
Example of Windows Warbird Encryption/Decryption

 downwithup.github.io/blog/post/2023/04/23/post9.html

Everything in this post was done on a Windows 10 22H2 machine. Kernel version was:

10.0.19041.2486

Introduction

Microsoft Warbird is an undocumented encryption technology generally used for things relating to

software licensing (DRM) and security mechanisms. There has been some, but not much,

previous open source research. Some links which provide further insight:

https://github.com/KiFilterFiberContext/warbird-obfuscator

https://github.com/KiFilterFiberContext/microsoft-warbird/

The Warbird technology is appears to be designed to be integrated at compile time, and could

function either as an obfuscation approach on the existing code, or as some type of “enclave”

block encryptor. This second approach is what this post will dive into.

SystemControlFlowTransition

There is a semi-undocumented system information class for NtQuerySystemInformation called

SystemControlFlowTransition (0xB9) which when called ends up in the WbDispatchOperation

function. Placing a breakpoint on this function will show that the sppsvc.exe process periodically

calls this. More on this later. WbDispatchOperation will branch into several different functions

depending on the operation value passed when calling NtQuerySystemInformation. The struct

looks something like this:

typedef struct _WB_OPERATION
{

ULONG Operation;
PVOID Buffer;

 ... (operation dependent data)
} WB_OPERATION, *PWB_OPERATION;

These are the operations:

1 = WbDecryptEncryptionSegment

2 = WbReEncryptEncryptionSegment

3 = WbHeapExecuteCall

4 = non symbol name function

5 = non symbol name function.

6 = same as case 5

1/5

https://downwithup.github.io/blog/post/2023/04/23/post9.html

7 = WbRemoveWarbirdProcess

8 = WbProcessStartup

9 = WbProcessModuleUnload

Each one of these operations has some type of unique operation dependent data attached

to the initial struct. Reversing the sppsvc.exe can give us hints on how these structures

should be formatted and how they are called. The decrypt and re-encrypt steps can occur

multiple times. The rough pseudocode based on sppsvc.exe for calling WbProcessStartup

looks like this:

SystemInfo[0] = 8; // Operation (WbProcessStartup)

SystemInfo[1] = &buffer;
NtQuerySystemInformation(0xB9, SystemInfo, 0x10, NULL);

Where buffer:

{
 ULONG: 0,
 ULONG: 0x64,
 ULONG64: 0,
 ULONG: 0
}

The name WbProcessStartup seems to suggest that sometype this call does some form of

initialization which is required before decrypting/reencrypting data. However, this does not appear

to be the case, and the calls to decrypt/reencrypt seem to work without. The rough pseudocode

based on sppsvc.exe for calling WbDecyptEncryptionSegment looks like this:

SystemInfo[0] = 1; // Operation

SystemInfo[1] = WarbirdPayload; // At this point it is encrypted

SystemInfo[2] = PEBaseAddress; // Base Address of the PE

SystemInfo[3] = 0x140000000; // Image Base

SystemInfo[4] = UnknownLong64; // Possibly something relating to encryption

SystemInfo[5] = 0x2; // Unknown flags

result = NtQuerySystemInformation(0xB9, SystemInfo, 0x30u, NULL);

It’s important to note that the WarbirdPayload is actually embedded in the sppsvc.exe binary in a

section named ?g_Encry. There are multiple of these sections.

2/5

Payload Format

For decryption (WbDecyptEncryptionSegment) the payload is in the format of WB_PAYLOAD

structure.

typedef struct _WB_SEGMENT
{

ULONG Flags;
ULONG RVA;
ULONG Length;

} WB_SEGMENT, *PWB_SEGMENT;

typedef struct _FEISTEL_ROUND
{

ULONG One;
ULONG Two;
ULONG Three;
ULONG Four;

} FEISTEL_ROUND, *PFEISTEL_ROUND;

typedef struct _WB_PAYLOAD {
BYTE Hash[0x20]; // SHA 256 hash of the payload sha256(payload size - 0x20)

ULONG TotalSize; // Total size (includes all segments)

ULONG Reserved; // Set to 0

ULONG PayloadRVA; // Offset between start of payload struct and
actual start of the data passed (WarbirdPayload) in the NtQuerySystemInformation call

ULONG SecondStageRVA; // Offset between start of second stage struct and actual
start of the data passed (WarbirdPayload) in the NtQuerySystemInformation call

ULONG SecondStageSize; // Size of the UnknownData in DWORDs

ULONG UnknownLong; // Looks like this is reserved. Must be 0?

ULONG64 ImageBase; // PE image base

BYTE Unknown2[0x8]; // Looks like this is reserved. Must be 0?

ULONG64 FeistelKey;
FEISTEL_ROUND Rounds[10];
ULONG SegmentCount; // Number of segments

WB_SEGMENT Segments[1]; // Segment struct(s)

} WB_PAYLOAD, * PWB_PAYLOAD;

3/5

The most important field is the Segments, an array of WB_SEGMENT structures. These point (using

RVA) to the encrypted blocks of code to be decrypted. The flags field in the WB_SEGMENT specify

what protection the segment should be decrypted as. If any value is present, it is a

PAGE_EXECUTE_READ else it is PAGE_READONLY.

How to Encrypt

As you may have noticed in the supported operations values, and from the description of the

sppsvc.exe usage, there is no encrypt. This is most likely because this API is intended to be used

only after a binary is compiled with the Warbird encrypted chunks. To get around this, you can use

the WbReEncryptEncryptionSegment functionality to first decrypt some random data, replace that

data with the bytes we want to encrypt. Then, reencrypt this same memory. If you then save this

strucutre (the segment bytes as well as the payload structure) you can then have memory that

when restored, can simply be decrypted.

The Mitigation

Note that sppsvc.exe is a Windows signed binary. This brings us to a problem. In Alex Ionescu’s

talk he explained that part of the patch Microsoft made to fix the bug he found was only allow

decryption of payloads that were signed by the Windows team at Microsoft. The kernel does this

by calling ZwQueryVirtualMemory with the MemoryImageInformation class on the memory

passed as the payload. Process Hacker’s NT headers have the structure for this undocumented

memory class. The ImageFlags is then compared to ensure the memory was backed with the

appropriate signature.

The Bypass

This however, is not a perfect mitigation as at runtime memory which has been backed by a PE

with specific signatures can be modified simply by changing the existing virtual memory

protections (RX to RW or RWX).

Putting it all Together

Here is a simplified view of how this whole process will work. The “code” resides within the

address space of a signed image.

PoC Code

This PoC will simply follow the steps above. In summary, this will load a signed DLL as the scratch

space, then decrypting, writing code, reencrypting, and finally decrypting again.

4/5

https://twitter.com/aionescu
https://twitter.com/aionescu
https://github.com/processhacker/phnt/blob/7c1adb8a7391939dfd684f27a37e31f18d303944/ntmmapi.h#L244
https://github.com/DownWithUp/WarbirdExamples

Posted on Apr 23, 2023

Copyright © 2023 DownWithUp's Github Website. Powered by Jekyll, theme based on Solar

theme by Matt Harzewski

5/5

http://jekyllrb.com/
http://jekyllthemes.org/themes/solar/

