
1/12

December 3, 2021

TigerRAT – Advanced Adversaries on the Prowl
blogs.vmware.com/security/2021/12/tigerrat-advanced-adversaries-on-the-prowl.html

Summary

On September 5th, 2021, the Korea Internet & Security Agency (KISA) released a report on a new threat they
dubbed TigerRAT. The newly found malware shares similarities with malware previously reported by Kaspersky
and Malwarebytes. Kaspersky has previously attributed those malware samples to Andariel, a threat actor
group the Korean Financial Security Institute has identified as being a sub-group of Lazarus. TigerRAT appears
to have been used from late 2020 onwards.

VMware’s Threat Analysis Unit identifies TigerRAT as a payload associated with broader campaign of attacks
against target enterprises. The TigerRAT payload capability includes the ability to manipulate files, execute
remote commands, log keystrokes and remotely view and control the screen. TigerRAT may be blocked by
VMware Carbon Black (see Figure 8).

Notably this malware, and the overall attack, originates from a loader application that utilizes a unique
approach to storing the payload. Within the TigerRAT sample, configuration data for Command and Control
(C2) communications is stored encrypted within the malware, and communications with the C2 server are
customized to appear like HTTP web traffic.

VMware’s Threat Analysis Unit performed a deep analysis of the TigerRAT malware to document its internal
operations for comparison to other malware families in the wild.

When considering how TigerRAT may be used in the wild, defenders should recognize that the TigerRAT
malware will be used by attackers as part of a broader campaign of attacks and that along the kill-chain, a wide
variety of other malware types and attack techniques are also likely to be used. This is a key point when
evaluating how such campaigns can be detected and disrupted.

Loader

Loader structure

In the case of sample , the TigerRAT payload data is stored in a section named “data”. The payload structure is
a 4-byte size, a 16-byte key, and then base64 encoded data. The size is the total length of the base64 data.

4 bytes 16 bytes NN bytes

Size of base64 encoded data (NN) Decryption key base64 encoded data

The screenshot below (Figure 1) shows the size in red, the decryption key in green, and the base64 data in
blue.

https://blogs.vmware.com/security/2021/12/tigerrat-advanced-adversaries-on-the-prowl.html
https://www.boho.or.kr/filedownload.do?attach_file_seq=3277&attach_file_id=EpF3277.pdf
https://securelist.com/andariel-evolves-to-target-south-korea-with-ransomware/102811/
https://blog.malwarebytes.com/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat/
https://www.fsec.or.kr/common/proc/fsec/bbs/163/fileDownLoad/3127.do

2/12

Figure 1: Loader

Loader function

The Loader’s purpose is to decrypt the final TigerRAT payload and execute it in memory. The data is loaded,
base64 decoded and then the 16-byte key is used to decrypt the data with a simple XOR. The decoded
payload is a PE file and after decrypting the loader will jump to the entry point.

Variance of loaders in the wild

https://blogs.vmware.com/security/files/2021/12/Trat1.png

3/12

The loader sample Malwarebytes reported on had almost identical code to that analyzed here, with the notable
difference being that the base64 data was stored as overlay data after all the regular PE data. The embedded
payload in the Malware bytes sample also differed. Refer to the Malwarebytes post for additional detail.

TigerRAT

The embedded PE is referred to as TigerRAT by the KISA report. A handful of different samples were found
with compilation dates ranging from the end of 2020 to the beginning of 2021, with the only notable differences
between different samples being the encrypted C2 information, and the DES/RC4 keys used for encryption and
decryption.

The malware is written in C++ and makes use of only a handful of classes. At startup, a main class is created
with references to the classes below.

Class name Description

ProtocolTcpPure Performs all the communication with the C2 server.

CryptorDES Used to decrypt encrypted strings and data in the program.

CryptorRC4 Used to encrypt information sent to the C2 server and decrypt received commands.

IDGeneratorAdapter Creates a unique ID for the victim machine used during C2 communication
initialization.

ModuleUpdate Handles C2 commands related to shutting down and self-deletion.

ModuleInformation Handles C2 commands related to gathering victim machine information.

ModuleShell Handles C2 commands related to executing commands.

ModuleFileManager Handles C2 commands related to file manipulation and upload and download of
files from the victim machine.

ModuleKeyLogger Handles C2 commands related to starting and stopping keylogging functionality.

ModuleSocksTunnel Handles C2 commands related to starting and stopping a socks tunnel.

ModuleScreenCapture Handles C2 commands related to remote screen capturing and keyboard event
injection.

ModulePortForwarder Handles C2 commands related to starting and stopping port forwarding.

Table 1: TigerRAT classes

All of the Module classes inherit from a common base class and the main class stores an array of Module
instances that are used during C2 communication. The code makes heavy use of threading when running
actions based on C2 commands.

C2 Communication

During the main class initialization, the C2 IP addresses are decrypted using the CryptorDES class and stored
in the main class. When that initialization is finished, the malware then attempts to initiate the network
connection to the C2 server. The malware first tries to connect to one of the decrypted C2 IP addresses on port

https://blog.malwarebytes.com/threat-intelligence/2021/04/lazarus-apt-conceals-malicious-code-within-bmp-file-to-drop-its-rat/

4/12

443 and then performs a handshake with the C2 server. The malware starts by sending HTTP 1.1 /index.php?
member=sbi2009 SSL3.3.7\x00 and then the C2 server responds with HTTP 1.1 200 OK SSL2.1\x00.

Following a successful initial handshake, the malware sends a 16-byte hash of the RC4 key being used and
expects to get back a hardcoded 7-byte value. In the case of all currently found samples, the malware expects
the 7-byte value “xPPygOn”.

The handshake process can be seen from the perspective of the C2 server by running a mockc2 TigerRAT
server (Figure 2).

mockc2> debug on
[+] Debug output on
mockc2> listener start tigerrat 443
[DEBUG] Server listening
[i] connection from x.x.x.x:55067
[DEBUG] received

00000000 48 54 54 50 20 31 2e 31 20 2f 69 6e 64 65 78 2e |HTTP 1.1 /index.|
00000010 70 68 70 3f 6d 65 6d 62 65 72 3d 73 62 69 32 30 |php?member=sbi20|
00000020 30 39 20 53 53 4c 33 2e 33 2e 37 00 |09 SSL3.3.7.|
[DEBUG] sent
00000000 48 54 54 50 20 31 2e 31 20 32 30 30 20 4f 4b 20 |HTTP 1.1 200 OK |
00000010 53 53 4c 32 2e 31 00 |SSL2.1.|
[DEBUG] received
00000000 f2 7c 29 1f a5 75 fa 20 23 f7 7b 5b fa 5b e1 4a |.|)..u. #.{[.[.J|
00000010 00 |.|
[DEBUG] sent
00000000 78 50 50 79 67 4f 6e 00 |xPPygOn.|

Figure 2: TigerRAT handshake

After the handshake process has been completed successfully, the malware will proceed to send all further
data in a standard command format and encrypted using the CryptorRC4 class. A single 32-byte RC4 key is
used to initialize two separate running RC4 ciphers. One is used to decrypt incoming traffic and the other is
used to encrypt outgoing traffic. The encrypted traffic has the following format (Figure 3):

struct packet {
uint32 size;
uint8 *data;
};

Figure 3: Encrypted traffic structure

Once decrypted the command format is as follows (Figure 4):

struct command {
uint32 module;
uint32 opcode;

https://github.com/carbonblack/mockc2

5/12

uint32 size;
uint8 *data;
};

Figure 4: Command structure

After the handshake, the malware sends to the C2 server a unique victim machine identifier previously
generated by the IDGeneratorAdapter class. The unique ID is generated by calling the GetAdaptersInfo API
and getting the hardware address for one of the network devices on the victim machine (Figure 5).

[DEBUG] received
00000000 18 00 00 00 9d c6 28 3a a8 14 21 6c 4f 27 81 0a |……(:..!lO’..|
00000010 5c 4d 4d 42 cd 2e 65 fa fd 50 b0 29 |\MMB..e..P.)|
[DEBUG] TigerRAT Command
[DEBUG] Module: 0x0
[DEBUG] Opcode: 0x1
[DEBUG] Size: 0xc
[DEBUG] Data:
00000000 f0 18 98 80 95 32 00 00 00 00 00 00 |…..2……|

Figure 5: TigerRAT victim ID

After the handshake process and upload of the victim ID, the malware initiates a heartbeat thread to send
periodic packets to the C2 server, as well as a receive thread to read and process commands sent back from
the C2 server. The subsequent actions of the malware will depend on the commands received from the C2
server; refer “Commands”. An example of a heartbeat command can be seen below (Figure 6):

[DEBUG] received
00000000 0c 00 00 00 a5 31 6d a7 8f cd d4 70 aa e1 d4 56 |…..1m….p…V|
[DEBUG] TigerRAT Command
[DEBUG] Module: 0x0
[DEBUG] Opcode: 0x10
DEBUG] Size: 0x0

Figure 6: TigerRAT heartbeat

Commands
Each Module class has a unique ID associated with it. This ID is set in the command structure sent from the C2
server down to the malware. The complete list of Module IDs can be seen below:

Module ID Module Name

0x1 ModuleUpdate

0x2 ModuleInformation

0x3 ModuleShell

0x4 ModuleFileManager

0x5 ModuleKeyLogger

6/12

0x6 ModuleSocksTunnel

0x7 ModuleScreenCapture

0xa ModulePortForwarder

Table 2: Module IDs

The following tables list the various opcodes used by the different Module classes and their function.

ModuleUpdate

Opcode Description

0x20 Calls ExitProcess

0x30 Delete itself and exit

Table 3: ModuleUpdate opcodes

ModuleInformation

Opcode Description

0x10 Retrieve victim’s computer name using GetComputerNameW

0x20 Retrieve victim’s Windows version using RtlGetVersion

0x30 Retrieve victiom’s adapter info using GetAdaptersInfo

0x40 Retrieve victim’s username using GetUserNameW

Table 4: ModuleInformation opcodes

ModuleShell

Opcode Description

0x10 Execute a command

0x20 Set current directory

0x30 Get current directory

0x40 Test TCP connection

Table 5: ModuleShell opcodes

ModuleFileManager

Opcode Description

0x10 Retrieve drive info

7/12

0x20 List files

0x30 Delete file

0x40 Start file upload to victim machine

0x42 Write data to uploaded file

0x43 Finish file upload to victim machine

0x50 Download file from victim machine

0x57 Set offset in file to download

0x5f Wait for file transfers to finish

0x60 Call CreateProcessW

0x63 Call CreateProcessAsUserW

0x70 Download a directory from victim machine

0x80 Find files

0x90 Find files

Table 6: ModuleFileManager opcodes

ModuleKeyLogger

Opcode Description

0x10 Initialize keylogger

0x11 Set keylogger flag

0x20 Stop keylogger

0x21 Set keylogger flag

0x25 Retrieve keylogger output

0x32 Retrieve keylogger file

Table 7: ModuleKeyLogger opcodes

ModuleSocksTunnel

Opcode Description

0x10 Start socks tunnel

0x20 Forward data

0x30 Stop socks tunnel

8/12

Table 8: ModuleSocksTunnel opcodes

ModuleScreenCapture

Opcode Description

0x10 Start screen capture

0x20 Stop screen capture

0x50 Modify mouse

0x52 Modify mouse

0x53 Modify mouse

0x60 Send VK_ESCAPE using keybd_event

0x61 Send VK_MENU + VK_TAB using keybd_event

0x62 Send VK_CONTROL + A using keybd_event

0x63 Send VK_RSHIFT + VK_DELETE using keybd_event

0x64 Send VK_MENU + VK_F4 using keybd_event

0x65 Send VK_RETURN using keybd_event

0x66 Send VK_SPACE using keybd_event

0x67 Send VK_TAB using keybd_event

Table 9: ModuleScreenCapture opcodes

ModulePortForwarder

Opcode Description

0x11 Retrieve port forwarding status

0x20 Start port forwarding

0x30 Stop port forwarding

Table 10: ModulePortForwarder opcodes

Detection and Blocking

The TigerRAT malware may be detected . Figure 7 below shows TigerRAT launching multiple command
interpreters in response to simulated commands sent from the mock C2 server. VMware Carbon Black Cloud
can be configured to block unknown software attempting to run command interpreters as seen in Figure 8
below.

9/12

Figure 7: Process tree of TigerRAT executing remote commands

https://blogs.vmware.com/security/files/2021/12/TigerRAT2.png

10/12

Figure 8: VMware Carbon Black Cloud blocking execution on unknown application attempting to run a
command interpreter

MITRE ATT&CK TIDs

TID Tactic Description

T1059.003 Execution Command and Scripting Interpreter: Windows Command
Shell

https://blogs.vmware.com/security/files/2021/12/TigerRAT3.png

11/12

T1134.002 Defense Evasion, Privilege
Escalation

Access Token Manipulation: Create Process with Token

T1087.001 Discovery Account Discovery: Local Account

T1083 Discovery File and Directory Discovery

T1033 Discovery System Owner/User Discovery

T1005 Collection Data from Local System

T1056.001 Collection, Credential Access Input Capture: Keylogging

T1113 Collection Screen Capture

T1573.001 Command and Control Encrypted Channel: Symmetric Cryptography

T1041 Exfiltration Exfiltration Over C2 Channel

Indicators of Compromise (IOCs)

Indicator Type Context

1f8dcfaebbcd7e71c2872e0ba2fc6db81d651cf654a21d33c78eae6662e62392 SHA256 TigerRAT
Loader

00331e5f972a98755811c02ec47301336a824a34 SHA1 TigerRAT
Loader

4df757390adf71abdd084d3e9718c153 MD5 TigerRAT
Loader

f32f6b229913d68daad937cc72a57aa45291a9d623109ed48938815aa7b6005c SHA256 TigerRAT

b312dd587e8725edf782e0c176b902fbbfc01468 SHA1 TigerRAT

505262547f8879249794fc31eea41fc6 MD5 TigerRAT

29c6044d65af0073424ccc01abcb8411cbdc52720cac957a3012773c4380bab3 SHA256 TigerRAT

3d8bdbdc08b6cefc7a44c18fafe7e4032c3b68bf SHA1 TigerRAT

a35a8c64870b9a3fe45348b4f2a93e75 MD5 TigerRAT

fed94f461145681dc9347b382497a72542424c64b6ae6fcf945f4becd2d46c32 SHA256 TigerRAT

e2f78ec89d80ed5c0299856fee84cc78c5d7f7ba SHA1 TigerRAT

d6121d74dcef566a5e2f9aba179b8cca MD5 TigerRAT

6dcfb2f52521672743f4888e992229896b98ab0e6bd979311ebdb4dcccc2b2e6 SHA256 TigerRAT

4a698b176e34d1c24c4fa13e9a773f90c6ce5413 SHA1 TigerRAT

2961c465a07bc80d206a09a6f5723a34 MD5 TigerRAT

ed11e94fd9aa3c7d4dd0b4345c106631fe52929c6e26a0daec2ed7d22e47ada0 SHA256 TigerRAT

12/12

0bced0f20ef12fbab59593dcd02e4c75d852b671 SHA1 TigerRAT

525cc10803d9858fca5dc4010925ba68 MD5 TigerRAT

52.202.193.124 TCP/443 TigerRAT C2

185.208.158.204 TCP/443 TigerRAT C2

185.208.158.208 TCP/443 TigerRAT C2

