
Michael Barclay November 13, 2025

Rehabilitating Registry Tradecraft with RegRestoreKey

 originhq.com/blog/rehabilitating-registry-tradecraft-with-regrestorekey

Next Generation

Endpoint Security

If you have ever attempted to test the limits of out-of-the-box EDR detection strategies, you

have likely found ample evasion opportunities that revolve around simply re-implementing or

tweaking some existing (and well-covered) tradecraft. While these are a win in isolation, they

often only evade naive detection strategies that are focused on specific execution mechanisms

or superficial characteristics of observable artifacts like files and processes. These minute

modifications of existing tradecraft require a similarly minor change in defensive capability to

account for them.

So what does it look like to move beyond these superficial evasion attempts and force

defenders to make big changes in how they collect telemetry and write detection rules?

This post will take registry primitives as an example to explore how we can (a) think critically

about the ways that EDR products detect specific procedures, (b) design tooling that takes

away their ability to observe those procedures, and (c) force vendors to make meaningful

changes to telemetry collection and detection strategies.

Creating Services in the Status Quo

I have chosen to focus on service creation in this post because it is straightforward, but still

requires the caller to both create a new registry key AND several specific values within that key.

EDR products have robust coverage for standard approaches to registry primitives, so this

example forces us to think creatively if we hope to create a service in a way that removes

crucial telemetry. This post is really about registry primitives, not services.

Win32 API methods like CreateServiceW (and its lower level RPC equivalent RCreateServiceW)

result in the creation of a new registry key and values that represent the configuration details of

a new service. While the latter is responsible for formally registering the service with the Service

1/21

https://www.originhq.com/blog/rehabilitating-registry-tradecraft-with-regrestorekey
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-createservicew
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/6a8ca926-9477-4dd4-b766-692fab07227e

Control Manager (SCM) so that it can be started without a reboot, this is not a strictly necessary

step. Calling any of the CreateService methods (whether at the RPC layer or above it) will also

result in the generation of two well-known events in the Windows Security Event Log:

4697(S): A service was installed in the system.

7045: A new service was installed in the system.

On reboot, the SCM will parse all of the subkeys under

HKLM\SYSTEM\CurrentControlSet\Services\ and register each service with the SCM, so we

really only need to create the registry representation of a service to be able to use it for

something like persistence. With that in mind, I am going to focus my efforts on registry

interaction, rather than finding less obvious ways to make Win32 or RPC calls that will inevitably

generate well-known signal in the Event Log regardless of how I call them.

In the vast majority of cases, application authors will create new keys and values in the registry

through Win32 API calls like RegCreateKeyEx and RegSetValueEx (or their Native API and

system call equivalents). If you were to consider this the only means to create new keys and

values, the landscape for evasion is relatively limited. But some additional consideration of how

EDR products observe these operations yields some additional ground for research.

Observing Registry Interaction in the Status Quo

If we move past the approach where we call CreateService/RCreateService and assume that

we won’t have 4697 or 7045 events to observe, we have to identify a means to observe the

creation of arbitrary registry keys and values to observe service creation. I will discuss the two

most common ways to collect this telemetry—Event Tracing for Windows (ETW) and registry

callback routines in the kernel. There are plenty of readily available resources online that

discuss the structure of both of these telemetry generation mechanisms, so I will only describe

the ways that EDR agents frequently use them.

Microsoft-Windows-Kernel-Registry ETW

The primary ETW provider for registry events is a kernel provider named Microsoft-Windows-

Kernel-Registry ({70eb4f03-c1de-4f73-a051-33d13d5413bd}), which generates the following

common events (among others):

CreateKey EnumerateValueKey

SetValueKey QueryMultipleValueKey

OpenKey SetInformationKey

DeleteKey FlushKey

QueryKey CloseKey

2/21

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/auditing/event-4697
https://www.manageengine.com/products/active-directory-audit/kb/system-events/event-id-7045.html
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regcreatekeyexw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsetvalueexa
https://www.preludesecurity.com/blog/event-tracing-for-windows-etw-your-friendly-neighborhood-ipc-mechanism

CreateKey EnumerateValueKey

DeleteValueKey QuerySecurityKey

QueryValueKey SetSecurityKey

EnumerateKey

Microsoft-Windows-Kernel-Registry also provides a collection of performance tracking

events with dizzyingly long template names and a limited number of fields documented in the

manifest. I will discuss some of these events later in the post, but the above list represents the

majority of ETW events that your average EDR sensor would ever think to collect.

When a sensor creates an Event Tracing Session to ingest ETW events, it must specify what

subset of events it wishes to receive and, under certain circumstances, the verbosity of those

events. Sensor developers must weigh the performance hit of collecting a given event with the

value that it provides to the entire product’s observation and detection capabilities.

Luckily, the act of modifying which events a trace session ingests is well-documented for

common providers. However, you are stuck with whatever Microsoft has decided to include in

those events. Any additional context needed to make sense of that event data must be collected

elsewhere and correlated in some way.

Registry Callback Routines

If we don’t want to (or can’t) collect registry telemetry from ETW in user mode, we will have to

install a kernel driver and register a registry callback routine. These routines specify a type of

interaction with the registry (creating a key, writing a value, etc.) and invoke a callback function

when that type of interaction is handled by the relevant kernel driver.

When you want to register a kernel callback routine for a registry operation, you use the

CmRegisterCallback NT API function. When you call this function, you must supply a pointer to

the RegistryCallback routine you wish to register, which is of the type EX_CALLBACK_FUNCTION.

3/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function

If we look at the parameters for these callback functions, we see that the second parameter

(Argument1) is a value that specifies the type of registry operation we wish to observe and

intercept in the kernel. This value must be sourced from the REG_NOTIFY_CLASS enumeration,

which is defined by Microsoft.

Taking a look at the REG_NOTIFY_CLASS constants defined by Microsoft, we can see that they

correspond to many of the types of registry actions that we are familiar with – creating a key

(RegNtPreCreateKey/RegNtPostCreateKey), setting the value of a key

(RegNtSetValueKey/RegNtPreSetValueKey), and others.

Each REG_NOTIFY_CLASS constant is associated with a specific structure that will be returned to

the driver that registered a callback using that constant.

4/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_reg_notify_class

REG_CREATE_KEY_INFORMATION structures are returned to drivers when their registered callbacks

use the RegNtPreCreateKey or RegNtPreCreateKeyEx constants

We have reached the first set of decision points that sensor developers must contend with when

collecting registry telemetry via kernel callbacks—Which operations do I care about enough to

pay for in resources, bandwidth, and storage?

Beyond pre-selecting which registry operations they want to observe, EDR sensor developers

must implement the logic that decides what to do with an intercepted operation. Imagine

attempting to identify a straightforward persistence technique like run key persistence via

registry callback routines. As part of your RegistryCallback routine, you have to:

Identify which type of operation an event represents by inspecting the REG_NOTIFY_CLASS

constant value.

5/21

If it is a RegNtSetValueKey, RegPreNtSetValueKey, or RegPostNtSetValueKey notification,

identify which key’s value is being written by inspecting the

REG_SET_VALUE_KEY_INFORMATION or REG_POST_OPERATION_INFORMATION structure

provided to the RegistryCallback routine.

If that key is one of several “run keys”, take some action.

If we wanted to observe registry key creation and registry value writes via kernel callbacks, we

might conceptualize it using something like the below diagram. On the left are example Win32

API calls that will send events to any driver that has registered a registry callback routine using

the REG_NOTIFY_CLASS constant from the middle column. The receiving driver would then be

presented with the details defined by the struct in the third column.

6/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_set_value_key_information
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_post_operation_information

Specific ways of interacting with the registry (represented by specific Win32 API calls) can be

observed by registering a registry callback routine using the relevant REG_NOTIFY_CLASS

constant

There may be additional callback logic implemented by the intercepting driver at this point, but

the danger of adding overheard to an already hot code path requires as much brevity as

possible. Remember, you are collecting registry telemetry as overhead to other collection

priorities as well.

7/21

If we have to make additional function calls to query the registry object in question and inspect

its characteristics, it’s not all that difficult to introduce significant demands on the system if this

logic gets too complex. On the other side of the distributed systems that we call EDR, logging

and shipping everything without doing as much as possible on the sensor/agent side can

balloon server and storage costs very quickly.

Reacting to the Status Quo

There are a lot of decisions to make when answering seemingly simple questions like “how do I

know when a registry key has been created?”.

There are multiple “sources” to identify and instrument collection from, each with their own set

of configurable parameters far beyond what I have presented above. Your answer also has to fit

into a much larger serialization, processing, shipping, and cloud pipeline with its own set of

requirements and prior content expectations. Each decision you make creates a specific path to

evasion based on how that change interacts with the system as a whole. Like Virilio said, “when

you invent the ship, you also invent the shipwreck”.

While there isn’t necessarily a wrong answer to this question, there are more or less risky

decisions from a visibility perspective. I could register a registry callback with the

RegNtPreCreateKey or RegNtPostCreateKey REG_NOTIFY_CLASS constant and call it a day, but

a discerning attacker would be right to question whether that is the only operation that could

result in the creation of a new registry key.

Investigating Alternative Registry Operations

Let’s assume that our target EDR sensor collects every single event generated by a registry

callback registered with the RegNtPreCreateKeyEx or RegNtPreSetValueKey REG_NOTIFY

constant. This should generate an event any time that a thread calls the ZwCreateKey or

ZwSetValueKey native functions. Some form of this collection strategy seems to be the norm for

current EDR products.

With this in mind, we can start looking at Microsoft docs for any additional functions that seem

like they might change the contents of the registry or any REG_NOTIFY constants that suggest

some other kind of poorly documented operation is possible. Our goal is to shift the collection

requirements of defenders and force them to re-evaluate the tradeoffs they’ve already made

peace with.

There are several functions in the winreg header file that might allow us to create and/or replace

keys and values in the registry judging by name alone: RegRestoreKey, RegCopyTree,

RegLoadKey, RegReplaceKey. This post is primarily about using RegRestoreKey, but it’s

important to think through the distinctions between these functions.

8/21

https://learn.microsoft.com/en-us/windows/win32/api/winreg/

Win32 API Description

RegRestoreKey Takes a hive file on disk and overwrites the child sub-keys and values of a

targeted key with the data in the supplied hive file.

RegCopyTree Replaces one key (and its sub-keys/values) with another key and its sub-

keys/values.

RegLoadKey Similar to RegRestoreKey, but the targeted key must be a root key.

RegReplaceKey Similar to RegRestoreKey, but instead of copying over the existing sub-key

and its children, it replaces the file backing that sub-key on disk. This

change does not take effect until the next reboot.

RegRestoreKey is an obvious choice for a first attempt because it allows us to target an arbitrary

key and replace its child elements with content of our choosing (defined in a hive file). If we

want to call this function, we will need to prepare a hive file that contains the key and value data

that we want to use to overwrite some target key and its children. We can specify the sub-key

we want to overwrite by supplying a handle RegRestoreKey via the hKey parameter.

LSTATUS RegRestoreKeyW(
[in] HKEY hKey,
[in] LPCWSTR lpFile,
[in] DWORD dwFlags

);

9/21

Creating Services with RegRestoreKey

While restoring a hive file from disk may be straightforward in isolation, there are some logistical

hurdles involved with choosing a target sub-key and ensuring that your hive will not interrupt the

normal behavior of the system when it is “restored”.

Picking a Target Key

Since we want to create a new service, we will need to create a new sub-key under

HKLM\CurrentControlSet\Services and several registry values within that sub-key to define its

configuration details. The resulting services sub-key should look something like this when we

are done:

10/21

11/21

12/21

Since RegRestoreKey takes a handle to the sub-key we want to overwrite, we actually have to

pass a handle to the *parent* key of the sub-key we want to create. The sub-key has to already

exist to get a handle to it. In our example, this means we must overwrite all of the service sub-

keys starting from their common parent sub-key, HKLM\CurrentControlSet\Services.

In theory, you could create a dummy key just for the new service and target that for restore, but

you would still generate a kernel callback event if there is a RegNtPreCreateKeyEx callback

registered. For our purposes, we want to avoid creating a new sub-key in this registry path

through RegCreateKey calls as we know that most EDR products are able to observe these

operations.

Constructing a Hive File to Restore

The trick with creating our hive file is that its content will overwrite everything beneath that key

— we are stuck restoring at the Services sub-key. So if we do not include all of its current child

objects (keys and values) in our hive file, there is a potential to interrupt the normal behavior of

the system. If our hive file only contains the key data for our new services key it will overwrite

the main Services sub-key in place, deleting all previously installed services and leaving our

new service’s configuration values as its only child objects.

Instead, we have to preserve the current state of all of the keys and values under

HKLM\CurrentControlSet\Services before adding a new key and values at the appropriate

place in the hierarchy. This now modified snapshot of the services installed in the registry must

be saved as a hive file so a handle to it can be passed as a parameter to RegRestoreKey.

You can create a hive file in the regedit GUI, using the native reg utility, or by calling one of the

RegSaveKeyEx* Win32 API methods. However, we will need to figure out how to parse and

modify the resulting hive file in some way.

We have several options here:

13/21

1. Do everything manually (yuck)

1. Export a hive file on the target system from the Services key (RegSaveKey)

2. Transfer to attacker-controlled system

3. Load hive file on attacker-controlled system

4. Add new service key and export

5. Transfer modified hive file to target system

6. Restore data from modified hive file on target system (RegRestoreKey)

2. Export locally and modify exported file (no transfer)

1. Export a hive file from the Services key (RegSaveKey)

2. Parse resulting hive file and add new key and values in place in the hive file

3. Restore data from modified hive file (RegRestoreKey)

3. Parse the Services key, create hive file via Offline Registry Library

1. Create an in-memory representation of a hive file using ORCreateHive

2. Open a handle to HKLM\CurrentControlSet\Services, enumerate its sub-keys, and

all of their respective values

3. Copy data from each sub-key and value, creating their equivalent in the in-memory

hive file via ORCreateKey and ORSetValue

4. Create an additional key for our new service via ORCreateKey

5. Create the values for our new service within that key via ORSetValue

6. Write the offline registry hive to disk via ORSaveHive

The manual option is logistically difficult and annoying to carry out, so we will opt for some way

of crafting the hive file programmatically on the target system. One of my teammates sent me a

publicly available means of carrying out the second approach, which can be found here.

This POC follows the set of operations I laid out above for option #2 and saves a hive file for the

HKCU\Software\Microsoft\Windows\CurrentVersion\Run sub-key before adding a new value

that references C:\Users\Public\<RANDOM_FILENAME>.exe. It then uses this modified hive file

to call RegRestoreKey and overwrite the targeted key (HKCU run key) with the old data AND

your new value.

We could extend this POC to implement more detailed hive file parsing and modification logic

that accounts for services, but there are some small downsides to this approach. First, a call to

RegSaveKey could potentially generate kernel callback notifications for a discerning EDR driver

(assuming they have registered a callback with either of the RegNtPostSaveKey or

RegNtPreSaveKey REG_NOTIFY constants). This wasn’t a problem for the original author

because they were specifically targeting Sysmon, which does not register this registry callback

routine. However, many commercial EDR sensors will provide serialized events related to

RegSaveKey calls.

Option #3 uses the Offline Registry Library to copy the already existing registry objects residing

within the target key (the Services key) to an in-memory representation of a hive file. After

building this hive file key by key and value by value, we can then insert our own sub-key and

14/21

https://github.com/tccontre/Reg-Restore-Persistence-Mole/tree/main.
https://github.com/tccontre/Reg-Restore-Persistence-Mole/blob/8db0c37792073f3e62b8875b268806c8a6ec4a37/RegReeper/RegReeper.cpp#L73
https://learn.microsoft.com/en-us/windows/win32/devnotes/offline-registry-library-portal

values before exporting it to a file. Because we are not calling RegSaveKey, we don’t have to

worry about that set of callback notifications. If implemented correctly, we should only have to

worry about observation when we call RegRestoreKey.

Using the Offline Registry Library for Stealthier Hive File Creation

While the additional step of rebuilding our own representation of the Services sub-key and its

children in memory may sound daunting, it’s essentially an iterative copy/paste exercise using

Win32 APIs from the [Offline Registry Library and the standard registry library.

1. Enumerate all currently installed services on the system, saving their names and

configuration details as you go:

1. Open a handle to the HKLM\SYSTEM\CurrentControlSet\Services key

(RegOpenKeyExW).

2. Enumerate all sub-keys of the \Services key (RegEnumKeyEx).

3. Open a handle to each sub-key (RegOpenKeyExW).

4. Enumerate each sub-key’s values (RegEnumValueW).

5. Query each value to get its name and current value (RegQueryValueEx).

2. Prepare an in-memory representation of the

HKLM\SYSTEM\CurrentControlSet\Services key and its descendant keys and values:

1. Create an empty offline registry hive (ORCreateHive).

2. Write each saved service sub-key to the offline registry hive (ORCreateKey).

3. Create each service key’s relevant values in its offline equivalent (ORSetValue).

4. Make desired changes to the offline hive. In our example, this involves adding a new

key and set of values that represent our new service (ORCreateKey and

ORSetValue).

3. Write the offline registry hive to disk (ORSaveHive).

4. Reuse the original handle to the HKLM\SYSTEM\CurrentControlSet\Services key,

along with the path to the newly written hive file created in memory, to overwrite the

current content of that key and its descendants (RegRestoreKeyW).

1. In my testing, it was necessary to supply the REG_FORCE_RESTORE flag as part of the

dwFlags parameter to RegRestoreKeyW.

2. In order to make this call, you must be able to enable the SE_RESTORE_NAME and

SE_BACKUP_NAME privileges.

3. The lpFile parameter must be a valid path to a file on disk, but there is lots of room

for creativity here.

There are obviously a few peculiarities surrounding where and how to target your registry

restoration operations so that you don’t overwrite registry data unnecessarily. Aside from that,

we are just copying, modifying, and overwriting the content of the registry starting from a

specific key. The way this approach interacts with common detection strategies for registry-

based tradecraft is much more interesting than the approach I outlined above.

15/21

https://learn.microsoft.com/en-us/windows/win32/devnotes/offline-registry-library-portal
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-functions

Extremely important: Please read this part

Please note that overwriting every single service key and its values based on iterative

parsing and recreation is almost CERTAIN to lead to stability issues. This is likely due to

the criticality of services to the driver loading and startup process during boot. DO NOT

run the linked proof of concept on a system that you are not prepared to re-image or

restore from a stable snapshot. I am releasing this tool in a "broken", but still

demonstrative, state on purpose. If you want to use this in a non-POC context, you will

need to make the modifications yourself. This WILL happen to your system if you

overwrite the entirety of the HKLM\SYSTEM\CurrentControlSet\Services\ registry key.

16/21

This is almost certainly the result of supplying the REG_FORCE_RESTORE flag to

RegRestoreKey. It is likely possible to make this work, but I will leave that work up to you.

In general, I would suggest simply choosing a different target registry key to overwrite.

Quantifying Evasion

Let’s step back and think about what we have accomplished:

When in possession of a token with the SE_RESTORE_NAME and SE_BACKUP_NAME privileges

enabled, we can create or modify an arbitrary registry key without making calls to

RegCreateKey, RegSetValue, or any of their lower level equivalents that generate

commonly collected registry telemetry.

Registry Callback Routines

From the earlier discussion of registry callback routines, we know that EDR agents must make

specific choices about which events are valuable enough to collect at scale. We also know that

the “typical” collection strategy outlined for the sake of this example would not observe calls to

RegRestoreKey because it generates an entirely different type of callback notification that isn’t

covered by callbacks registered with any of the RegNtPre/PostCreateKey* or

RegNtPre/PostSetValueKey constants. Drivers would need to also register a callback with

either RegNtPreRestoreKey or RegNtPostRestoreKey to observe calls to RegRestoreKey.

Link

Even if a driver had registered callbacks related to saving registry hives, which are commonly

used to combat credential theft tradecraft, my proof of concept never saves a copy of an

existing key as a hive file. Instead, the offline registry library allows us to skip calls like

[RegSaveKeyEx] by recreating the keys we wish to overwrite in an in-memory representation.

Callbacks registered with the above two REG_NOTIFY_CLASS constants are provided with a

REG_RESTORE_KEY_INFORMATION struct that provides information about the restore operation

itself. Of particular note is the Flags field that can communicate when the REG_FORCE_RESTORE

flag was supplied, which was required for me to get my proof of concept to work reliably.

17/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_reg_notify_class
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsavekeyexw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsavekeyexw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_restore_key_information

ETW

There may well be additional ETW providers that generate telemetry related to registry restore

operations, but I will focus on Microsoft-Windows-Kernel-Registry ({70eb4f03-c1de-4f73-

a051-33d13d5413bd}) as it is the most common. The list of events I provided earlier in this post

intentionally left out a few interesting opportunities for detection. In addition to the succinctly

named events like CreateKey or DeleteKey, there is a list of keywords with extremely long

names that suggest they are intended primarily for performance tracking (ex.

Thisgroupofeventstrackstheperformanceof...).

There are two events that appear to be directly related to registry restoration operations based

on their names. The below shows the definition of these events in XML manifest for the

Microsoft-Windows-Kernel-Registry ETW provider:

`Thisgroupofeventstrackstheperformanceofrestoringhives.Start` and

`Thisgroupofeventstrackstheperformanceofrestoringhives.Stop` declared

18/21

Fields for the `Thisgroupofeventstrackstheperformanceofloadinghives.Start` event, which uses

the same template as `…performanceofmountinghivesfromexistingfiles…` events

Fields for the `Thisgroupofeventstrackstheperformanceofloadinghives.Stop` event

While testing, I was able to confirm the lack of CreateKey or SetValue events. However, I was

able to see several ETW events related to the hive file itself.

Microsoft-Windows-Kernel-Registry/RegPerfTaskHiveRestore/Start
ThreadID="16,816"
ProcessorNumber="1"
SourceFile="\Device\HarddiskVolume3\Users\mbarc\AppData\Local\Temp\restore_hive_runkey.hi
Flags="8" // Flags == 0x00000008L == REG_FORCE_RESTORE

Microsoft-Windows-Kernel-Registry/RegPerfTaskHiveRestore/Stop
ThreadID="16,816"
ProcessorNumber="1"
DURATION_MSEC="6.154"
StatusCode="0"

**Microsoft-Windows-Kernel-
Registry/RegPerfTaskHiveMount/RegPerfOpHiveMountBaseFileMounted**
ThreadID="16,816"
ProcessorNumber="1"
HiveFilePath="\Device\HarddiskVolume3\Users\mbarc\AppData\Local\Temp\restore_hive_runkey.
FileSize="4,096"

How useful is this?

The extent to which any tool or approach is evasive is always going to rely entirely on the nature

of the detection strategies it seeks to evade. The approach I’ve outlined above and

demonstrated in the linked proof of concept code is only evasive insofar as EDR products do

19/21

not collect telemetry related to restore operations. At time of writing, I have not encountered an

EDR product that presents any restore-related events to an end user, nor have I seen an alert

related to this behavior in my limited testing.

However, the raw telemetry needed to at least observe attempts to restore data from a registry

hive does exist in both user mode and kernel mode. Whether or not those events are sufficient

to develop a working detection strategy is an additional question, but visibility is entirely possible

already. Its absence is a design decision, not a technical limitation. While I focused on a specific

use case for registry interaction (service creation) in this post, the approach reawakens any

tradecraft that involves creating, modifying, or deleting a registry key or value. We often

consider registry-centric persistence techniques like run keys and services to be unworthy of

specific attention because they are “solved problems”, but I’m hoping that this post is a reminder

that what is old is always new again.

Reacting to Innovation

Realistically, the usefulness of this approach for evasion is a matter of how long it takes for EDR

vendors to address it and the extent to which their solution is thorough.

An ETW-centric strategy would likely require additional work from Microsoft, since the

performance tracking events mentioned above represent the absolute bare minimum to identify

a restoration operation. While I was able to see performance events from Microsoft-Windows-

Kernel-Registry when I ran my PoC code, these events exclusively describe the hive file that is

being used for the restore operation. They do not include information about which key is being

targeted.

On the other hand, the registry callback routine telemetry is a bit more verbose and likely lends

itself more to a thorough detection strategy, as defined by the REG_RESTORE_KEY_INFORMATION

struct. As long as you can follow the pointer to the registry key object that was targeted and

query additional information about it, you can write a detection strategy that considers the

purpose of the restore operation.

Regardless of what Windows provides, end users of EDR products have very few options to

address this gap if their chosen agent doesn’t already observe and report information about

registry restore operations. While there are tons of publicly available tools that help you

configure and start trace sessions to collect events from ETW providers on your own,

attempting to instrument this at an environment-wide level is the equivalent of building your own

EDR. This isn’t so much a data volume problem—it’s a data selection problem.

Vids & Dids

PoC code is available here.

20/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_restore_key_information
https://github.com/preludeorg/Regstoration

A very important disclaimer about my example code!

The linked PoC is INTENTIONALLY BROKEN! While it can successfully overwrite all of the

services keys and their values without generating traditional key creation and value write

telemetry, this is a wildly unstable and unpredictable action to take and CONSISTENTLY leads

to a blue screen. If you would like to test it for yourself I would suggest either:

restoring to a dummy key you create for testing so that you don’t overwrite the real

services key (no arguments)

running the tool unmodified on a system that you KNOW you will be able to re-image or

restore from snapshot (supply the path to the real services key)

The tool will attempt to restore the services data in the hive file to HKLM\\Software\\Test if no

arguments are supplied. If you would like to attempt to overwrite the real services key, you can

supply that path as a string.

Restoring Run Keys

While I have chosen to release a PoC for this approach specific to a use case that is NOT

useful in an operational context due to instability, the below video shows the addition of a

registry run key value via a registry restore operation. This use case has not led to any

observable instability on the system because system critical drivers do not rely on the integrity

of services and their configuration values. It is likely possible to do the same with the services

use case, but you will have to figure out which values are causing instability problems and how

to account for them.

21/21

