PatchGuard Peekaboo: Hiding Processes on Systems with
PatchGuard in 2026

outflank.nl/blog/2026/01/07/patchguard-peekaboo-hiding-processes-on-systems-with-patchguard-in-2026

Ksawery Czapczynski January 7, 2026

lw.securekernel.exe process information

Fig. 1 WinDBG debugging of VTL1 process

Introduction

| spent a few weeks (and could have spent even more) trying to find a reliable trick to intercept
kernel activity while HVCI was breathing down my neck. Almost every approach | tried ended the

same way: either a blunt “access denied” or an instant black screen that replaced everyone’s
favorite blue one.

1/49

https://www.outflank.nl/blog/2026/01/07/patchguard-peekaboo-hiding-processes-on-systems-with-patchguard-in-2026/

Windows is not playing games anymore;the era of clever inline hooks and creative PatchGuard
dodges is largely over. Microsoft pushed the enforcement layer up into places a normal kernel
driver simply can’t touch. We’'re talking hardware-enforced, hypervisor-backed protections: “you
don’t even have permission to ask for permission.”

This research centers on a specific objective: hiding processes from user-mode enumeration
by manipulating kernel structures — specifically, the process linked lists that Windows uses
to track active processes. Why bother? Process hiding remains a cornerstone technique for
rootkits, anti-cheat evasion, and security research. The ability to make a process invisible to Task
Manager, system monitoring tools, and even some security products provides a powerful
capability for persistence and stealth.

The catch is that modern Windows doesn’t just check these structures once — it continuously
validates them through multiple layers. Traditional PatchGuard performs periodic integrity
checks on critical kernel structures, but its responses vary: some violations trigger immediate
bugchecks (instant blue screens), while others are queued for delayed, randomized responses
that can occur minutes or even hours later. This unpredictability made early detection of violations
nearly impossible during testing. Compounding this, Secure Kernel PatchGuard (SKPG) runs
from VTL1 and monitors the normal kernel from a privileged hypervisor context, adding
another watchdog that can’t be easily detected or interfered with from VTLO.

This research focuses on one narrow, repeatable problem: tampered LIST_ENTRY structures
that can trigger a 0x139 KERNEL_SECURITY_CHECK_FAILURE during process
termination. The goal was simple and constrained: find a viable bypass from within a kernel-
mode driver running in VTLO. No bootkits, no pre-OS tricks, just pure in-kernel experimentation.

Fair warning: if you’re expecting a magic bullet that defeats all of Windows’ defenses, this isn't it.
What | present here is an explanation of one promising direction for a bypass and a catalog of
other concepts that weren’t fully explored. It's a snapshot of what’s possible (and what isn’t) when
you try to operate inside the kernel while hypervisor-backed integrity is watching.

Part 1: Understanding the Enemy — HVCI & VTLs

Before attempting any kernel interception, we must understand Windows’ virtualization-based
security architecture that makes traditional hooking impossible. This explanation builds upon
detailed technical resources from Rayanfam’s hypervisor series and Connor McGarr’s HVCI deep-
dive.

Traditional kernel security relied on software checks conducted by PatchGuard, but with the
proper hooking methods or tricks it could have been disabled. Both PatchGuard’s protections and
attacker techniques operated at the same privilege level — the kernel itself. This created a cat and
mouse game where attackers could circumvent any protection as long as they discovered its

2/49

https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://connormcgarr.github.io/hvci
https://connormcgarr.github.io/hvci

implementation details: researchers would find new bypass techniques, and Microsoft would
respond with more complex checks, improved anti-debugging measures, and increasingly
complex code.

Hypervisor-protected Code Integrity (HVCI) fundamentally changes the rules of the game.
Instead of software wars (software protection vs. software attacks), Microsoft moved the entire
protection mechanism to a different operating system running alongside the normal
Windows OS. This parallel operating system is isolated from the regular kernel, where only
cryptographically signed and trusted binaries can be executed.

But HVCI doesn’t work alone. It’s part of a broader defense ecosystem:

PatchGuard (Kernel Patch Protection) — The original defender, still present in VTLO (regular
Windows). PatchGuard performs runtime integrity checks on kernel structures. While it can be
bypassed with kernel access, it serves as the first line of defense and forces attackers to be more
sophisticated.

HVCI (Hypervisor-protected Code Integrity) — The hardware enforcer. HVCI uses Extended
Page Tables (EPT) to make all kernel code pages read-execute only (R-X) on hypervisor level.
Even if bypasses PatchGuard’s check and modifies page table entries to mark pages as writable,
EPT will still block the write operation. This isn’t a software check you can bypass.

HyperGuard (Secure Kernel PatchGuard/SKPG) — The hypervisor’s watchdog, running in VTLA1.
HyperGuard constantly monitors critical hypervisor and VTL1 structures for tampering. It checks
hypervisor integrity, EPT structures, VMCS (Virtual Machine Control Structure), VTL1 memory
regions, the Secure Kernel (securekernel.exe) itself, VTL1’s critical data structures, function
pointers, and security policy enforcement mechanisms. Think of it as a protector of a protector that
ensures even if an attacker somehow reached VTL1, they couldn’t disable its security checks.

1.1 Virtual Trust Levels — The Foundation

Windows with enabled HVCI operates on a Multi-Layered Security model enforced by Microsoft
Hyper-V. This isn’t just a basic security feature; it has completely restructured Windows’
operations on the most basic level. With HVCI enabled, the whole Windows installation runs as a
virtual machine guest, even when it feels like it's running directly on hardware.

The architecture utilizes Virtual Trust Levels (VTLs) to create isolation boundaries. You can think
of these as security rings within security rings. Traditional x86 processors have protection rings
(Ring 0 for kernel, Ring 3 for user mode). Systems with VTLs enabled add a new dimension:
vertical isolation enforced by the hypervisor.

VTL Architecture: Two Worlds, One Machine

3/49

Think of VTLs as parallel universes running on the same hardware. VTLO is the normal world
where Windows lives, and VTL1 is the secure world that watches over it. They share the same
physical CPU and memory, but the hypervisor ensures they can never directly “touch” each other.

A process in VTLO cannot access or even see what’s happening in VTL1. The separation is

absolute. A real-world example of this architecture is Credential Guard’s implementation of LSASS
protection:

e VTLO: Regular Isass.exe runs here, handling authentication requests as usual

o VTL1: Lsalso.exe (LSA Isolated) runs here, storing the actual credentials (password hashes,
Kerberos tickets)

e Communication: VTLO’s Isass.exe sends requests to VTL1’s Lsalso.exe through secure
RPC channels validated by the hypervisor

Even if malware compromises the kernel and gains full Ring-0 access in VTLO, it cannot dump
credentials from Lsalso because those credentials physically exist in VTL1’s isolated memory
space. The hypervisor simply will not allow VTLO to read VTL1’s memory.

Here’s what happens when you try to debug VTL1 processes from VTLO:

4/49

s

securekernel.exe process information

Fig. 1 WinDBG debugging of VTL1 process

5/49

Fig. 2. VTL architecture

HVCI Layout

6/49

Hardware Layer: This is the place where Intel VT-x or AMD-V lives. These are hardware
virtualization extensions built into the CPU itself. With enabled virtualization in BIOS, you’re giving
the CPU permission to create isolated execution environments. The main difference between
software virtualization is that the CPU can now physically partition itself to create isolation. The
CPU itself can maintain multiple sets of page tables, multiple sets of processor states, and can
switch between them at hardware speed.

The Extended Page Tables (EPT) or Nested Page Tables (NPT) are particularly important.
These provide second layer of memory address translation that sits below the operating system’s
page tables. The OS can say “this page is writable”, but EPT can respond with “no, it’s not” and
the OS has no way to override that decision.

Hypervisor Layer (Hyper-V): Microsoft's Hyper-V hypervisor runs in what'’s called VMX root
mode. This layer is more privileged than the kernel. The hypervisor owns the hardware — it
decides what the kernel can and cannot do. When HVCI is enabled, Hyper-V isn’t just here to run
virtual machines; it’s there to control and protect the kernel itself. Every time the kernel tries to do
something with privileges (modify page tables, execute certain instructions, access certain
memory), the CPU checks with hypervisor first. If hypervisor says no, the operation fails. The
hypervisor’s response is a word of law because it's enforced by the CPU hardware itself.

The hypervisor maintains the EPT structures that control memory permissions. When we talk
about code being “read-only” under HVCI, we mean read-only in the EPT. Even if we force the
regular Page Table Entry (PTE) to be writable, EPT can still refuse the write attempt.

7/49

s

MMPTR_HARDWARE stracture

Fig. 3 MMPTE_HARDWARE structure

8/49

& Setting nt!lKeBugCheckEx PTE to writable. If the driver had tried to perform write operation, for e.qg.
KeBugCheckEx function, system would have crashed because EPT still marks the page ¢

Fig. 4. Setting méteBeloaExTiTibrio systabieydidochdneccrastidddrbta psef &R vatitbroperatioa page as te pedarultdioalgode hooking on

9/49

The CPU performs address translation in 2 stages: first through guest’s page tables (Windows’
page tables), then through EPT (hypervisor’s page table). Translation must succeed in both cases
for a write to work. If either responds with “no write access”, then there’s no write access, period.
Depending on the functions that we use to attempt write, there can be only 2 outcomes — access
denied or bluescreen.

VTL1 (Secure Kernel): This is where the magic happens. VTL1 runs securekernel.exe, which is
essentially a minimal operating system kernel dedicated entirely to security. It's small, only a few
megabytes in size, focused on one task: enforce code integrity policies. The Code Integrity (ci.dll)
modules live here, along with Secure Kernel Code Integrity (skci.dll). These components validate
every driver before it loads, verify that kernel code hasn’t been modified, and enforce policies
about what can and cannot be executed.

VTLA1 is isolated from VTLO at the hypervisor level. Even though both seem to run at the same
level from the CPU perspective, they’re completely separate virtual machines from the
hypervisor’s perspective. VTL1 is the more trusted level and can access VTL0O’s memory (one-way
access). However, VTLO cannot read VTL1’s memory. VTLO cannot debug VTL1. VTLO cannot
even detect what VTL1 is doing. The only way VTLO can communicate back to VTL1 is through
carefully controlled hypercalls, essentially asking the hypervisor to deliver a carefully checked
message to VTL1. And still, VTL1 decides whether to respond or not.

VTLO (Normal Kernel): This is where the Windows you know resides. The entire Windows kernel
(ntoskrnl.exe), the Hardware Abstraction Layer (hal.dll), and all your drivers run here. While these
components are aware they’re running under virtualization, the hypervisor’s presence is largely
transparent to normal operations, allowing existing Windows software to function without
modification.

In short, VTLO is like a wild, completely untrusted animal living in a cage. VTLO has only strict and
regulated access to certain pages. It can execute kernel code, but it cannot modify what it's
executing. Any attempt to write to a code page triggers an EPT violation, which causes a VM-exit
to the hypervisor, which forwards the violation to VTL1, which immediately bugchecks the system.
The sequence is simple and unforgiving: write attempt to code — EPT violation — VM-exit —
bugcheck.

10/49

~2VTLO locked in the cage

11/49

BUT data sections of all processes have EPT RW- permissions. HVCI does not perform
integrity checks on data sections, so in the right place, attackers could override e.g.
function/variable pointers in the data section, which opens up some possibilities for HVCl-safe
hooks.

1.2 Extended Page Tables (EPT) — The Enforcement Mechanism

EPT is a place where theory meets reality. This is the actual enforcement mechanism that makes
HVCI work. Understanding EPT is critical because this is why every attempt to modify kernel code
fails.

In a traditional, non-virtualized system, address translation works like this:

1. Program gives the CPU a VA (Virtual Address)
2. CPU looks it up in page tables and returns physical address.
3. This page table contains permission bits
o Is it Readable?
o Is it Writable?
o |s it Executable?
4. If the permissions bits are misaligned with the operation that you are trying to perform, you
get a page fault.

But with the virtualization, there’s a problem: the page tables are controlled by the VTLO, which is
untrusted. A compromised kernel could just modify its own page tables to give itself permission to
write to code pages. To prevent this, the hypervisor introduces a second layer of translation:
Extended Page Tables.

12/49

GVA to HPA structure

Fig. 5 GVA to HPA process

13/49

How it works in practice: Windows tracks active processes through doubly-linked lists
embedded in the EPROCESS structure. When a process terminates, the kernel must unlink it
from these lists — a task handled by PspProcessDelete, an internal kernel function responsible
for cleaning up process objects and removing them from the ActiveProcessLinks chain. This
function performs critical integrity checks on the LIST_ENTRY structures to ensure they haven’t
been corrupted or tampered with. If your driver has manipulated these links to hide a process,
PspProcessDelete will detect the inconsistency and trigger a 0x139 bugcheck during
termination.

Understanding how Windows protects code like PspProcessDelete is crucial. When your driver
attempts to access memory at address OxFFFFF80274EE1310 (let’s say that’s where
PspProcessDelete is placed), the CPU first translates that virtual address through Windows’ page
tables to get a Guest Physical Address (GPA). Let’s say that translates to 0x274EE1000. But
that’s not all. The CPU then takes that GPA and translates it again through EPT to get the actual
host physical address.

So even if VTLO marks the page as writable in its page tables, EPT is still able to force the read-
only policy.

VTLO Page Tables (Windows’ Perspective)

Windows sees its page tables and believes that it has full control. For kernel code pages,
Windows typically sets them up like this:

14/49

s

_MMPTE_HARDWARE structure

Fig. 6 MMPTE_HARDWARE structure

15/49

For kernel code pages, Windows sets:

e Valid = 1 (page present in memory)
o Write = 0 (page is read-only... supposedly)
o NoExecute = 0 (execute is allowed)

But here’s the thing: Windows can change these bits. A driver with sufficient privilege can modify
the page tables. That’'s what traditional hooking relied on — changing page permission to writable,
write the hook, then mark them read-only again. This worked for decades, but not anymore.

EPT (Hypervisor’s Perspective):

The hypervisor maintains its own page table for each VM. These EPT structures have a similar
format but with a critical difference: the guest cannot modify them.

16/49

_EPT_PTE structure

Fig. 7 EPT_PTE structure

17/49

For kernel code pages with HVCI enabled, the hypervisor configures EPT like this:

18/49

EPT_PTE entry

Fig. 8 Example of EPT configuration

19/49

This structure is completely out of access for VTLO. Even if you could somehow access that
memory (you can’t), any attempt to modify it would be caught by the hypervisor’'s own memory
protection mechanism.

This was the goal of HVCI: create an enforcement mechanism completely out of reach with only
trusted binaries.

The Permission Check Process

When you driver executes an instruction like “mov byte ptr [OxFFFFF80274EE1310], 0xCC” (trying
to write an INT3 breakpoint), here’s what exactly happens inside the CPU:

Stage 1: Guest Page Table Walk (VTLO)

1. CPU Checks: Is virtual address OxFFFFF80274EE1310 valid?
2. Walk page tables: PML4 -> PDPT -> PD -> PT
3. Find PTE for this address
4. Check PTE permissions:
o Check if Valid bit is 1
Write = 0, but... force PTE write to 1
OR Check CRO.WP (Write Protect bit)
If CRO.WP = 0 (disabled), IGNORE Write bit and allow
Result: Windows page tables allow the write
5. Get GPA: 0x274EE1000

(o]

(o]

[e]

(o]

At this point, traditional Windows security would let the write proceed. The page tables responded
with okay (because of disabled CRO.WP or PTE force-set to write), so the write would succeed.
This is how traditional hooking worked. But...

Stage 2: EPT Walk (VTL1)

Take GPA from stage 1: Ox274EE1000
Look up in EPT: EPT_PML 4-> EPT_PDPT -> EPT_PD -> EPT_PT
Find EPT_PTE for GPA 0x274EE1000
Check EPT_PTE permissions:
Check if Read bit is 1
Write bit is 1, so violation happens
Check if execute bit is 1
Permission denied by EPT
Generate VM-exit: EPT_VIOLATION

The CPU hardware itself stopped the operation. It doesn’t matter what Windows said. It doesn’t
matter that there was disabled CRO.WP. It doesn’t matter that we have set VTLO PTE to write.
EPT said no, and that’s all, nothing else matters.

20/49

Stage 3: VM-Exit Handler (VTL1)

-

. CPU saves current state
. Switch from VTLO to VTL1
. Hypervisor VM-exit:
o Exit: reason: EPT_VIOLATION
GPA that caused violation: 0x274EE1000
Operation type: WRITE
GVA: OXxFFFFF80274EE1310
4. Check: Is this GPA in code region?
5. Response: TRUE — kernel code
6
7

w N

o O

(o]

. Code integrity violation
. Forward to VTL1 for handling

Stage 4: VTL1 Response

1. VTL1 receives notification “Attempted to write to code pages”
2. VTL1 calls KeBugCheckEx
3. System crashes

This entire sequence in hypervisor code that VTLO cannot access and modify.

Part 2: Process Notification Callbacks as an Interception Vector

After multiple failures attempting to hook kernel functions and manipulate process lists directly —
all of which either triggered immediate bugchecks or were blocked by HVCI’'s memory protections
— | returned to the most boring solution imaginable: documented Microsoft APIs. The original goal
remained unchanged: hide processes from user-mode enumeration by removing them from
the kernel’s process tracking structures. No clever tricks, no hardware wizardry, no
architectural exploitation — just a simple callback that Windows officially provides for monitoring
process lifecycle events: PsSetCreateProcessNotifyRoutineEx.

And it worked perfecily.

But before we dive into the solution, let’'s understand the problem we’re actually solving

2.1 What Happens When You Hide a Process

Let’s say you want to hide a process from programs like Task Manager or Process Hacker. The
classic rootkit technique is to unlink the process from the system’s process list. Every
EPROCESS structure contains an ActiveProcessLinks field, a doubly-linked LIST_ENTRY
that chains all processes together. To hide a process, you simply unlink it.

Process 1 <-> Process 2 <-> Process 3

21/49

You manipulate the Flink (Forward link), and Blink (Backwards link) pointer so Process 1 points
directly to Process 3, and Process 3 points back at Process 1. Process 2 is now “hidden”. It is still
running, but invisible to any code that walks the ActiveProcessLinks list.

But there is an issue: when the process terminates, integrity checks are performed. If tampered

links are detected, the system crashes with 0x139 KERNEL_SECURITY_CHECK_FAILURE
exception.

22/49

Fig. 9 0x139 Exception

0x139 Exception

23/49

| started analyzing each function and each step that leads to the bluescreen. One of these
functions stands out — PspProcessDelete. On the image above we can see that directly after the
PspProcessDelete, KiSecurityCheckFailure is called as the first function on the PatchGuard crash
route.

So, let’s look at the nt!PspProcessDelete+0x95:

|

= nt!PspProcessDelete+0x95 code

Fig. 10 PspProcessDelete interrupt

There is an interrupt instruction “int 29h”. In x86/x64 architecture, interrupts are mechanisms that
allow the CPU to temporarily pause normal execution and jump to special handler routines. These
handlers are registered in the Interrupt Descriptor Table (IDT) — a system table that maps each
interrupt number (0x00 through 0xFF) to its corresponding handler function address. When the
CPU executes an interrupt instruction like “int 29h”, it looks up entry 0x29 in the IDT and transfers
control to whatever handler is registered there.

24/49

Int 29h is particularly interesting because it's a Fast Fail interrupt used by Windows for critical
security violations. When the kernel detects tampering with protected structures (like our
manipulated LIST_ENTRY chains), it triggers int 29h, which immediately invokes the bugcheck
mechanism — resulting in that familiar blue screen.

But wait, we can’t hook the IDT because of HVCI, right? Traditionally, rootkits would modify IDT
entries to redirect interrupt handlers, but HVCI marks the IDT as read-only through EPT, making
such modifications impossible from VTL0. When we take a closer look at the

PspProcessDelete function in IDA...

25/49

s

IDA with int 29h code block highlighted

Fig. 11 PspProcessDelete disassembly

26/49

We can see that before the interrupt there are some checks done. Particularly this check:

Ly

| Function responsible for checking

Fig. 12 PspProcessDelete process integrity validation logic

Which in pseudocode looks like this:

27/49

L

Fig. 13 PspProcessDelete pseudocode

What if we could somehow change the execution flow to skip that entire if-block?

Before attempting any code writing, | decided to find out what exactly the RCX register stores.

PspProcessDelete has only one parameter, so it must receive some sort of a structure that
contains process information, right? The first thing that came to mind my was an EPROCESS
structure. To verify that, | quickly went to WinDbg to make sure:

28/49

Verifying if the

Fig. 14 Checking if RCX contains EPROCESS

29/49

Bingo! My guess was right, the “BugCheckParameter2” parameter in IDA is of an EPROCESS
structure type. After replacing the ULONG_PTR with _EPROCESS the entire function became
crystal clear.

30/49

s

Code after replacing BugCheckParameter2 variable to EPROCESS

Fig. 15 Replaced BugCheckParameter2 ULONG_PTR with _EPROCESS structure

31/49

When our process is hidden and we decide to terminate it, one of the first things that are done
during the process termination are checks on the LIST_ENTRYSs to determine if the entries are
tampered with.

The easiest thing that could be done is just overriding the “jz” with “jmp” instruction, but because
of HVCI we can’t do that. Additionally, there aren’t any data section pointers called, so we just
can’t override them to get current context. So, what are the possibilities?

The solution is the most boring and common PsSetCreateProcessNotifyRoutineEx. This routine
registration function allows us to create a callback on process creation and/or termination.

32/49

s

PsSetCreateProcessNotifyRoutineEx function

Fig. 16 PsSetCreateProcessNotifyRoutineEx Microsoft’s documentation

33/49

Our callback function would receive 3 parameters after registration.

L

L

Fig. 17 Process notification callback

34/49

Just before the function call to PspProcessDelete, we receive the same EPROCESS structure in
our process termination callback. What if we just fixed the LIST_ENTRY structures right before
PspProcessDelete’s validation checks execute?

Here’s what “fixing” means in this scenario: when a process is hidden, we’ve unlinked it from the
ActiveProcessLinks doubly-linked list by manipulating its Flink (forward link) and Blink (backward
link) pointers. This creates an inconsistency, the LIST_ENTRY no longer points to valid
neighboring entries in the chain. When PspProcessDelete runs its integrity checks, it detects this
corruption and triggers a bugcheck.

Our callback executes at the perfect moment. After we receive notification that a process is
terminating, but before PspProcessDelete performs its validation. At this point, we can:

1. Detect the terminating process by checking if Createlnfo is NULL in our callback

2. Extract the ActiveProcessLinks from the EPROCESS structure

3. Verify the LIST_ENTRY has been corrupted (check if Flink/Blink point to invalid or
mismatched addresses)

4. Repair the links by restoring valid Flink and Blink pointers that connect back to legitimate
entries in the process list

5. Let PspProcessDelete continue with its validation- it now sees a properly formed,
consistent LIST_ENTRY chain

By the time PspProcessDelete’s validation code executes, the LIST_ENTRY structure is
completely aligned and valid. The integrity checks pass because there’s nothing to detect as
we’ve restored the proper doubly-linked list structure just microseconds before the system
examines it. The process was hidden during its lifetime, but at the moment of termination, we
temporarily “unhide” it by fixing the data structures, allowing clean termination without triggering
security checks.

35/49

2.2 Retrieving Data

36/49

Fig. 18 Retrieving data from EPROCESS in driver code

37/49

First thing we have got to do is to extract the ActiveProcessLinks of the process. We will do that
for every process that is terminated. We can verify if the process is terminating by checking if
Createlnfo is null. In my example, | also extract flags just for the test’s purposes.

The next step is to retrieve LIST_ENTRY structure from the ActiveProcessLinks

[%

L

38/49

Fig. 19 Retrieving LIST_ENTRY

39/49

Firstly, before we apply bypass, we must verify if the terminating process has corrupted
LIST_ENTRY.

[=

L

Fig. 20 Checking if LIST_ENTRY is corrupted

40/49

When corruption is detected, we perform a targeted repair to restore LIST_ENTRY consistency.
The fix addresses the specific validation that PspProcessDelete performs:

What PspProcessDelete Checks: The validation verifies bidirectional consistency in the doubly-
linked list:

e Flink->Blink must equal our list entry
e Blink->Flink must equal our list entry

If either check fails, the system triggers a Fast Fail interrupt (int 0x29) leading to a 0x139
bugcheck.

The Repair: Our code (shown in the second screenshot) restores these pointers by making the
neighboring entries reference our LIST_ENTRY again:

e *FlinkBlink = OurListEntry — Repairs the forward link’s backward pointer
e *BlinkFlink = OurListEntry — Repairs the backward link’s forward pointer

After this repair, both validation checks pass. The LIST_ENTRY structure appears properly formed
and consistent, allowing PspProcessDelete to continue safely without detecting any corruption.

41/49

Fig. 21 Fixing LIST_ENTRY of hidden processes before PspProcessDelete integrity validation

42/49

2.3 Results

= Result image showing run time fix

Fig. 19 Output from the driver

43/49

After manually triggered exception, our driver detects process with corrupted LIST_ENTRY

structure and fixes it. This happens just before PspProcessDelete, successfully bypassing integrity

check.

2.4 Summary

The problem: Hiding processes by unlinking LIST_ENTRY structures works until termination,
when PspProcessDelete’s integrity checks trigger a bugcheck.

The solution: Use PsSetCreateProcessNotifyRoutineEx to register a callback that repairs the
corrupted LIST_ENTRY structures right before PspProcessDelete runs its checks. By the time
validation occurs, the structures appear legitimate.

The constraint: This approach requires a signed kernel driver. On production systems without
test signing enabled, you cannot load arbitrary kernel code — Windows enforces driver signature
verification through Code Integrity policies. This means any practical implementation demands
either:

o Alegitimately signed driver from a trusted vendor
» A compromised/stolen code signing certificate
o Exploitation of a vulnerable signed driver already present on the system

HVCI doesn’t prevent this technique because we’re not modifying code pages — we're

manipulating writable data structures using officially documented callbacks. But the barrier to entry

is high: you need kernel code execution privileges, which on modern Windows means you need a
valid signature.

Part 3: Other Approaches

HVCI’s protection is enforced at the hypervisor and hardware level, making it effectively
unbreakable from VTLO. The Extended Page Tables (EPT) are controlled by Hyper-V, which
operates below the Windows kernel.

If a vulnerability exists in the HVCI security architecture components, we could attempt to exploit
these:

» Boot sector exploits — Compromising the boot process before Hyper-V loads

e CPU vulnerabilities — Hardware-level bugs in Intel VT-x/AMD-V implementation (e.g.
Spectre, Meltdown variants)

o Hypervisor exploits — Finding and exploiting bugs in Hyper-V itself to gain VMX root
access/controls

e VTL1 — Compromising the Secure Kernel through memory corruption or logic bugs

However, all of these require exploitation of potential vulnerabilities.

44/49

3.1 Paths Not Requiring Exploitation

Since HVCI protects code pages, data pages remain writable. This opens a narrow window:

Hook Function Pointers in Data Sections

Some kernel operations dispatch through function pointer tables stored in writable memory. This
could be abused by replacing the pointer and redirecting the execution flow.

This is theoretically viable but extremely difficult in practice. PatchGuard does not monitor
function pointers in kernel data sections or the heap — its protection focuses on well-known
structures like SSDT, IDT, and GDT, as well as code sections in critical modules. Function pointers
stored in writable kernel pool memory remain unmonitored by integrity checkers, creating a
potential attack surface. However, the practical challenges are significant:

1. Finding useful function pointer tables in writable memory requires extensive reverse
engineering and pattern scanning.

2. Most kernel dispatch mechanisms don’t rely on simple function pointer arrays in data sections—
they use more complex structures or inline calls.

3. Even if you locate such pointers, you need them to point to valid signed code to avoid other
protections.

4. The technique still requires a signed driver to execute the modification code in the first

place. While PatchGuard won'’t detect the pointer modification itself, finding function pointers that
would actually change execution flow in a useful way is exceptionally rare and difficult.

Modify vtables

Object-oriented kernel components use virtual function tables in data sections.

Note: This is essentially the same approach as hooking function pointers above — vtables are just
structured arrays of function pointers. The same PatchGuard and CFG protections apply, making
this equally non-viable.

Intercept Callback Registrations

Replace callback function pointers when drivers register them through APIs like
PsSetCreateProcessNotifyRoutineEx, loRegisterFsRegistrationChange, or CmRegisterCallback.

This is partially viable but limited. Callback arrays (like the PspCreateProcessNotifyRoutine
array) are stored in writable kernel data sections and are not directly protected by PatchGuard
checksums. You could theoretically modify these arrays to inject your own callbacks, replace
existing ones or delete them. However, there are significant obstacles:

1. Finding the unexported callback arrays requires pattern scanning or symbol resolution.

2. On systems with HVCI enabled, kernel-mode CFG will validate that callbacks point to valid
signed code.

45/49

3. Some callback mechanisms like ObRegisterCallbacks involve _OBJECT_TYPE structures that
ARE monitored by PatchGuard and will trigger bugchecks if modified.
4. The technique still requires a signed driver to execute the modification code in the first place.

Context Manipulation

Modifying CPU registers at runtime. The most challenging part is to find a reliable way to hijack
thread context to retrieve and modify the register values during runtime to force change execution
flow.

This is theoretically viable but extremely fragile. Techniques like APC injection or
SetThreadContext allow modification of the KTRAP_FRAME structure containing register values
(particularly RIP/instruction pointer) when threads transition contexts. However, this approach
faces severe practical limitations: modern Windows with Intel CET or AMD Shadow Stacks
validates context modifications to prevent control-flow hijacking, timing requirements are
extremely tight, and any mistake results in immediate system instability or crashes.

3.2 Context Manipulation During Thread Transitions

Among the non-exploitation paths explored, context manipulation stands out as the most
sophisticated, and most fragile, approach to achieving our goal of hiding processes without
triggering HVCI violations. The core idea is deceptively simple: if we can’t modify the code that
validates LIST_ENTRY structures, perhaps we can redirect execution around those validation
routines entirely. By capturing and manipulating CPU register state during legitimate thread
transitions, we could theoretically skip over PatchGuard checks or redirect validation logic to
benign code paths that don’t examine our tampered structures.

The Concept:

Windows constantly saves and restores thread context during normal operations — syscall entries,
APC deliveries, context switches between threads. At these moments, the entire CPU register
state (RIP, RSP, RCX, RDX, and others) is captured into memory structures. If we can intercept
these transitions, we gain access to the saved context before it's restored. From there, the attack
becomes surgical: modify the RIP (instruction pointer) to skip validation code or redirect to a
trampoline function, adjust stack pointers if necessary, and let execution resume. The thread
continues as if nothing happened, but we’ve effectively hijacked its control flow without touching a
single byte of protected code.

Implementation Approaches:

Several techniques could theoretically enable this manipulation. APC injection with context
modification involves queueing an Asynchronous Procedure Call to a target thread, then
tampering with the APC'’s delivery context before the kernel dispatches it, redirecting where the
APC “returns” after completion.

46/49

Context swap hooking targets the moment when KeSwapContext (or similar scheduler
functions) saves one thread’s state and loads another’s, giving us a window to modify the saved
register values.

Breakpoint manipulation requires registering as a kernel debugger and placing INT3
breakpoints on target functions; when hit, we handle the debug interrupt, modify the trap frame,
and resume execution elsewhere. Without proper debugger registration, these breakpoints trigger
unhandled exceptions and system faults.

Finally, trap frame manipulation during syscalls intercepts the moment when user-mode code
transitions into kernel mode, the trap frame stored on the kernel stack contains all user-mode
registers, and modifying it before the syscall handler executes can redirect control flow
immediately upon return.

Why This is a Theoretical Path:

This approach has several appealing properties. It operates entirely on CPU registers — the only
execution state not protected by EPT’s memory access controls. It doesn’t modify code pages,
sidestepping HVCI’s primary enforcement mechanism. By redirecting execution to existing code
gadgets, it can leverage ROP-like techniques to compose complex behaviors from legitimate
signed code. Most importantly, it can intercept any function simply by hijacking control flow before
the target executes.

The Challenge:

Despite its theoretical elegance, context manipulation is extraordinarily difficult in practice. Timing
is critical: capturing context too early or too late means operating on stale or incomplete state. The
techniques are extremely fragile — minor kernel updates, changes to scheduling behavior, or
variations in CPU microarchitecture can break them entirely. The complexity is staggering, what
might have been a simple “trick” in older Windows versions now requires intricate chains of
precisely timed operations across multiple subsystems.

Perhaps most limiting, many PatchGuard validation functions are VOID (no-return) functions that
invoke bugchecks directly rather than returning error codes. Simply modifying a register to change
a jump destination won’t help if the function never returns. You must redirect execution before the
validation logic runs, requiring perfect knowledge of call chains and execution paths.

Final Thoughts

The era of clever kernel tricks is over. HVCI didn’t just raise the bar — it fundamentally changed the
game by moving enforcement to a layer that kernel code simply cannot reach. Every attempt to
use traditional interception techniques ends the same way: blocked by hardware or instant
bugcheck.

47/49

What this research demonstrates isn’t a weakness in HVCI, it's a testament to how well it works.
The only viable approach we found doesn’t bypass HVCI at all. Instead, it operates entirely within
the constraints HVCI imposes by manipulating writable data structures and timing operations
precisely to avoid detection mechanisms.

The irony is that after months of complex experimentation, the working solution is almost boring in
its simplicity. No exploitation required, no hardware vulnerabilities leveraged, no hypervisor bugs
discovered. Just understanding what traditional PatchGuard checks, when it checks, and fixing
the data right before those checks run.

However, there’s a critical caveat: this technique addresses PatchGuard’s validation mechanisms,
but Secure Kernel PatchGuard (SKPG) remains largely unexplored territory. SKPG operates
from VTL1 with privileged hypervisor access, monitoring the normal kernel from a security context
that VTLO drivers cannot observe or interfere with. Its checks may be more comprehensive, run at
different intervals, or validate structures we haven’t accounted for. The timing-based repair
approach that works against traditional PatchGuard may be insufficient against SKPG’s
monitoring capabilities.

This narrow success doesn’t mean HVCI is broken. It means that:

1. Code protection works really well. We never touched a single code page

2. Data manipulation is the only viable path. And even that requires perfect timing and deep
understanding

3. The attack surface is tiny. This works for one specific detection mechanism (traditional
PatchGuard’s LIST_ENTRY validation) in one specific function

4. SKPG remains an unknown. We’ve bypassed one layer of protection, but the more
privileged watchdog may detect what we're doing

For researchers, this work shows that understanding the system deeply is more valuable than
looking for magic bullets. Modern Windows security isn’t something you “bypass” with a clever
trick — it's something you have to understand completely, find the exact boundaries of, and work
carefully within those constraints.

The cat-and-mouse game isn’t dead — it’s just moved to a much smaller playing field, where the
mice have to be incredibly precise, and the cat has home-field advantage. And in this case, there
might be a second, more vigilant cat watching from the hypervisor level that we haven't fully
accounted for yet.

48/49

To be continued...

».Cat & Mouse

References

o Saar Amar - “Subverting VBS” (2018)

e Joe Bialek — “Analysis of Windows 10 VBS Attack Surface” (2017)

e https://rayanfam.com/topics/hypervisor-from-scratch-part-4

 https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-
protected-code-integrity

e https://connormcgarr.github.io/hvci

49/49

https://rayanfam.com/topics/hypervisor-from-scratch-part-4
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-protected-code-integrity
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/hypervisor-protected-code-integrity
https://connormcgarr.github.io/hvci

