running
Defender Control SW & Execution (TEXT116)

Main Malicious Behavior (TEXT115)
Drop file with C2 information

6/14

Malware main logic

elevation of privilege

The malicious code decrypts the resource file (TEXT116), maps the file to memory, and calls the Export function Reg for
privilege elevation.

factor Privilege Elevation
S/W

file/registry path

One computerdefaults.exe HKCU\\Software\\Classes\\ms-settings\\shell\\open\\command

2 sdclt.exe HKCU\\Software\\Classes\\Folder\\shell\\open\\command

3 cmstp.exe %AppData\Microsoft\windows\seting.ini

4 WSReset.exe HKCU\\Software\\Classes\\AppX82a6gwre4fdg3bt635tn5ctqjf8msdd2\\Shell\\open\\command

5 slui.exe HKCU\\Software\\Classes\\Launcher.SystemSettings\\shell\\open\\command

7/14

Privilege Elevation S/W

[version]
Signature=$chicago$
AdvancedINF=2.5
[DefaultInstall]

CustomDestination=CustInstDestSectionAllUsers
RunPreSetupCommands=RunPreSetupCommandsSection

[RunPreSetupCommandsSection]
[MALPATH]\malware.dll,Run
taskkill /IM cmstp.exe /F

[CustInstDestSectionAllUsers]
49000,49001=AllUSer_LDIDSection, 7

[AllUSer_LDIDSection]
"HKLM", "SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\CMMGR32.EXE", "ProfileInstallPath",
"%UnexpectedError%", ""

[Strings]
ServiceName="WinPwnageVPN"
ShortSvcName="WinPwnageVPN"

Turn off winDefender

Search "sMpEng" string among running processes to check whether Defender is running, and if it is running, drop the file
(TEXT114) in the resource area and run it with the /D option to turn off Defender.

Path: %PROGRAMFILES%\Microsfot\
File name: /[cetuikgbms]{6}.exe

8/14

win defender control

Malware installation

The final malicious code, Quasar RAT, and the encrypted C2 file are dropped to a fixed folder.

Encrypted C2 (BIN101): %AppData%\Microsoft\Office\MsWord16.pip
Quasar RAT (BIN102): %AppData%\Microsoft\Office\StaticCache.dat

The loader running Quasar RAT creates a random folder in %AppData%\Microsoft\, drops it to a random name, and runs it.

Installation path: %AppData%\Microsoft\ [pubs, Common, Defender, Protect, Vault]
File name: [svchost, sihost, spoolsv, taskhostw, RuntimeBroker].exe
Execution argument: -start

Autorun Registration (Persistence)

Attempts to register the scheduler and register the registry (if Windefender is not running) to secure the continuity of the
malicious code.

9/14

autorun name
WindowsAutoUpdate
AdobeUpdate
DefenderUpdate
OneDriveUpdate
CloudUpdate

schtasks.exe "/create /tn \"WindowsAutoUpdate\" /tr
\"C:\\Users\\anon\\AppData\\Roaming\\Microsoft\\Protect\\svchost.exe -start\" /sc DAILY /mo 1 /f"

Registry Path: Path: HKLM\SoftWare\Microsoft\Windows\CurrentVersion\Run

RAT Loader

RAT Loader is a .NET-based loader program named teracom or RuntimeBroker that reads Quasar-based malware, decodes
it, and executes it. PDB information exists in the loaded executable file.

G:\SRC\!Spy\!LoadAssembly\!teracom\teracom\obj\Release\teracom.pdb
G:\SRC\!Spy\taskhost\taskhost\obj\Release\RuntimeBroker.pdb

teracom/runtimebroker info

10/14

RAT loader

Malware based on Quasar RAT

The StaticCache.dat file that operates in memory is a Quasar RAT-based malware with a package name of RMSSVC. The
overall function is the same as Quasar RAT, so only some settings, decryption logic, and C2 address loading method will be
reviewed.

 (link: https://github.com/quasar/Quasar)

https://translate.google.com/website?sl=auto&tl=en&u=https://github.com/quasar/Quasar

11/14

RAT Package

12/14

Setting information to be used for malicious behavior

Decrypt the encrypted C2 and AES-encrypted MsWord16.pip files in the Config file and set them to C2

https: //blog.daum [.]net/casalesmedia/pages/category
14.47.189.243:443
222.122.79.232:8080
222.122.79.232:443

https://translate.google.com/website?sl=auto&tl=en&u=https://blog.daum

13/14

String decryption logic

Decryption order
1. Base64 Decoding
2. 159 (0x9F) XOR

C2 File Decryption Logic (AES)

def aes_dec(enc_str):
 enc_str = base64.b64decode(enc_str)
 key = base64.b64decode("IuYp5htzIKk1wqlMrcwzSg==")
 iv = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
 decrypt = AES.new(key, AES.MODE_CBC,IV= iv)
 dec_str = decrypt.decrypt(enc_str)
 print(dec_str)

conclusion

I'm just sorry for wasting your time by bringing all the finished rice cakes. But I wrote it with the hope that it might be helpful
to someone. And... I probably won't be posting any more tracking or analysis posts about these friends after this one. (The
reason will be written later along with the current situation on personal SNS.)

I end this article by sending a review to all malware/threat analysts who are struggling day and night to identify and block
threats.

Goodbye 2020! And Happy New year!!

IOC

Case 1. API Name En / Decoding logic is added golddragon / braveprince malware
 MD5: E647B3366DC836C1F63BDC5BA2AEF3A9

 sha1: A7B0711B45081768817E85D6FC76E23093093F87
 SHA256: 3903958EB28632AA58E455EB87482D1CCEF38A6FE43512BAAD30902E8BFDD6D5

E11E2425C62F34EBB3F640BAEEFB67D5
 7DC6F8AAAF4431C365564A51DD37C143D857B89E

 237DEBA138355BFB448E74BFB68FC868F4807B24D68715A6D47E348FC0CF9257

14/14

Case 2. the Information Stealer
MD5: 8EDFA086DE4DFDC93C0551BBB08CD5A8
sha1: 4B1B5BED35BC676E835DE14EE033339D37F4549D
SHA256: 5E3907E9E2ED8FF12BB4E96B52401D871526C5ED502D2149DD4F680DA4925590

Case 3. .Net based malware on Quasar RAT
md5: C3885F3C1001A53EB4FBBB4B5F42163E
sha1: 322AD36BF0DB8244B64E2D3AFC1CCF5ED6685DF3
SHA256: 51a92bd57ece4a107dacabf2639b6fa06bea8992e72fc9b4305a90fcd984e752

MD5: 3A7355417EBFDB5067582916BBAF0F15
sha1: E8BEF41ED7D0704D9206880EE0F30B5ECF30F204
SHA256: 0CF7E1268E8652D841B7BDA784707E445B9CDC2A46FFB375C8F239CB4C551F73

