Rehabilitating Registry Tradecraft with RegRestoreKey

originhqg.com/blog/rehabilitating-registry-tradecraft-with-regrestorekey
Michael Barclay November 13, 2025

[in, optional] Argumentl

A REG_NOTIFY_CLASS-typed value that identifies the type of registry operation that
is being performed and whether the RegistryCallback routine is being called before

or after the registry operation is performed.

Next Generation
Endpoint Security

If you have ever attempted to test the limits of out-of-the-box EDR detection strategies, you
have likely found ample evasion opportunities that revolve around simply re-implementing or
tweaking some existing (and well-covered) tradecraft. While these are a win in isolation, they
often only evade naive detection strategies that are focused on specific execution mechanisms
or superficial characteristics of observable artifacts like files and processes. These minute
modifications of existing tradecraft require a similarly minor change in defensive capability to
account for them.

So what does it look like to move beyond these superficial evasion attempts and force
defenders to make big changes in how they collect telemetry and write detection rules?

This post will take registry primitives as an example to explore how we can (a) think critically
about the ways that EDR products detect specific procedures, (b) design tooling that takes
away their ability to observe those procedures, and (c) force vendors to make meaningful
changes to telemetry collection and detection strategies.

Creating Services in the Status Quo

| have chosen to focus on service creation in this post because it is straightforward, but still
requires the caller to both create a new registry key AND several specific values within that key.
EDR products have robust coverage for standard approaches to registry primitives, so this
example forces us to think creatively if we hope to create a service in a way that removes
crucial telemetry. This post is really about registry primitives, not services.

Win32 APl methods like CreateServicew (and its lower level RPC equivalent RCreateServiceWw)
result in the creation of a new registry key and values that represent the configuration details of
a new service. While the latter is responsible for formally registering the service with the Service

1/21

https://www.originhq.com/blog/rehabilitating-registry-tradecraft-with-regrestorekey
https://learn.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-createservicew
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-scmr/6a8ca926-9477-4dd4-b766-692fab07227e

Control Manager (SCM) so that it can be started without a reboot, this is not a strictly necessary
step. Calling any of the CreateService methods (whether at the RPC layer or above it) will also
result in the generation of two well-known events in the Windows Security Event Log:

e 4697(S): A service was installed in the system.
e 7045: A new service was installed in the system.

On reboot, the SCM will parse all of the subkeys under
HKLM\SYSTEM\CurrentControlSet\Services\ and register each service with the SCM, so we
really only need to create the registry representation of a service to be able to use it for
something like persistence. With that in mind, | am going to focus my efforts on registry
interaction, rather than finding less obvious ways to make Win32 or RPC calls that will inevitably
generate well-known signal in the Event Log regardless of how | call them.

In the vast majority of cases, application authors will create new keys and values in the registry
through Win32 API calls like RegCreateKeyEx and RegSetValueEx (or their Native APl and
system call equivalents). If you were to consider this the only means to create new keys and
values, the landscape for evasion is relatively limited. But some additional consideration of how
EDR products observe these operations yields some additional ground for research.

Observing Registry Interaction in the Status Quo

If we move past the approach where we call CreateService/RCreateService and assume that
we won't have 4697 or 7045 events to observe, we have to identify a means to observe the
creation of arbitrary registry keys and values to observe service creation. | will discuss the two
most common ways to collect this telemetry—Event Tracing for Windows (ETW) and registry
callback routines in the kernel. There are plenty of readily available resources online that
discuss the structure of both of these telemetry generation mechanisms, so | will only describe
the ways that EDR agents frequently use them.

Microsoft-Windows-Kernel-Registry ETW

The primary ETW provider for registry events is a kernel provider named Microsoft-Windows-
Kernel-Registry ({70eb4f03-clde-4f73-a051-33d13d5413bd}), which generates the following
common events (among others):

CreateKey EnumerateValueKey

SetValueKey QueryMultipleValueKey

OpenKey SetInformationKey

DeleteKey FlushKey

QueryKey CloseKey

2/21

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-10/security/threat-protection/auditing/event-4697
https://www.manageengine.com/products/active-directory-audit/kb/system-events/event-id-7045.html
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regcreatekeyexw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsetvalueexa
https://www.preludesecurity.com/blog/event-tracing-for-windows-etw-your-friendly-neighborhood-ipc-mechanism

CreateKey EnumerateValueKey

DeleteValueKey QuerySecurityKey

QueryValueKey SetSecurityKey

EnumerateKey

Microsoft-wWindows-Kernel-Registry also provides a collection of performance tracking
events with dizzyingly long template names and a limited number of fields documented in the
manifest. | will discuss some of these events later in the post, but the above list represents the
majority of ETW events that your average EDR sensor would ever think to collect.

When a sensor creates an Event Tracing Session to ingest ETW events, it must specify what
subset of events it wishes to receive and, under certain circumstances, the verbosity of those
events. Sensor developers must weigh the performance hit of collecting a given event with the
value that it provides to the entire product’s observation and detection capabilities.

Luckily, the act of modifying which events a trace session ingests is well-documented for
common providers. However, you are stuck with whatever Microsoft has decided to include in
those events. Any additional context needed to make sense of that event data must be collected
elsewhere and correlated in some way.

Registry Callback Routines

If we don’t want to (or can’t) collect registry telemetry from ETW in user mode, we will have to
install a kernel driver and register a registry callback routine. These routines specify a type of
interaction with the registry (creating a key, writing a value, etc.) and invoke a callback function
when that type of interaction is handled by the relevant kernel driver.

When you want to register a kernel callback routine for a registry operation, you use the
cmRegistercallback NT API function. When you call this function, you must supply a pointer to
the RegistryCallback routine you wish to register, which is of the type EX_CALLBACK FUNCTION.

NTSTATUS CmRegisterCallbackEx(

[in] PEX_CALLBACK FUNCTION Function,
[in] PCUNICODE_STRING Altitude,
[in] PVOID Driver,
[in, optional] PVOID Context,
[out] PLARGE_INTEGER Cookie,
PVOID Reserved

)z

3/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-ex_callback_function

If we look at the parameters for these callback functions, we see that the second parameter
(Argument1) is a value that specifies the type of registry operation we wish to observe and
intercept in the kernel. This value must be sourced from the REG_NOTIFY CLASS enumeration,
which is defined by Microsoft.

NTSTATUS ExCallbackFunction(
[in] PVOID CallbackContext,
[in, optional] PVOID Argumentl,
[in, optional] PVOID Argument2

)
[...}

[in, optional] Argumentl

A REG_NOTIFY_CLASS-typed value that identifies the type of registry operation that
is being performed and whether the RegistryCallback routine is being called before

or after the registry operation is performed.

Taking a look at the REG_NOTIFY CLASS constants defined by Microsoft, we can see that they
correspond to many of the types of registry actions that we are familiar with — creating a key
(RegNtPreCreateKey/RegNtPostCreateKey), setting the value of a key
(RegNtSetValueKey/RegNtPreSetValueKey), and others.

REG_MNOTIFY_CLASS value Structure type

RegMtDeletekey REG_DELETE_KEY_INFORMATION
RegMtPreDeletekey REG_DELETE_KEY_INFORMATION
RegNtPostDeleteKey REG_POST_OPERATION_INFORMATIOM
RegNtSetValueKey REG_SET_VALUE_KEY_INFORMATION

Each REG_NOTIFY_CLASS constant is associated with a specific structure that will be returned to
the driver that registered a callback using that constant.

4/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_reg_notify_class

The REG_CREATE_KEY INFORMATION structure contains information that a driver's

RegistryCallback routine can use when a registry key that is being created.

Syntax

typedef struct REG CREATE KEY INFORMATION {
PUNICODE STRING CompleteMName;

PVOID RootObject;

PVOID ObjectType;

ULONG CreateOptions;
PUNICODE_STRING Class;

PVOID SecurityDescriptor;
PVOID SecurityQualitydfsService;
ACCESS MASK DesiredAccess;
ACCESS MASK GrantedAccess;
PULONG Disposition;

PVOID *ResultObject;
PVOID CallContext;

PVOID RootObjectContext;
PVOID Transaction;

PVOID Reserved;

} REG_CREATE_KEY_ INFORMATION, REG_OPEN_KEY INFORMATION, *PREG_CREATE_KEY It

REG_CREATE_KEY_INFORMATION structures are returned to drivers when their registered callbacks
use the RegNtPreCreateKey or RegNtPreCreateKeyEx constants

We have reached the first set of decision points that sensor developers must contend with when
collecting registry telemetry via kernel callbacks—Which operations do | care about enough to
pay for in resources, bandwidth, and storage?

Beyond pre-selecting which registry operations they want to observe, EDR sensor developers
must implement the logic that decides what to do with an intercepted operation. Imagine
attempting to identify a straightforward persistence technique like run key persistence via
registry callback routines. As part of your RegistryCallback routine, you have to:

« |dentify which type of operation an event represents by inspecting the REG_NOTIFY CLASS
constant value.

5/21

o Ifitis a RegNtSetValueKey, RegPreNtSetValueKey, or RegPostNtSetValueKey notification,

identify which key’s value is being written by inspecting the
REG_SET VALUE KEY INFORMATION Or REG POST OPERATION INFORMATION structure

provided to the RegistrycCallback routine.
« If that key is one of several “run keys”, take some action.

If we wanted to observe registry key creation and registry value writes via kernel callbacks, we
might conceptualize it using something like the below diagram. On the left are example Win32
API calls that will send events to any driver that has registered a registry callback routine using
the REG_NOTIFY_CLASS constant from the middle column. The receiving driver would then be
presented with the details defined by the struct in the third column.

6/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_set_value_key_information
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_post_operation_information

Win32 API

RegCreatekey

RegCreatekey

RegSetValue

REG_NOTIFY_CLASS

—

ReghtPreCreatekey

RegMtFPostCreatekiey

RegitPreCreateKeyEx

RegMtPostCreatekKeyEx

"

RegMtSetValuekey

RegMtPreSetValuekKey

RegMitPostSetValuekey

"

Resulting Structure

-
REG_PRE_CREATE_KEY_INFORMATION

-

-
EG_POST_CREATE_KEY_INFORMATION

A

-,

~
REG_CREATE_KEY_INFORMATION

M "

i Ty

REG_POST_OPERATION_INFORMATION

e, A

REG_SET_VALUE_KEY_INFORMATION

REG_POST_OPERATION_INFORMATION

Specific ways of interacting with the registry (represented by specific Win32 API calls) can be
observed by registering a registry callback routine using the relevant REG_NOTIFY_ CLASS

constant

There may be additional callback logic implemented by the intercepting driver at this point, but
the danger of adding overheard to an already hot code path requires as much brevity as
possible. Remember, you are collecting registry telemetry as overhead to other collection

priorities as well.

7/21

If we have to make additional function calls to query the registry object in question and inspect
its characteristics, it's not all that difficult to introduce significant demands on the system if this
logic gets too complex. On the other side of the distributed systems that we call EDR, logging
and shipping everything without doing as much as possible on the sensor/agent side can
balloon server and storage costs very quickly.

Reacting to the Status Quo

There are a lot of decisions to make when answering seemingly simple questions like “how do |
know when a registry key has been created?”.

There are multiple “sources” to identify and instrument collection from, each with their own set
of configurable parameters far beyond what | have presented above. Your answer also has to fit
into a much larger serialization, processing, shipping, and cloud pipeline with its own set of
requirements and prior content expectations. Each decision you make creates a specific path to
evasion based on how that change interacts with the system as a whole. Like Virilio said, “when
you invent the ship, you also invent the shipwreck”.

While there isn’t necessarily a wrong answer to this question, there are more or less risky
decisions from a visibility perspective. | could register a registry callback with the
RegNtPreCreateKey or RegNtPostCreateKey REG_NOTIFY_CLASS constant and call it a day, but
a discerning attacker would be right to question whether that is the only operation that could
result in the creation of a new registry key.

Investigating Alternative Registry Operations

Let’s assume that our target EDR sensor collects every single event generated by a registry
callback registered with the RegNtPreCreateKeyEx or RegNtPreSetValueKey REG_NOTIFY
constant. This should generate an event any time that a thread calls the zwCreateKkey or
zwSetValueKey native functions. Some form of this collection strategy seems to be the norm for
current EDR products.

With this in mind, we can start looking at Microsoft docs for any additional functions that seem
like they might change the contents of the registry or any REG_NOTIFY constants that suggest
some other kind of poorly documented operation is possible. Our goal is to shift the collection
requirements of defenders and force them to re-evaluate the tradeoffs they’ve already made
peace with.

There are several functions in the winreg_header file that might allow us to create and/or replace
keys and values in the registry judging by name alone: RegrRestoreKey, RegCopyTree,
RegLoadKey, RegReplaceKey. This post is primarily about using RegRestoreKey, but it's
important to think through the distinctions between these functions.

8/21

https://learn.microsoft.com/en-us/windows/win32/api/winreg/

Win32 API Description

RegRestoreKey Takes a hive file on disk and overwrites the child sub-keys and values of a
targeted key with the data in the supplied hive file.

RegCopyTree Replaces one key (and its sub-keys/values) with another key and its sub-
keys/values.

ReglLoadKey Similar to RegRestoreKey, but the targeted key must be a root key.

RegReplaceKey Similar to RegRestoreKey, but instead of copying over the existing sub-key
and its children, it replaces the file backing that sub-key on disk. This
change does not take effect until the next reboot.

RegRestoreKey is an obvious choice for a first attempt because it allows us to target an arbitrary
key and replace its child elements with content of our choosing (defined in a hive file). If we
want to call this function, we will need to prepare a hive file that contains the key and value data
that we want to use to overwrite some target key and its children. We can specify the sub-key
we want to overwrite by supplying a handle RegRestoreKey via the hkey parameter.

LSTATUS RegRestoreKeyWw(
[in] HKEY hKey,
[in] LPCWSTR lpFile,
[in] DWORD dwFlags
)i

9/21

[in] hKey

A handle to an open registry key. This handle is returned by the RegCreateKeyEx or

RegOpenKeyEx function. It can also be one of the following predefined keys:

HKEY_CLASSES_ROOT HKEY_CURRENT_CONFIG HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE HKEY_USERS Any information contained in this key and its
descendent keys is overwritten by the information in the file pointed to by the [pFile

parameter.
[in] 1pFile

The name of the file with the registry information. This file is typically created by
using the RegSaveKey function.

[in] dwFlags

The flags that indicate how the key or keys are to be restored. This parameter can
be one of the following values.

Creating Services with RegRestoreKey

While restoring a hive file from disk may be straightforward in isolation, there are some logistical
hurdles involved with choosing a target sub-key and ensuring that your hive will not interrupt the
normal behavior of the system when it is “restored”.

Picking a Target Key

Since we want to create a new service, we will need to create a new sub-key under
HKLM\CurrentControlSet\Services and several registry values within that sub-key to define its
configuration details. The resulting services sub-key should look something like this when we
are done:

10/21

11/21

HELMCurrentControlSetiServices

Service A
—® Value A
—® Value B
—» Value C
Semvice B
—® Value A
—® Value B
——» Value C
e MNew Service

— Value A

12/21

- Value B

— Value C

Since RegRestoreKey takes a handle to the sub-key we want to overwrite, we actually have to
pass a handle to the *parent* key of the sub-key we want to create. The sub-key has to already
exist to get a handle to it. In our example, this means we must overwrite all of the service sub-
keys starting from their common parent sub-key, HKLM\CurrentControlSet\Services.

In theory, you could create a dummy key just for the new service and target that for restore, but
you would still generate a kernel callback event if there is a ReghNtPreCreatekeyEx callback
registered. For our purposes, we want to avoid creating a new sub-key in this registry path
through rRegCreatekey calls as we know that most EDR products are able to observe these
operations.

Constructing a Hive File to Restore

The trick with creating our hive file is that its content will overwrite everything beneath that key
— we are stuck restoring at the Services sub-key. So if we do not include all of its current child
objects (keys and values) in our hive file, there is a potential to interrupt the normal behavior of
the system. If our hive file only contains the key data for our new services key it will overwrite
the main Services sub-key in place, deleting all previously installed services and leaving our
new service’s configuration values as its only child objects.

Instead, we have to preserve the current state of all of the keys and values under
HKLM\CurrentControlSet\Services before adding a new key and values at the appropriate
place in the hierarchy. This now modified snapshot of the services installed in the registry must
be saved as a hive file so a handle to it can be passed as a parameter to RegrRestorekKey.

You can create a hive file in the regedit GUI, using the native reg utility, or by calling one of the
RegSaveKeyEx* Win32 API methods. However, we will need to figure out how to parse and
modify the resulting hive file in some way.

We have several options here:

13/21

1. Do everything manually (yuck)
1. Export a hive file on the target system from the Services key (RegSaveKkey)
2. Transfer to attacker-controlled system
3. Load hive file on attacker-controlled system
4. Add new service key and export
5. Transfer modified hive file to target system
6. Restore data from modified hive file on target system (RegRestoreKey)
2. Export locally and modify exported file (no transfer)
1. Export a hive file from the Services key (RegSaveKey)
2. Parse resulting hive file and add new key and values in place in the hive file
3. Restore data from modified hive file (RegRestoreKey)
3. Parse the Services key, create hive file via Offline Registry Library
1. Create an in-memory representation of a hive file using ORCreateHive
2. Open a handle to HKLM\CurrentControlSet\Services, enumerate its sub-keys, and
all of their respective values
3. Copy data from each sub-key and value, creating their equivalent in the in-memory
hive file via ORCreatekey and ORSetValue
4. Create an additional key for our new service via ORCreateKey
5. Create the values for our new service within that key via orRsetvalue
6. Write the offline registry hive to disk via ORSaveHive

The manual option is logistically difficult and annoying to carry out, so we will opt for some way
of crafting the hive file programmatically on the target system. One of my teammates sent me a
publicly available means of carrying out the second approach, which can be found here.

This POC follows the set of operations | laid out above for option #2 and saves a hive file for the
HKCU\Software\Microsoft\Windows\CurrentVersion\Run sub-key before adding a new value
that references C:\Users\Public\<RANDOM_FILENAME>.exe. It then uses this modified hive file
to call Regrestorekey and overwrite the targeted key (HKCU run key) with the old data AND
your new value.

We could extend this POC to implement more detailed hive file parsing and modification logic
that accounts for services, but there are some small downsides to this approach. First, a call to
RegSaveKey could potentially generate kernel callback notifications for a discerning EDR driver
(assuming they have registered a callback with either of the RegNtPostSaveKey or
ReghNtPresavekey REG_NOTIFY constants). This wasn’t a problem for the original author
because they were specifically targeting Sysmon, which does not register this registry callback
routine. However, many commercial EDR sensors will provide serialized events related to
RegSaveKey calls.

Option #3 uses the Offline Registry Library to copy the already existing registry objects residing
within the target key (the Services key) to an in-memory representation of a hive file. After
building this hive file key by key and value by value, we can then insert our own sub-key and

14/21

https://github.com/tccontre/Reg-Restore-Persistence-Mole/tree/main.
https://github.com/tccontre/Reg-Restore-Persistence-Mole/blob/8db0c37792073f3e62b8875b268806c8a6ec4a37/RegReeper/RegReeper.cpp#L73
https://learn.microsoft.com/en-us/windows/win32/devnotes/offline-registry-library-portal

values before exporting it to a file. Because we are not calling RegSaveKey, we don’t have to
worry about that set of callback notifications. If implemented correctly, we should only have to
worry about observation when we call RegrestoreKey.

Using the Offline Registry Library for Stealthier Hive File Creation

While the additional step of rebuilding our own representation of the Services sub-key and its
children in memory may sound daunting, it's essentially an iterative copy/paste exercise using
Win32 APIs from the [Offline Registry Library and the standard registry library.

1. Enumerate all currently installed services on the system, saving their names and
configuration details as you go:

1. Open a handle to the HKLM\SYSTEM\CurrentControlSet\Services key
(RegOpenKeyEXxW).

2. Enumerate all sub-keys of the \Services key (RegEnumKeyEx).

3. Open a handle to each sub-key (RegOpenKeyExWw).

4. Enumerate each sub-key’s values (RegEnumvaluew).

5. Query each value to get its name and current value (RegQueryVvalueEx).

2. Prepare an in-memory representation of the
HKLM\SYSTEM\CurrentControlSet\Services key and its descendant keys and values:

1. Create an empty offline registry hive (ORCreateHive).

2. Write each saved service sub-key to the offline registry hive (OrRCreateKey).

3. Create each service key’s relevant values in its offline equivalent (ORsetVvalue).

4. Make desired changes to the offline hive. In our example, this involves adding a new
key and set of values that represent our new service (ORCreateKkey and
ORSetValue).

3. Write the offline registry hive to disk (0rRsaveHive).

4. Reuse the original handle to the HKLM\SYSTEM\CurrentControlSet\Services key,
along with the path to the newly written hive file created in memory, to overwrite the
current content of that key and its descendants (RegrRestoreKeyWw).

1. In my testing, it was necessary to supply the REG_FORCE_RESTORE flag as part of the
dwFlags parameter to RegRestoreKeyW.

2. In order to make this call, you must be able to enable the SE_RESTORE_NAME and
SE_BACKUP_NAME privileges.

3. The 1pFile parameter must be a valid path to a file on disk, but there is lots of room
for creativity here.

There are obviously a few peculiarities surrounding where and how to target your registry
restoration operations so that you don’t overwrite registry data unnecessarily. Aside from that,
we are just copying, modifying, and overwriting the content of the registry starting from a
specific key. The way this approach interacts with common detection strategies for registry-
based tradecraft is much more interesting than the approach I outlined above.

15/21

https://learn.microsoft.com/en-us/windows/win32/devnotes/offline-registry-library-portal
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-functions

Extremely important: Please read this part

Please note that overwriting every single service key and its values based on iterative
parsing and recreation is almost CERTAIN to lead to stability issues. This is likely due to
the criticality of services to the driver loading and startup process during boot. DO NOT
run the linked proof of concept on a system that you are not prepared to re-image or
restore from a stable snapshot. | am releasing this tool in a "broken", but still
demonstrative, state on purpose. If you want to use this in a non-POC context, you will
need to make the modifications yourself. This WILL happen to your system if you
overwrite the entirety of the HKLM\SYSTEM\CurrentControlSet\Services\ registry key.

16/21

This is almost certainly the result of supplying the REG_FORCE_RESTORE flag to
RegRestoreKey. It is likely possible to make this work, but | will leave that work up to you.
In general, | would suggest simply choosing a different target registry key to overwrite.

Quantifying Evasion

Let’s step back and think about what we have accomplished:

When in possession of a token with the SE RESTORE_NAME and SE_BACKUP_NAME privileges
enabled, we can create or modify an arbitrary registry key without making calls to
RegCreateKey, RegSetValue, or any of their lower level equivalents that generate
commonly collected registry telemetry.

Registry Callback Routines

From the earlier discussion of registry callback routines, we know that EDR agents must make
specific choices about which events are valuable enough to collect at scale. We also know that
the “typical” collection strategy outlined for the sake of this example would not observe calls to
RegRestoreKey because it generates an entirely different type of callback notification that isn’t
covered by callbacks registered with any of the RegNtPre/PostCreateKey* or
RegNtPre/PostSetValueKey constants. Drivers would need to also register a callback with
either RegNtPreRestoreKey or RegNtPostRestoreKey to observe calls to RegRestoreKey.

ReghtPreRestorekey
Specifies that a thread is attempting to restore a registry key's information. This value indicates a pre-notification call to
RegistryCallback. Use this value on Windows Vista SP2 and later versions of the Windows operating system.

RegNtPostRestorekey
Specifies that a thread has attempted to restore a registry key's information. This value indicates a post-notification call to
RegistryCallback. Use this value on Windows Vista SP2 and later versions of the Windows operating system.

Link

Even if a driver had registered callbacks related to saving registry hives, which are commonly
used to combat credential theft tradecraft, my proof of concept never saves a copy of an
existing key as a hive file. Instead, the offline registry library allows us to skip calls like
[RegsaveKeyEx] by recreating the keys we wish to overwrite in an in-memory representation.

Callbacks registered with the above two REG_NOTIFY_ CLASS constants are provided with a
REG RESTORE KEY INFORMATION struct that provides information about the restore operation
itself. Of particular note is the Flags field that can communicate when the REG_FORCE_RESTORE
flag was supplied, which was required for me to get my proof of concept to work reliably.

17/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ne-wdm-_reg_notify_class
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsavekeyexw
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsavekeyexw
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_restore_key_information

typedef struct REG RESTORE KEY INFORMATION {
FVOID Object;
HAMDLE FileHandle;
ULONG Flags;
PVOID CallContext:
PVOID ObjectContext;
PVOID Reserved;
} REG_RESTORE_KEY INFORMATIOM, *PREG_RESTORE KEY INFORMATION;

ETW

There may well be additional ETW providers that generate telemetry related to registry restore
operations, but | will focus on Microsoft-windows-Kernel-Registry ({70eb4f03-clde-4f73-
a051-33d13d5413bd}) as it is the most common. The list of events | provided earlier in this post
intentionally left out a few interesting opportunities for detection. In addition to the succinctly
named events like CreateKey or DeleteKey, there is a list of keywords with extremely long
names that suggest they are intended primarily for performance tracking (ex.
Thisgroupofeventstrackstheperformanceof...).

There are two events that appear to be directly related to registry restoration operations based
on their names. The below shows the definition of these events in XML manifest for the
Microsoft-Windows-Kernel-Registry ETW provider:

event value="39"
symbol="Thisgroupofeventstrackstheperformanceofrestoringhives.Start"
version="@" task="Thisgroupofeventstrackstheperformanceofrestoringhives."
opcode="win:Start"” level="win:Informational”
template="Thisgroupofeventstrackstheperformanceofloadinghives.StartArgs"

event value="40"
symbol="Thisgroupofeventstrackstheperformanceofrestoringhives.Stop"

version="@" task="Thisgroupofeventstrackstheperformanceofrestoringhives."

opcode="win:Stop” level="win:Informational”
template="Thisgroupofeventstrackstheperformanceofmountinghivesfromexistingfiles.StopArgs"

"Thisgroupofeventstrackstheperformanceofrestoringhives.Start” and
"Thisgroupofeventstrackstheperformanceofrestoringhives.Stop™ declared

18/21

template tid="Thisgroupofeventstrackstheperformanceofloadinghives.StartArgs"
data name="SourceFile" inType="win:UnicodeString"

data name="Flags" inType="win:HexInt32"

template

template tid="Thisgroupofeventstrackstheperformanceofexportinghives.StartArgs"”
data name="SourceKeyPath" inType="win:UnicodeString"

template

Fields for the "Thisgroupofeventstrackstheperformanceofloadinghives.Start” event, which uses
the same template as "...performanceofmountinghivesfromexistingfiles...” events

template
tid="Thisgroupofeventstrackstheperformanceofmountinghivesfromexistingfiles.StopArgs’

data name="StatusCode” inType="win:HexInt32"
template

Fields for the "Thisgroupofeventstrackstheperformanceofloadinghives.Stop™ event

While testing, | was able to confirm the lack of CreateKkey or Setvalue events. However, | was
able to see several ETW events related to the hive file itself.

Microsoft-wWindows-Kernel-Registry/RegPerfTaskHiveRestore/Start

ThreadID="16,816"

ProcessorNumber="1"
SourceFile="\Device\HarddiskVolume3\Users\mbarc\AppData\Local\Temp\restore_hive_runkey.h:
Flags="8" // Flags == 0x00000008L == REG_FORCE_RESTORE

Microsoft-wWindows-Kernel-Registry/RegPerfTaskHiveRestore/Stop
ThreadID="16,816"

ProcessorNumber="1"

DURATION_MSEC="6.154"

StatusCode="0"

**Microsoft-Windows-Kernel-
Registry/RegPerfTaskHiveMount/RegPerfOpHiveMountBaseFileMounted**

ThreadID="16,816"

ProcessorNumber="1"
HiveFilePath="\Device\HarddiskVolume3\Users\mbarc\AppData\Local\Temp\restore_hive_runkey.
FileSize="4,096"

How useful is this?

The extent to which any tool or approach is evasive is always going to rely entirely on the nature
of the detection strategies it seeks to evade. The approach I've outlined above and
demonstrated in the linked proof of concept code is only evasive insofar as EDR products do

19/21

not collect telemetry related to restore operations. At time of writing, | have not encountered an
EDR product that presents any restore-related events to an end user, nor have | seen an alert
related to this behavior in my limited testing.

However, the raw telemetry needed to at least observe attempts to restore data from a registry
hive does exist in both user mode and kernel mode. Whether or not those events are sufficient
to develop a working detection strategy is an additional question, but visibility is entirely possible
already. Its absence is a design decision, not a technical limitation. While | focused on a specific
use case for registry interaction (service creation) in this post, the approach reawakens any
tradecraft that involves creating, modifying, or deleting a registry key or value. We often
consider registry-centric persistence techniques like run keys and services to be unworthy of
specific attention because they are “solved problems”, but I'm hoping that this post is a reminder
that what is old is always new again.

Reacting to Innovation

Realistically, the usefulness of this approach for evasion is a matter of how long it takes for EDR
vendors to address it and the extent to which their solution is thorough.

An ETW-centric strategy would likely require additional work from Microsoft, since the
performance tracking events mentioned above represent the absolute bare minimum to identify
a restoration operation. While | was able to see performance events from Microsoft-Windows-
Kernel-Registry when | ran my PoC code, these events exclusively describe the hive file that is
being used for the restore operation. They do not include information about which key is being
targeted.

On the other hand, the registry callback routine telemetry is a bit more verbose and likely lends
itself more to a thorough detection strategy, as defined by the REG_ RESTORE KEY INFORMATION
struct. As long as you can follow the pointer to the registry key object that was targeted and
query additional information about it, you can write a detection strategy that considers the
purpose of the restore operation.

Regardless of what Windows provides, end users of EDR products have very few options to
address this gap if their chosen agent doesn’t already observe and report information about
registry restore operations. While there are tons of publicly available tools that help you
configure and start trace sessions to collect events from ETW providers on your own,
attempting to instrument this at an environment-wide level is the equivalent of building your own
EDR. This isn’t so much a data volume problem—it’'s a data selection problem.

Vids & Dids

PoC code is available here.

20/21

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-_reg_restore_key_information
https://github.com/preludeorg/Regstoration

A very important disclaimer about my example code!

The linked PoC is INTENTIONALLY BROKEN! While it can successfully overwrite all of the
services keys and their values without generating traditional key creation and value write
telemetry, this is a wildly unstable and unpredictable action to take and CONSISTENTLY leads
to a blue screen. If you would like to test it for yourself | would suggest either:

e restoring to a dummy key you create for testing so that you don’t overwrite the real
services key (no arguments)

 running the tool unmodified on a system that you KNOW you will be able to re-image or
restore from snapshot (supply the path to the real services key)

The tool will attempt to restore the services data in the hive file to HKLM\\Software\\Test if no
arguments are supplied. If you would like to attempt to overwrite the real services key, you can
supply that path as a string.

Restoring Run Keys

While | have chosen to release a PoC for this approach specific to a use case that is NOT
useful in an operational context due to instability, the below video shows the addition of a
registry run key value via a registry restore operation. This use case has not led to any
observable instability on the system because system critical drivers do not rely on the integrity
of services and their configuration values. It is likely possible to do the same with the services
use case, but you will have to figure out which values are causing instability problems and how
to account for them.

21/21

