
Ksawery Czapczyński January 7, 2026

PatchGuard Peekaboo: Hiding Processes on Systems with

PatchGuard in 2026

 outflank.nl/blog/2026/01/07/patchguard-peekaboo-hiding-processes-on-systems-with-patchguard-in-2026

securekernel.exe process information

Introduction

I spent a few weeks (and could have spent even more) trying to find a reliable trick to intercept

kernel activity while HVCI was breathing down my neck. Almost every approach I tried ended the

same way: either a blunt “access denied” or an instant black screen that replaced everyone’s

favorite blue one.

Fig. 1 WinDBG debugging of VTL1 process

1/49

https://www.outflank.nl/blog/2026/01/07/patchguard-peekaboo-hiding-processes-on-systems-with-patchguard-in-2026/


Windows is not playing games anymore;the era of clever inline hooks and creative PatchGuard

dodges is largely over. Microsoft pushed the enforcement layer up into places a normal kernel

driver simply can’t touch. We’re talking hardware-enforced, hypervisor-backed protections: “you

don’t even have permission to ask for permission.”

This research centers on a specific objective: hiding processes from user-mode enumeration

by manipulating kernel structures – specifically, the process linked lists that Windows uses

to track active processes. Why bother? Process hiding remains a cornerstone technique for

rootkits, anti-cheat evasion, and security research. The ability to make a process invisible to Task

Manager, system monitoring tools, and even some security products provides a powerful

capability for persistence and stealth.

The catch is that modern Windows doesn’t just check these structures once – it continuously

validates them through multiple layers. Traditional PatchGuard performs periodic integrity

checks on critical kernel structures, but its responses vary: some violations trigger immediate

bugchecks (instant blue screens), while others are queued for delayed, randomized responses

that can occur minutes or even hours later. This unpredictability made early detection of violations

nearly impossible during testing. Compounding this, Secure Kernel PatchGuard (SKPG) runs

from VTL1 and monitors the normal kernel from a privileged hypervisor context, adding

another watchdog that can’t be easily detected or interfered with from VTL0.

This research focuses on one narrow, repeatable problem: tampered LIST_ENTRY structures

that can trigger a 0x139 KERNEL_SECURITY_CHECK_FAILURE during process

termination. The goal was simple and constrained: find a viable bypass from within a kernel-

mode driver running in VTL0. No bootkits, no pre-OS tricks, just pure in-kernel experimentation.

Fair warning: if you’re expecting a magic bullet that defeats all of Windows’ defenses, this isn’t it.

What I present here is an explanation of one promising direction for a bypass and a catalog of

other concepts that weren’t fully explored. It’s a snapshot of what’s possible (and what isn’t) when

you try to operate inside the kernel while hypervisor-backed integrity is watching.

Part 1: Understanding the Enemy – HVCI & VTLs

Before attempting any kernel interception, we must understand Windows’ virtualization-based

security architecture that makes traditional hooking impossible. This explanation builds upon

detailed technical resources from Rayanfam’s hypervisor series and Connor McGarr’s HVCI deep-

dive.

Traditional kernel security relied on software checks conducted by PatchGuard, but with the

proper hooking methods or tricks it could have been disabled. Both PatchGuard’s protections and

attacker techniques operated at the same privilege level – the kernel itself. This created a cat and

mouse game where attackers could circumvent any protection as long as they discovered its

2/49

https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://connormcgarr.github.io/hvci
https://connormcgarr.github.io/hvci


implementation details: researchers would find new bypass techniques, and Microsoft would

respond with more complex checks, improved anti-debugging measures, and increasingly

complex code.

Hypervisor-protected Code Integrity (HVCI) fundamentally changes the rules of the game.

Instead of software wars (software protection vs. software attacks), Microsoft moved the entire

protection mechanism to a different operating system running alongside the normal

Windows OS. This parallel operating system is isolated from the regular kernel, where only

cryptographically signed and trusted binaries can be executed.

But HVCI doesn’t work alone. It’s part of a broader defense ecosystem: 

PatchGuard (Kernel Patch Protection) – The original defender, still present in VTL0 (regular

Windows). PatchGuard performs runtime integrity checks on kernel structures. While it can be

bypassed with kernel access, it serves as the first line of defense and forces attackers to be more

sophisticated.

HVCI (Hypervisor-protected Code Integrity) – The hardware enforcer. HVCI uses Extended

Page Tables (EPT) to make all kernel code pages read-execute only (R-X) on hypervisor level.

Even if bypasses PatchGuard’s check and modifies page table entries to mark pages as writable,

EPT will still block the write operation. This isn’t a software check you can bypass. 

HyperGuard (Secure Kernel PatchGuard/SKPG) – The hypervisor’s watchdog, running in VTL1.

HyperGuard constantly monitors critical hypervisor and VTL1 structures for tampering. It checks

hypervisor integrity, EPT structures, VMCS (Virtual Machine Control Structure), VTL1 memory

regions, the Secure Kernel (securekernel.exe) itself, VTL1’s critical data structures, function

pointers, and security policy enforcement mechanisms. Think of it as a protector of a protector that

ensures even if an attacker somehow reached VTL1, they couldn’t disable its security checks.

1.1 Virtual Trust Levels – The Foundation

Windows with enabled HVCI operates on a Multi-Layered Security model enforced by Microsoft

Hyper-V. This isn’t just a basic security feature; it has completely restructured Windows’

operations on the most basic level. With HVCI enabled, the whole Windows installation runs as a

virtual machine guest, even when it feels like it’s running directly on hardware.

The architecture utilizes Virtual Trust Levels (VTLs) to create isolation boundaries. You can think

of these as security rings within security rings. Traditional x86 processors have protection rings

(Ring 0 for kernel, Ring 3 for user mode). Systems with VTLs enabled add a new dimension:

vertical isolation enforced by the hypervisor.

VTL Architecture: Two Worlds, One Machine

3/49



Think of VTLs as parallel universes running on the same hardware. VTL0 is the normal world

where Windows lives, and VTL1 is the secure world that watches over it. They share the same

physical CPU and memory, but the hypervisor ensures they can never directly “touch” each other.

A process in VTL0 cannot access or even see what’s happening in VTL1. The separation is

absolute. A real-world example of this architecture is Credential Guard’s implementation of LSASS

protection:

VTL0: Regular lsass.exe runs here, handling authentication requests as usual

VTL1: LsaIso.exe (LSA Isolated) runs here, storing the actual credentials (password hashes,

Kerberos tickets)

Communication: VTL0’s lsass.exe sends requests to VTL1’s LsaIso.exe through secure

RPC channels validated by the hypervisor

Even if malware compromises the kernel and gains full Ring-0 access in VTL0, it cannot dump

credentials from LsaIso because those credentials physically exist in VTL1’s isolated memory

space. The hypervisor simply will not allow VTL0 to read VTL1’s memory.

Here’s what happens when you try to debug VTL1 processes from VTL0:

4/49



securekernel.exe process information

Fig. 1 WinDBG debugging of VTL1 process

5/49



HVCI Layout

Fig. 2. VTL architecture

6/49



Hardware Layer: This is the place where Intel VT-x or AMD-V lives. These are hardware

virtualization extensions built into the CPU itself. With enabled virtualization in BIOS, you’re giving

the CPU permission to create isolated execution environments. The main difference between

software virtualization is that the CPU can now physically partition itself to create isolation. The

CPU itself can maintain multiple sets of page tables, multiple sets of processor states, and can

switch between them at hardware speed. 

The Extended Page Tables (EPT) or Nested Page Tables (NPT) are particularly important.

These provide second layer of memory address translation that sits below the operating system’s

page tables. The OS can say “this page is writable”, but EPT can respond with “no, it’s not” and

the OS has no way to override that decision. 

Hypervisor Layer (Hyper-V): Microsoft’s Hyper-V hypervisor runs in what’s called VMX root

mode. This layer is more privileged than the kernel. The hypervisor owns the hardware – it

decides what the kernel can and cannot do. When HVCI is enabled, Hyper-V isn’t just here to run

virtual machines; it’s there to control and protect the kernel itself. Every time the kernel tries to do

something with privileges (modify page tables, execute certain instructions, access certain

memory), the CPU checks with hypervisor first.  If hypervisor says no, the operation fails. The

hypervisor’s response is a word of law because it’s enforced by the CPU hardware itself. 

The hypervisor maintains the EPT structures that control memory permissions. When we talk

about code being “read-only” under HVCI, we mean read-only in the EPT. Even if we force the

regular Page Table Entry (PTE) to be writable, EPT can still refuse the write attempt.

7/49



MMPTR_HARDWARE stracture

Fig. 3 MMPTE_HARDWARE structure

8/49



Setting nt!KeBugCheckEx PTE to writable. If the driver had tried to perform write operation, for e.g. 

KeBugCheckEx function, system would have crashed because EPT still marks the page a

Fig. 4. Setting nt!KeBugCheckEx PTE to writable. If the driver had tried to perform write operation, for e.g. to perform inline code hooking onKeBugCheckEx function, system would have crashed because EPT still marks the page as read-execute only.

9/49



The CPU performs address translation in 2 stages: first through guest’s page tables (Windows’

page tables), then through EPT (hypervisor’s page table). Translation must succeed in both cases

for a write to work. If either responds with “no write access”, then there’s no write access, period.

Depending on the functions that we use to attempt write, there can be only 2 outcomes – access

denied or bluescreen.

VTL1 (Secure Kernel): This is where the magic happens. VTL1 runs securekernel.exe, which is

essentially a minimal operating system kernel dedicated entirely to security. It’s small, only a few

megabytes in size, focused on one task: enforce code integrity policies. The Code Integrity (ci.dll)

modules live here, along with Secure Kernel Code Integrity (skci.dll). These components validate

every driver before it loads, verify that kernel code hasn’t been modified, and enforce policies

about what can and cannot be executed.

VTL1 is isolated from VTL0 at the hypervisor level. Even though both seem to run at the same

level from the CPU perspective, they’re completely separate virtual machines from the

hypervisor’s perspective. VTL1 is the more trusted level and can access VTL0’s memory (one-way

access). However, VTL0 cannot read VTL1’s memory. VTL0 cannot debug VTL1. VTL0 cannot

even detect what VTL1 is doing. The only way VTL0 can communicate back to VTL1 is through

carefully controlled hypercalls, essentially asking the hypervisor to deliver a carefully checked

message to VTL1. And still, VTL1 decides whether to respond or not.

VTL0 (Normal Kernel): This is where the Windows you know resides. The entire Windows kernel

(ntoskrnl.exe), the Hardware Abstraction Layer (hal.dll), and all your drivers run here. While these

components are aware they’re running under virtualization, the hypervisor’s presence is largely

transparent to normal operations, allowing existing Windows software to function without

modification.

In short, VTL0 is like a wild, completely untrusted animal living in a cage. VTL0 has only strict and

regulated access to certain pages. It can execute kernel code, but it cannot modify what it’s

executing. Any attempt to write to a code page triggers an EPT violation, which causes a VM-exit

to the hypervisor, which forwards the violation to VTL1, which immediately bugchecks the system.

The sequence is simple and unforgiving: write attempt to code → EPT violation → VM-exit →

bugcheck.

10/49



VTL0 locked in the cage

11/49



BUT data sections of all processes have EPT RW- permissions. HVCI does not perform

integrity checks on data sections, so in the right place, attackers could override e.g.

function/variable pointers in the data section, which opens up some possibilities for HVCI-safe

hooks.  

1.2   Extended Page Tables (EPT) – The Enforcement Mechanism

EPT is a place where theory meets reality. This is the actual enforcement mechanism that makes

HVCI work. Understanding EPT is critical because this is why every attempt to modify kernel code

fails. 

In a traditional, non-virtualized system, address translation works like this:

1. Program gives the CPU a VA (Virtual Address)

2. CPU looks it up in page tables and returns physical address.

3. This page table contains permission bits

Is it Readable?

Is it Writable?

Is it Executable?

4. If the permissions bits are misaligned with the operation that you are trying to perform, you

get a page fault.

But with the virtualization, there’s a problem: the page tables are controlled by the VTL0, which is

untrusted. A compromised kernel could just modify its own page tables to give itself permission to

write to code pages. To prevent this, the hypervisor introduces a second layer of translation:

Extended Page Tables.

12/49



GVA to HPA structure

Fig. 5 GVA to HPA process

13/49



How it works in practice: Windows tracks active processes through doubly-linked lists

embedded in the EPROCESS structure. When a process terminates, the kernel must unlink it

from these lists – a task handled by PspProcessDelete, an internal kernel function responsible

for cleaning up process objects and removing them from the ActiveProcessLinks chain. This

function performs critical integrity checks on the LIST_ENTRY structures to ensure they haven’t

been corrupted or tampered with. If your driver has manipulated these links to hide a process,

PspProcessDelete will detect the inconsistency and trigger a 0x139 bugcheck during

termination.

Understanding how Windows protects code like PspProcessDelete is crucial. When your driver

attempts to access memory at address 0xFFFFF80274EE1310 (let’s say that’s where

PspProcessDelete is placed), the CPU first translates that virtual address through Windows’ page

tables to get a Guest Physical Address (GPA). Let’s say that translates to 0x274EE1000. But

that’s not all. The CPU then takes that GPA and translates it again through EPT to get the actual

host physical address.

So even if VTL0 marks the page as writable in its page tables, EPT is still able to force the read-

only policy.

VTL0 Page Tables (Windows’ Perspective)

Windows sees its page tables and believes that it has full control. For kernel code pages,

Windows typically sets them up like this:

14/49



_MMPTE_HARDWARE structure

Fig. 6 MMPTE_HARDWARE structure

15/49



For kernel code pages, Windows sets:

Valid = 1 (page present in memory)

Write = 0 (page is read-only… supposedly)

NoExecute = 0 (execute is allowed)

But here’s the thing: Windows can change these bits. A driver with sufficient privilege can modify

the page tables. That’s what traditional hooking relied on – changing page permission to writable,

write the hook, then mark them read-only again. This worked for decades, but not anymore.

EPT (Hypervisor’s Perspective):

The hypervisor maintains its own page table for each VM. These EPT structures have a similar

format but with a critical difference: the guest cannot modify them. 

16/49



_EPT_PTE structure

Fig. 7 EPT_PTE structure

17/49



For kernel code pages with HVCI enabled, the hypervisor configures EPT like this:

18/49



EPT_PTE entry

Fig. 8 Example of EPT configuration

19/49



This structure is completely out of access for VTL0. Even if you could somehow access that

memory (you can’t), any attempt to modify it would be caught by the hypervisor’s own memory

protection mechanism.

This was the goal of HVCI: create an enforcement mechanism completely out of reach with only

trusted binaries. 

The Permission Check Process

When you driver executes an instruction like “mov byte ptr [0xFFFFF80274EE1310], 0xCC” (trying

to write an INT3 breakpoint), here’s what exactly happens inside the CPU:

Stage 1: Guest Page Table Walk (VTL0)

1. CPU Checks: Is virtual address 0xFFFFF80274EE1310 valid?

2. Walk page tables: PML4 -> PDPT -> PD -> PT

3. Find PTE for this address

4. Check PTE permissions:

Check if Valid bit is 1

Write = 0, but… force PTE write to 1

OR Check CR0.WP (Write Protect bit)

If CR0.WP = 0 (disabled), IGNORE Write bit and allow

Result: Windows page tables allow the write

5. Get GPA: 0x274EE1000

At this point, traditional Windows security would let the write proceed. The page tables responded

with okay (because of disabled CR0.WP or PTE force-set to write), so the write would succeed.

This is how traditional hooking worked. But…

Stage 2: EPT Walk (VTL1)

Take GPA from stage 1: 0x274EE1000

Look up in EPT: EPT_PML 4-> EPT_PDPT -> EPT_PD -> EPT_PT

Find EPT_PTE for GPA 0x274EE1000

Check EPT_PTE permissions:

Check if Read bit is 1

Write bit is 1, so violation happens

Check if execute bit is 1

Permission denied by EPT

Generate VM-exit: EPT_VIOLATION

The CPU hardware itself stopped the operation. It doesn’t matter what Windows said. It doesn’t

matter that there was disabled CR0.WP. It doesn’t matter that we have set VTL0 PTE to write.

EPT said no, and that’s all, nothing else matters.

20/49



Stage 3: VM-Exit Handler (VTL1)

1. CPU saves current state

2. Switch from VTL0 to VTL1

3. Hypervisor VM-exit:

Exit: reason: EPT_VIOLATION 

GPA that caused violation: 0x274EE1000

Operation type: WRITE

GVA: 0xFFFFF80274EE1310

4. Check: Is this GPA in code region?

5. Response: TRUE – kernel code

6. Code integrity violation

7. Forward to VTL1 for handling

Stage 4: VTL1 Response

1. VTL1 receives notification “Attempted to write to code pages”

2. VTL1 calls KeBugCheckEx

3. System crashes

This entire sequence in hypervisor code that VTL0 cannot access and modify.

Part 2: Process Notification Callbacks as an Interception Vector

After multiple failures attempting to hook kernel functions and manipulate process lists directly –

all of which either triggered immediate bugchecks or were blocked by HVCI’s memory protections

– I returned to the most boring solution imaginable: documented Microsoft APIs. The original goal

remained unchanged: hide processes from user-mode enumeration by removing them from

the kernel’s process tracking structures. No clever tricks, no hardware wizardry, no

architectural exploitation – just a simple callback that Windows officially provides for monitoring

process lifecycle events: PsSetCreateProcessNotifyRoutineEx.

And it worked perfectly.

But before we dive into the solution, let’s understand the problem we’re actually solving

2.1 What Happens When You Hide a Process

Let’s say you want to hide a process from programs like Task Manager or Process Hacker. The

classic rootkit technique is to unlink the process from the system’s process list. Every

EPROCESS structure contains an ActiveProcessLinks field, a doubly-linked LIST_ENTRY

that chains all processes together. To hide a process, you simply unlink it.

Process 1 <-> Process 2 <-> Process 3

21/49



You manipulate the Flink (Forward link), and Blink (Backwards link) pointer so Process 1 points

directly to Process 3, and Process 3 points back at Process 1. Process 2 is now “hidden”. It is still

running, but invisible to any code that walks the ActiveProcessLinks list.

But there is an issue: when the process terminates, integrity checks are performed. If tampered

links are detected, the system crashes with 0x139 KERNEL_SECURITY_CHECK_FAILURE

exception. 

22/49



0x139 Exception

Fig. 9 0x139 Exception

23/49



I started analyzing each function and each step that leads to the bluescreen. One of these

functions stands out – PspProcessDelete. On the image above we can see that directly after the

PspProcessDelete, KiSecurityCheckFailure is called as the first function on the PatchGuard crash

route.

So, let’s look at the nt!PspProcessDelete+0x95:

nt!PspProcessDelete+0x95 code

There is an interrupt instruction “int 29h”. In x86/x64 architecture, interrupts are mechanisms that

allow the CPU to temporarily pause normal execution and jump to special handler routines. These

handlers are registered in the Interrupt Descriptor Table (IDT) – a system table that maps each

interrupt number (0x00 through 0xFF) to its corresponding handler function address. When the

CPU executes an interrupt instruction like “int 29h”, it looks up entry 0x29 in the IDT and transfers

control to whatever handler is registered there.

Fig. 10 PspProcessDelete interrupt

24/49



Int 29h is particularly interesting because it’s a Fast Fail interrupt used by Windows for critical

security violations. When the kernel detects tampering with protected structures (like our

manipulated LIST_ENTRY chains), it triggers int 29h, which immediately invokes the bugcheck

mechanism – resulting in that familiar blue screen.

But wait, we can’t hook the IDT because of HVCI, right? Traditionally, rootkits would modify IDT

entries to redirect interrupt handlers, but HVCI marks the IDT as read-only through EPT, making

such modifications impossible from VTL0. When we take a closer look at the

PspProcessDelete function in IDA…

25/49



IDA with int 29h code block highlighted

Fig. 11 PspProcessDelete disassembly

26/49



We can see that before the interrupt there are some checks done. Particularly this check:

Function responsible for checking

Which in pseudocode looks like this:

Fig. 12 PspProcessDelete process integrity validation logic

27/49



What if we could somehow change the execution flow to skip that entire if-block?

Before attempting any code writing, I decided to find out what exactly the RCX register stores.

PspProcessDelete has only one parameter, so it must receive some sort of a structure that

contains process information, right? The first thing that came to mind my was an EPROCESS

structure. To verify that, I quickly went to WinDbg to make sure:

Fig. 13 PspProcessDelete pseudocode

28/49



Verifying if the

Fig. 14 Checking if RCX contains EPROCESS

29/49



Bingo! My guess was right, the “BugCheckParameter2” parameter in IDA is of an EPROCESS

structure type. After replacing the ULONG_PTR with _EPROCESS the entire function became

crystal clear.

30/49



Code after replacing BugCheckParameter2 variable to EPROCESS s

Fig. 15 Replaced BugCheckParameter2 ULONG_PTR with _EPROCESS structure

31/49



When our process is hidden and we decide to terminate it, one of the first things that are done

during the process termination are checks on the LIST_ENTRYs to determine if the entries are

tampered with.

The easiest thing that could be done is just overriding the “jz” with “jmp” instruction, but because

of HVCI we can’t do that. Additionally, there aren’t any data section pointers called, so we just

can’t override them to get current context. So, what are the possibilities?

The solution is the most boring and common PsSetCreateProcessNotifyRoutineEx. This routine

registration function allows us to create a callback on process creation and/or termination.

32/49



PsSetCreateProcessNotifyRoutineEx function

Fig. 16 PsSetCreateProcessNotifyRoutineEx Microsoft’s documentation

33/49



Our callback function would receive 3 parameters after registration.

Fig. 17 Process notification callback

34/49



Just before the function call to PspProcessDelete, we receive the same EPROCESS structure in

our process termination callback. What if we just fixed the LIST_ENTRY structures right before

PspProcessDelete’s validation checks execute?

Here’s what “fixing” means in this scenario: when a process is hidden, we’ve unlinked it from the

ActiveProcessLinks doubly-linked list by manipulating its Flink (forward link) and Blink (backward

link) pointers. This creates an inconsistency, the LIST_ENTRY no longer points to valid

neighboring entries in the chain. When PspProcessDelete runs its integrity checks, it detects this

corruption and triggers a bugcheck.

Our callback executes at the perfect moment. After we receive notification that a process is

terminating, but before PspProcessDelete performs its validation. At this point, we can:

1. Detect the terminating process by checking if CreateInfo is NULL in our callback

2. Extract the ActiveProcessLinks from the EPROCESS structure

3. Verify the LIST_ENTRY has been corrupted (check if Flink/Blink point to invalid or

mismatched addresses)

4. Repair the links by restoring valid Flink and Blink pointers that connect back to legitimate

entries in the process list

5. Let PspProcessDelete continue with its validation- it now sees a properly formed,

consistent LIST_ENTRY chain

By the time PspProcessDelete’s validation code executes, the LIST_ENTRY structure is

completely aligned and valid. The integrity checks pass because there’s nothing to detect as

we’ve restored the proper doubly-linked list structure just microseconds before the system

examines it. The process was hidden during its lifetime, but at the moment of termination, we

temporarily “unhide” it by fixing the data structures, allowing clean termination without triggering

security checks.

35/49



2.2 Retrieving Data

36/49



Fig. 18 Retrieving data from EPROCESS in driver code

37/49



First thing we have got to do is to extract the ActiveProcessLinks of the process. We will do that

for every process that is terminated. We can verify if the process is terminating by checking if

CreateInfo is null. In my example, I also extract flags just for the test’s purposes.

The next step is to retrieve LIST_ENTRY structure from the ActiveProcessLinks

38/49



Fig. 19 Retrieving LIST_ENTRY

39/49



Firstly, before we apply bypass, we must verify if the terminating process has corrupted

LIST_ENTRY.

Fig. 20 Checking if LIST_ENTRY is corrupted

40/49



When corruption is detected, we perform a targeted repair to restore LIST_ENTRY consistency.

The fix addresses the specific validation that PspProcessDelete performs:

What PspProcessDelete Checks: The validation verifies bidirectional consistency in the doubly-

linked list:

Flink->Blink must equal our list entry

Blink->Flink must equal our list entry

If either check fails, the system triggers a Fast Fail interrupt (int 0x29) leading to a 0x139

bugcheck.

The Repair: Our code (shown in the second screenshot) restores these pointers by making the

neighboring entries reference our LIST_ENTRY again:

*FlinkBlink = OurListEntry – Repairs the forward link’s backward pointer

*BlinkFlink = OurListEntry – Repairs the backward link’s forward pointer

After this repair, both validation checks pass. The LIST_ENTRY structure appears properly formed

and consistent, allowing PspProcessDelete to continue safely without detecting any corruption.

41/49



Fig. 21 Fixing LIST_ENTRY of hidden processes before PspProcessDelete integrity validation

42/49



2.3 Results

Result image showing run time fix

Fig. 19 Output from the driver

43/49



After manually triggered exception, our driver detects process with corrupted LIST_ENTRY

structure and fixes it. This happens just before PspProcessDelete, successfully bypassing integrity

check.

2.4 Summary

The problem: Hiding processes by unlinking LIST_ENTRY structures works until termination,

when PspProcessDelete’s integrity checks trigger a bugcheck.

The solution: Use PsSetCreateProcessNotifyRoutineEx to register a callback that repairs the

corrupted LIST_ENTRY structures right before PspProcessDelete runs its checks. By the time

validation occurs, the structures appear legitimate.

The constraint: This approach requires a signed kernel driver. On production systems without

test signing enabled, you cannot load arbitrary kernel code – Windows enforces driver signature

verification through Code Integrity policies. This means any practical implementation demands

either:

A legitimately signed driver from a trusted vendor

A compromised/stolen code signing certificate

Exploitation of a vulnerable signed driver already present on the system

HVCI doesn’t prevent this technique because we’re not modifying code pages – we’re

manipulating writable data structures using officially documented callbacks. But the barrier to entry

is high: you need kernel code execution privileges, which on modern Windows means you need a

valid signature.

Part 3: Other Approaches

HVCI’s protection is enforced at the hypervisor and hardware level, making it effectively

unbreakable from VTL0. The Extended Page Tables (EPT) are controlled by Hyper-V, which

operates below the Windows kernel.

If a vulnerability exists in the HVCI security architecture components, we could attempt to exploit

these:

Boot sector exploits – Compromising the boot process before Hyper-V loads

CPU vulnerabilities – Hardware-level bugs in Intel VT-x/AMD-V implementation (e.g.

Spectre, Meltdown variants)

Hypervisor exploits – Finding and exploiting bugs in Hyper-V itself to gain VMX root

access/controls

VTL1 – Compromising the Secure Kernel through memory corruption or logic bugs

However, all of these require exploitation of potential vulnerabilities.

44/49



3.1 Paths Not Requiring Exploitation

Since HVCI protects code pages, data pages remain writable. This opens a narrow window:

Hook Function Pointers in Data Sections

Some kernel operations dispatch through function pointer tables stored in writable memory. This

could be abused by replacing the pointer and redirecting the execution flow.

This is theoretically viable but extremely difficult in practice. PatchGuard does not monitor

function pointers in kernel data sections or the heap – its protection focuses on well-known

structures like SSDT, IDT, and GDT, as well as code sections in critical modules. Function pointers

stored in writable kernel pool memory remain unmonitored by integrity checkers, creating a

potential attack surface.  However, the practical challenges are significant:

1. Finding useful function pointer tables in writable memory requires extensive reverse

engineering and pattern scanning.

2. Most kernel dispatch mechanisms don’t rely on simple function pointer arrays in data sections—

they use more complex structures or inline calls.

3. Even if you locate such pointers, you need them to point to valid signed code to avoid other

protections.

4. The technique still requires a signed driver to execute the modification code in the first

place. While PatchGuard won’t detect the pointer modification itself, finding function pointers that

would actually change execution flow in a useful way is exceptionally rare and difficult.

Modify vtables 

Object-oriented kernel components use virtual function tables in data sections. 

Note: This is essentially the same approach as hooking function pointers above – vtables are just

structured arrays of function pointers. The same PatchGuard and CFG protections apply, making

this equally non-viable.

Intercept Callback Registrations

Replace callback function pointers when drivers register them through APIs like

PsSetCreateProcessNotifyRoutineEx, IoRegisterFsRegistrationChange, or CmRegisterCallback.

This is partially viable but limited. Callback arrays (like the PspCreateProcessNotifyRoutine

array) are stored in writable kernel data sections and are not directly protected by PatchGuard

checksums. You could theoretically modify these arrays to inject your own callbacks, replace

existing ones or delete them.  However, there are significant obstacles:

1. Finding the unexported callback arrays requires pattern scanning or symbol resolution.

2. On systems with HVCI enabled, kernel-mode CFG will validate that callbacks point to valid

signed code.

45/49



3. Some callback mechanisms like ObRegisterCallbacks involve _OBJECT_TYPE structures that

ARE monitored by PatchGuard and will trigger bugchecks if modified.

4. The technique still requires a signed driver to execute the modification code in the first place.

Context Manipulation 

Modifying CPU registers at runtime. The most challenging part is to find a reliable way to hijack

thread context to retrieve and modify the register values during runtime to force change execution

flow.

This is theoretically viable but extremely fragile. Techniques like APC injection or

SetThreadContext allow modification of the KTRAP_FRAME structure containing register values

(particularly RIP/instruction pointer) when threads transition contexts. However, this approach

faces severe practical limitations: modern Windows with Intel CET or AMD Shadow Stacks

validates context modifications to prevent control-flow hijacking, timing requirements are

extremely tight, and any mistake results in immediate system instability or crashes.

3.2 Context Manipulation During Thread Transitions

Among the non-exploitation paths explored, context manipulation stands out as the most

sophisticated, and most fragile, approach to achieving our goal of hiding processes without

triggering HVCI violations. The core idea is deceptively simple: if we can’t modify the code that

validates LIST_ENTRY structures, perhaps we can redirect execution around those validation

routines entirely. By capturing and manipulating CPU register state during legitimate thread

transitions, we could theoretically skip over PatchGuard checks or redirect validation logic to

benign code paths that don’t examine our tampered structures.

The Concept:

Windows constantly saves and restores thread context during normal operations – syscall entries,

APC deliveries, context switches between threads. At these moments, the entire CPU register

state (RIP, RSP, RCX, RDX, and others) is captured into memory structures. If we can intercept

these transitions, we gain access to the saved context before it’s restored. From there, the attack

becomes surgical: modify the RIP (instruction pointer) to skip validation code or redirect to a

trampoline function, adjust stack pointers if necessary, and let execution resume. The thread

continues as if nothing happened, but we’ve effectively hijacked its control flow without touching a

single byte of protected code.

Implementation Approaches:

Several techniques could theoretically enable this manipulation. APC injection with context

modification involves queueing an Asynchronous Procedure Call to a target thread, then

tampering with the APC’s delivery context before the kernel dispatches it, redirecting where the

APC “returns” after completion. 

46/49



Context swap hooking targets the moment when KeSwapContext (or similar scheduler

functions) saves one thread’s state and loads another’s, giving us a window to modify the saved

register values.

Breakpoint manipulation requires registering as a kernel debugger and placing INT3

breakpoints on target functions; when hit, we handle the debug interrupt, modify the trap frame,

and resume execution elsewhere. Without proper debugger registration, these breakpoints trigger

unhandled exceptions and system faults.

Finally, trap frame manipulation during syscalls intercepts the moment when user-mode code

transitions into kernel mode, the trap frame stored on the kernel stack contains all user-mode

registers, and modifying it before the syscall handler executes can redirect control flow

immediately upon return.

Why This is a Theoretical Path:

This approach has several appealing properties. It operates entirely on CPU registers – the only

execution state not protected by EPT’s memory access controls. It doesn’t modify code pages,

sidestepping HVCI’s primary enforcement mechanism. By redirecting execution to existing code

gadgets, it can leverage ROP-like techniques to compose complex behaviors from legitimate

signed code. Most importantly, it can intercept any function simply by hijacking control flow before

the target executes.

The Challenge:

Despite its theoretical elegance, context manipulation is extraordinarily difficult in practice. Timing

is critical: capturing context too early or too late means operating on stale or incomplete state. The

techniques are extremely fragile – minor kernel updates, changes to scheduling behavior, or

variations in CPU microarchitecture can break them entirely. The complexity is staggering, what

might have been a simple “trick” in older Windows versions now requires intricate chains of

precisely timed operations across multiple subsystems.

Perhaps most limiting, many PatchGuard validation functions are VOID (no-return) functions that

invoke bugchecks directly rather than returning error codes. Simply modifying a register to change

a jump destination won’t help if the function never returns. You must redirect execution before the

validation logic runs, requiring perfect knowledge of call chains and execution paths.

Final Thoughts

The era of clever kernel tricks is over. HVCI didn’t just raise the bar – it fundamentally changed the

game by moving enforcement to a layer that kernel code simply cannot reach. Every attempt to

use traditional interception techniques ends the same way: blocked by hardware or instant

bugcheck.

47/49



What this research demonstrates isn’t a weakness in HVCI, it’s a testament to how well it works.

The only viable approach we found doesn’t bypass HVCI at all. Instead, it operates entirely within

the constraints HVCI imposes by manipulating writable data structures and timing operations

precisely to avoid detection mechanisms.

The irony is that after months of complex experimentation, the working solution is almost boring in

its simplicity. No exploitation required, no hardware vulnerabilities leveraged, no hypervisor bugs

discovered. Just understanding what traditional PatchGuard checks, when it checks, and fixing

the data right before those checks run.

However, there’s a critical caveat: this technique addresses PatchGuard’s validation mechanisms,

but Secure Kernel PatchGuard (SKPG) remains largely unexplored territory. SKPG operates

from VTL1 with privileged hypervisor access, monitoring the normal kernel from a security context

that VTL0 drivers cannot observe or interfere with. Its checks may be more comprehensive, run at

different intervals, or validate structures we haven’t accounted for. The timing-based repair

approach that works against traditional PatchGuard may be insufficient against SKPG’s

monitoring capabilities.

This narrow success doesn’t mean HVCI is broken. It means that:

1. Code protection works really well. We never touched a single code page

2. Data manipulation is the only viable path. And even that requires perfect timing and deep

understanding

3. The attack surface is tiny. This works for one specific detection mechanism (traditional

PatchGuard’s LIST_ENTRY validation) in one specific function

4. SKPG remains an unknown. We’ve bypassed one layer of protection, but the more

privileged watchdog may detect what we’re doing

For researchers, this work shows that understanding the system deeply is more valuable than

looking for magic bullets. Modern Windows security isn’t something you “bypass” with a clever

trick – it’s something you have to understand completely, find the exact boundaries of, and work

carefully within those constraints.

The cat-and-mouse game isn’t dead – it’s just moved to a much smaller playing field, where the

mice have to be incredibly precise, and the cat has home-field advantage. And in this case, there

might be a second, more vigilant cat watching from the hypervisor level that we haven’t fully

accounted for yet.

48/49



To be continued… 

Cat & Mouse

References

Saar Amar – “Subverting VBS” (2018)

Joe Bialek – “Analysis of Windows 10 VBS Attack Surface” (2017)

https://rayanfam.com/topics/hypervisor-from-scratch-part-4

https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-

protected-code-integrity

https://connormcgarr.github.io/hvci

49/49

https://rayanfam.com/topics/hypervisor-from-scratch-part-4
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-protected-code-integrity
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-protected-code-integrity
https://connormcgarr.github.io/hvci

