Check Your Privilege: The Curious Case of ETW's
SecurityTrace Flag

originhg.com/blog/securitytrace-etw-ppl

Connor McGarr January 19, 2026

Computer\HKEV_LOCAL_MACHIME\SYSTEMM\CurrentControlSet\ Contro\WMPNAutologger

> WHEA Marme Type Data
Windows ab] (Default) REG_SZ {value not set)
Winlnit %) Status REG_DWORD 0xDDO0DDOD (0)
» Winlogon
Winresume
~ T WMI
[Auloger]

3 Cellcore

. 5 T CimFSUnionFS-Filter

Circular Kernel Context Logger
> CloudExperienceHostOobe

> Defenderfpilogger
DefenderfAuditLogger

Next Generation
Endpoint Security

Introduction

Recently, while investigating new feature development for our Origin (by Prelude) Runtime
Memory Protection research preview product, we were forced to dig into the inner-workings of
Event Tracing for Windows (ETW). In the course of leveraging our internal ETW tooling, which
executes at a signing and protection level of Antimalware Protected Process Light (PPL), we
noticed that it was possible to issue a "stop trace" code to a target ETW session that had an
undocumented "security trace" flag enabled - which will be the topic of this blog post - without
(seemingly) the necessary privileges required. This undocumented flag appears to ensure that
only processes running at Antimalware-PPL can interact with or modify any ETW trace session
with this flag enabled. In practice, it seems most applicable to AutoLogger ETW trace sessions
(as we will see later). Yet we were able to stop the trace session with only administrative
privileges, without any special signing or elevated protection level. If you're familiar with

Windows internals you will know that - even if not officially acknowledged - resources created or

managed by a protected process generally should not be modifiable by less-privileged entities,
including administrative processes. Given that this flag appears to delegate trace-session
management exclusively to Antimalware-PPL processes, our interest was piqued.

As we set out to determine how any of this was possible in the first place, this led us to
identifying both how to configure and manage this undocumented "security trace" ETW flag
without needing Antimalware-PPL. However, and much more practical and impactful, this
allowed us to identify a new method to consume events from ETW providers which

require Antimalware-PPL, like Microsoft-Windows-Threat-Intelligence, without running as

1/30

https://www.originhq.com/blog/securitytrace-etw-ppl
https://www.preludesecurity.com/runtime-memory-protection
https://www.preludesecurity.com/runtime-memory-protection
https://www.alex-ionescu.com/the-evolution-of-protected-processes-pass-the-hash-mitigations-in-windows-8-1/

Antimalware-PPL and without relying on a kernel driver - or any of the usual "patch-the-
kernel” gymnastics researchers have historically relied on. Alongside this post, we are also
releasing a public proof of concept that encapsulates this research:
ThreatintelligenceConsumer.

ETW Session Management

Although the functionality for creating and managing ETW sessions is exposed in user-mode on
Windows, the kernel is still responsible for the true management of resources related to trace
sessions. One of the primary structures used by the kernel to manage a specific ETW session is
through the WMI_LOGGER_CONTEXT structure.

1kd> dt nt!_WMI_LOGGER_CONTEXT

+0x000 LoggerId : Uint4B

+0x004 BufferSize : Uint4B

+0x008 MaximumEventSize : Uint4B

+0x00c LoggerMode : Uint4B

+0x010 AcceptNewEvents : Int4B

+0x018 GetCpuClock : Uint8B

+0x020 LoggerThread : Ptr64 _ETHREAD
+0x028 LoggerStatus : Int4B

+0x02c FailureReason : Uint4B

+0x030 BufferQueue : _ETW_BUFFER_QUEUE
+0x040 OverflowQueue : _ETW_BUFFER_QUEUE
+0Xx050 GloballList . _LIST_ENTRY

+0x060 DebugIdTrackingList : _LIST_ENTRY

+0x070 DecodeControlList : Ptr64 _ETW_DECODE_CONTROL_ENTRY
+0x078 DecodeControlCount : Uint4B

+0x080 BatchedBufferList : Ptr64 _WMI_BUFFER_HEADER

+0x080 CurrentBuffer : _EX_FAST_REF

+0x088 LoggerName : _UNICODE_STRING

+0x098 LogFileName : _UNICODE_STRING

+0x0a8 LogFilePattern : _UNICODE_STRING

+0x0b8 NewLogFileName : _UNICODE_STRING
<--- Truncated --->

This structure, which is quite large, manages a lot of the data and metadata needed for the
session including the name of the logger, the state of ETW buffers being written to, Last Branch
Record (LBR) and Intel Processor Trace (IPT) ETW enablement status if applicable, flags, and
other items of interest. For the purposes of this blog post, we will examine the various flags
which are present.

2/30

https://github.com/preludeorg/ThreatIntelligenceConsumer
https://www.originhq.com/Closing%20the%20Execution%20Gap.pdf

+0x330 Flags : Uint4B

+0x330 Persistent : Pos 0, 1 Bit
+0x330 AutolLogger : Pos 1, 1 Bit
+0x330 FsReady : Pos 2, 1 Bit
+0x330 RealTime : Pos 3, 1 Bit
+0x330 Wow : Pos 4, 1 Bit
+0x330 KernelTrace : Pos 5, 1 Bit
+0x330 NoMoreEnable : Pos 6, 1 Bit
+0x330 StackTracing : Pos 7, 1 Bit
+0x330 ErrorLogged : Pos 8, 1 Bit
+0x330 RealtimelLoggerContextFreed : Pos 9, 1 Bit
+0x330 PebsTracing : Pos 10, 1 Bit
+0x330 PmcCounters : Pos 11, 1 Bit

+0x330 PageAlignBuffers : Pos 12, 1 Bit

+0x330 StackLookasideListAllocated : Pos 13, 1 Bit
+0x330 SecurityTrace : Pos 14, 1 Bit

+0x330 LastBranchTracing : Pos 15, 1 Bit

+0x330 SystemLoggerIndex : Pos 16, 8 Bits

+0x330 StackCaching : Pos 24, 1 Bit
+0x330 ProviderTracking : Pos 25, 1 Bit
+0x330 ProcessorTrace : Pos 26, 1 Bit

+0x330 QpcbeltaTracking : Pos 27, 1 Bit
+0x330 MarkerBufferSaved : Pos 28, 1 Bit
+0x330 LargeMdlPages : Pos 29, 1 Bit
+0x330 ExcludeKernelStack : Pos 30, 1 Bit

Although the mask of flags is technically represented by WMI_LOGGER_CONTEXT.Flags, the
symbols contain a convenient breakdown of the various values which are available. As we can
see, SecurityTrace is a flag which is present and will be the subject of this blog post. By itself,
however, this flag does not indicate what it is used for, other than the fact that it denotes the
trace is somehow related to security.

To get a sense as to what this flag may be used for, we first enumerated all of the trace
sessions which contained this flag. Note that the list of active loggers cannot exceed 0x50 (80),
as this currently is the maximum number of supported loggers on a system. WinDbg, which we
use for our research, is a very powerful tool for ETW analysis.

1kd> dx ((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])
(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)->EtwSiloState->EtwpLoggerContext))-
>Where(l => 1 != 1).Where(l => 1->SecurityTrace == 1).Select(i => i->LoggerName)
((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-
>EtwSiloState->EtwpLoggerContext))->Where(l => 1 != 1).Where(l => 1l->SecurityTrace ==
1).Select(i => i->LoggerName)

[5] : "DefenderApiLogger" [Type: _UNICODE_STRING]

[6] : "DefenderAuditLogger" [Type: _UNICODE_STRING]

There are only two trace sessions with this feature enabled - DefenderApiLogger and
DefenderAuditLogger. These trace sessions are associated with Microsoft Defender. If one
attempts to analyze the relevant binaries, you will not find the creation of these ETW sessions

3/30

https://blog.trailofbits.com/2023/11/22/etw-internals-for-security-research-and-forensics/

present (via StartTrace). This is because these sessions are registered as AutoLogger ETW
sessions. For the unfamiliar, AutoLogger sessions are used in order for some loggers to
consume events fairly early (all things considered) in the boot process and are not created by a
particular process, but instead are created by the kernel directly (unlike most "normal" sessions
- which are created by a particular process invoking StartTrace). These sessions are

configured through the Registry via

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WMI\Autologger.

Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ControN\WMINAutologger

> WHEA Name Type Data
ando.ws b (Default) REG_5Z (value not set)
anlmt 24 Status REG_DWORD 0x0D0DD000 (0]
> Winlogon
Winresume
~ T WMl
V[vologger

Cellcore

CimFSUnionFS-Filter

Circular Kernel Context Logger
CloudExperienceHostOobe
DefenderApilogger
DefenderAuditLogger

By examining one of the AutoLogger sessions associated with Microsoft Defender we can glean

further insight, potentially, into the SecurityTrace feature.

Computer\HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\ Control\WMN\Autologger\DefenderApilogger

~ DefenderApilogger Name Type Data
-7 {D063715b-eeda-4007-9429-ad526¢62606 e} o8] (Default REG.SZ (valu not st
7 {099614a5-5dd7-4788-8bcG-29F43db28Fc] age REG DWORD 1
» 77 {1418€f04-b0b4-4623-bfTe-dT4abaThbdaa} i -
3 = {ledeee53-Oafe-4609-b846- dBc0B20T3b1f) f;*] BufferSize REG_DWORD 000000040 (B4)
» =7 {54849625-5478-4994- a5ba-3e3b0328¢30d} i ClockType REG_DWORD 000000002 (2)
L7 {85a62a0d-Te17-425F-0d4f- 74922871036} 58] FlushTimer REG_DWORD 0x00000001 (1)
L (Be416C79-d40b-4D1-ad67-5603228234c] ab|GUID REG_SZ {6B4012D0-22B6-464D-A553-20E9618403A2}
s = {aDc1853b-5¢40-4b15-8766-3cF1 c53F85a) 24| LogFileMode REG_DWORD 0x12000180 (402653568)
; {a68calbT-004f-dThE-2698-07e2delf 1F5d) I;'&JMaximumBuffer; REG_DWORD (000000010 (16)
{c688cfB3-9945-5f6-0ele-1ff1fBa2ecda} f;'_tﬂMinimumBuffer; REG_DWORD 000000000 (0)
» 77 {E024841C-75A3-4FAT- AFCB-AEDOCFIBTF23) 5] Start REG_DWORD 0:0000000T (1)
s 7 {eflcc5b-46c1-414e-bb95-e76b07Thd5 1€} 2% Status REG_DWORD 0x00000000 (0)
LT {F4e1897c-bbS5d-5668-F1d8-040F4d8dd344)
> 77 {f2e10392-F0af-4ach- haff-0f4d920c3cdf}
5 T {fc65ddde- dbef-4962-23d5-eScfedeel48)
DefenderAuditlogger

The DefenderApiLogger key itself contains AutoLogger-compliant configuration settings (not all
of the ETW trace session configuration settings are available to AutoLoggers). As we can see in
the above image, there are no configuration options related to "Flags" or any other moniker
which would indicate configuration of various features such as securityTrace, etc. Moreover, if
we put AutoLogger sessions aside and look at the EVENT_TRACE_PROPERTIES structure, which is
used by callers of startTrace to create a new ETW session programmatically, there still are no
options to configure an item such as a "security trace" feature or a securityTrace flag.

4/30

https://learn.microsoft.com/en-us/windows/win32/etw/configuring-and-starting-an-autologger-session

In the case of DefenderApiLogger, all that is present are a list of AutoLogger-compliant ETW
settings, along with a list of GUIDs for the various ETW providers which the DefenderApiLogger
trace session wishes to consume from. For example, the Microsoft-Windows-Services ETW
provider is represented by the first GUID present in the subkey, 0063715B-EEDA-4007-9429-
AD526F62696E. Each of these keys contains additional settings, such as the configuration of
how a particular provider should emit events or how the logger should consume them - including
an additional subkey named "Filters" (if present) which denotes various ETW filters (event ID
filtering, etc.).

Still, however, there is nothing particularly identifiable about any of these configuration settings
that would indicate the configuration of securityTrace. Given that the WMI_LOGGER CONTEXT
structure is a kernel-only structure, we further sought to understand how the ETW runtime in
kernel-mode manages the undocumented SecurityTrace feature.

SecurityTrace Logger Flag

We've mentioned the securityTrace flag - but what does it actually do? One of the clearest
ways to answer this is to look where this flag is evaluated (or set). The primary place where
SecurityTrace is evaluated is in the Windows kernel, specifically the EtwpQueryTrace. As the
name suggests, this function handles queries against a target ETW session. In practice, when
you use a built-in tool like 1ogman to retrieve details about an ETW trace session, the request
ultimately funnels down to EtwpQueryTrace in order to be serviced.

5/30

NTSTATUS _ fastcall EtwpQueryTrace(ETW SILODRIVERSTATE *SiloState, WMI_LOGGER_INFORMATION *WmilLoggerInformation)

{
NTSTATUS status; // eax MAPDST
struct _KTHREAD *CurrentThread; // rax
_WMI_LOGGER_CONTEXT *targetlLoggerContext; // [rsp+48h] [rbp+18h] MAPDST BYREF

targetLoggerContext = @;
status = EtwpValidateloggerInfo(limiloggerInformation);
if (status »=8)
{
CurrentThread = KeGetCurrentThread();
--CurrentThread-»KernellfpcDisable;
status = EtwpAcquireloggerContext(SiloState, &targetloggerlontext);
if (status »=8)
{
status = EtwpChecklLoggerControlAccess(lu, targetloggerContext);
if (status »=8)
{
I
/7 8xABB8 = SecurityTrace
I
if ((targetloggerContext-»Flags.Flags & 8x4000) == @
//

// Is the process performing the guery PPL? If not, access denied.
//
|| (status = EtwCheckSecurityloggerfccess(
KeGetCurrentThread()->ApcState.Process,
KeGetCurrentThread()->PreviousMode),
status »>=8))

{
EtwpGetLoggerInfoFromContext(WmiloggerInformation, targetlLoggerContext);
¥
¥
KeReleaseMutex(&targetloggerContext->LoggerMutex, 8);
ExReleaseRundownProtectionCachefwareEx(
targetloggerContext-»SiloState->EtwploggerRundown[targetloggerContext->Loggerld],
1u);
¥

KeleaveCriticalRegion();

¥

return status;

3

Before talking about how securityTrace is evaluated in this function it is worth talking about
how queries actually work - as this information will become prevalent in the latter portion of this
blog.

ETW session query functionality resides around the wMI_LOGGER_INFORMATION structure. This
undocumented structure is what is actually used by the low-level user-mode caller,
NtTraceControl (via ControlTrace) for most ETW operations, such as starting or querying a
trace. This structure is what is sent to the kernel - not the higher-level (and documented)
EVENT_TRACE_PROPERTIES structure present in the Windows SDK. Although the Windows
Research Kernel (WRK) has a definition of this structure, it has seen quite a few updates since
the WRK was last updated. Luckily, the structure is present in combase.d11 (as an aside, COM
is notoiously hard to debug, so Microsoft actually ships private symbols for combase.d11. Given
COM intersects with much of the OS, it can be a gold mine for information like this).

6/30

0:000> dt combase!_WMI_LOGGER_INFORMATION

+0x000 Wnode : _WNODE_HEADER
+0x030 BufferSize : Uint4B

+0x034 MinimumBuffers : Uint4B

+0x038 MaximumBuffers : Uint4B

+0x03c MaximumFileSize : Uint4B

+0x040 LogFileMode : Uint4B

+0x044 FlushTimer : Uint4B

+0x048 EnableFlags : Uint4B

+0x04c AgelLimit : Int4B

+0x04c FlushThreshold : Int4B

+0X050 Wow : Pos 0, 1 Bit
+0x050 QpcDeltaTracking : Pos 1, 1 Bit
+0x050 LargeMdlPages : Pos 2, 1 Bit
+0x050 ExcludeKernelStack : Pos 3, 1 Bit
+0x050 V20ptions : Uint8B

+0x058 LogFileHandle : Ptr64 Vvoid

+0x058 LogFileHandle64 : Uint8B
+0x060 NumberOfBuffers : Uint4B

+0Xx060 InstanceCount : Uint4B

+0x064 FreeBuffers : Uint4B

+0x064 Instanceld : Uint4B

+0Xx068 EventsLost : Uint4B

+0x068 NumberOfProcessors : Uint4B

+0x06¢c BuffersWritten : Uint4B

+0x070 LogBuffersLost : Uint4B

+0x070 Flags : Uint4B

+0x074 RealTimeBuffersLost : Uint4B
+0x078 LoggerThreadId : Ptr64 Vvoid
+0x078 LoggerThreadId64 : Uint8B

+0x080 LogFileName . _UNICODE_STRING
+0x080 LogFileName64 : _STRING64
+0x090 LoggerName : _UNICODE_STRING
+0Xx090 LoggerName64 . _STRING64
+0x0a® RealTimeConsumerCount : Uint4B
+0x0a4d4 SequenceNumber : Uint4B

+0x0a8 LoggerExtension : Ptr64 Voidf
+0x0a8 LoggerExtension64 : Uint8B

WMI_LOGGER_INFORMATION acts as a translation layer to extract information from, or store
information into, the target trace session's WMI_LOGGER_CONTEXT from the original
EVENT_TRACE_PROPERTIES structure associated with the target operation (such as startTrace
or ControlTrace).

Sechost.d11, the user-mode component which receives the high-level query request from user-
mode, translates the EVENT_TRACE_PROPERTIES structure into the appropriate
WMI_LOGGER_INFORMATION structure - which then is sent to kernel-mode and is populated by the
target wMI_LOGGER_CONTEXT structure. This is then translated back into the expected
EVENT_TRACE_PROPERTIES structure provided by the caller of ControlTrace query operation.

7/30

https://learn.microsoft.com/en-us/windows/win32/api/evntrace/nf-evntrace-controltracew

This translation is achieved in Sechost.d11 via EtwpCopyPropertiesToInfo
(EVENT_TRACE_PROPERTIES->\NMI_LOGGER_INFORMATION)and EtwpCopyInfoToProperties
(WMI_LOGGER_INFORMATION-> EVENT_TRACE_PROPERTIES)

void _ fastcall EtwplopyPropertiesTolnfo(
struct EVENT TRACE PROPERTIES V2 *EwventTraceProperties,
_WMI_LOGGER_INFORMATION *LoggerInformation)

ULONG BufferSize; // eax

bool useVersionedProperties; // zf
unsigned intéd *v20ptions; // rax
ULONGEA wersionedOptions; // rdx

Buffer5ize = LoggerInformation-»>Wnode.BufferSize;

*&LoggerInformation-»Wnode.Buffer5ize = *&EventTraceProperties->»Wnode.Buffersize;

*& oggerInformation->Wnode.Countlost *&EventTraceProperties-»Wnode.Countlost;
* oggerInformation-»>Wnode.Guid.Datad = *EventTraceProperties-s>Wnode.Guid.Datad;
useVersionedProperties = (LoggerInformation-»Wnode.Flags & Bx86680808) == B;
LoggerInformation->Wnode.BufferSize = BufferSize;

LoggerInformation-»>BufferSize = EventTraceProperties-»>BufferSize;
LoggerInformation->MinimumBuffers = EventTraceProperties->MinimumBuffers;
LoggerInformation->MaximumBuffers = EventTraceProperties->MaximumBuffers;
LoggerInformation->MaximumFileSize = EventTraceProperties->MaximumFileSize;
LoggerInformation->LogFileMode = EventTraceProperties->LogFileMode;
LoggerInformation-»>FlushTimer = EventTraceProperties-»>FlushTimer;
LoggerInformation->EnableFlags = EventTraceProperties-»>EnableFlags;
LoggerInformation-»>Agelimit = EventTraceProperties->Agelimit;
LoggerInformation-»>NumberOfBuffers = EventTraceProperties->Number0fBuffers;
LoggerInformation->FreeBuffers = EventTraceProperties->FreeBuffers;
LoggerInformation-»>Eventslost = EventTraceProperties-»>Eventslost;
LoggerInformation-»>BuffersWritten = EventTraceProperties-»>BuffershWritten;
LoggerInformation-»>LogBufferslost = EventlraceProperties-»>lLogBufferslost;

LoggerInformation-»>RealTimeBufferslost = EventTraceProperties-»RealTimeBufferslost;

LoggerInformation-»>LoggerThreadldbd = EventTraceProperties-»LoggerThreadId;
v20ptions = &loggerlnformation->V20ptions;
if (useVersionedProperties)
versionedOptions = 8;
else
versionedOptions = EventTraceProperties-»V20ptions;
*y20ptions = versionedOptions;

What does this have to do with an ETW "security trace"? The actual functionality of a query

operation, as we saw previously in EtwpQueryTrace, is gated by the presence of the target trace

session's WMI_LOGGER CONTEXT.Flags.SecurityTrace bit. In order for the target session's

WMI_LOGGER_INFORMATION structure to be populated from the WwMI_LOGGER_CONTEXT structure (in

other words, in order for a trace query operation to take place), the caller process (i.e., the
process which is performing the query, such as logman.exe or any other caller of
ControlTrace) must contain at least Antimalware-PPL signing level/privilege.

8/30

= EtwpChecklLoggerControlAccess(1u,)
if (»=8)
{
1/
J/ ex4e88 = SecurityTrace
Iy
if ((->Flags.Flags & 8x4000) == @
Iy
[/ Is the process performing the query PPL? If not, access denied.

I’y
I (¢ = EtwCheckSecurityloggericcess(
KeGetCurrentThread()->»ApcState.Process,
KeGetCurrentThread()->PreviousMode),
>=8))
{
EtupGetLoggerInfoFromContext(s 'H

}

This means it is not even possible to query these ETW sessions from a process which has, for
example, SYSTEM privileges.

Microsoft Windows [Version 10.0.26100.658u]
(c) Microsoft Corporation. ALl rights reserved.

C:\Windows\System32>whoami
nt authority\system

C:\Windows\System32>logman query "DefenderApilLogger" -ets
Error:

Access is denied.
Try running this command as an administrator.

However, the securityTrace feature is more useful than just filtering the ability to query a
session from user-mode directly via ControlTrace with the EVENT_TRACE_CONTROL_QUERY
control code (although it is one of, if not the fundemental operation it is used for). The
SecurityTrace flag is also checked in other security-relevant code paths. Curiously, however,
the check is not present when the "stop ETW trace session" code path (EtwpStopLogger
in Sechost.dll, EtwpStopTrace in NT) is exercised.

In the kernel, the presence of the securityTrace bit is checked in EtwpStoplLoggerInstance
(which is called by EtwpStopTrace). However, the check is not "security-related"” (i.e., validating
the calling process is running at Antimalware-PPL) and simply is to, if the target trace session
had the Microsoft-Windows-Security-Auditing provider enabled, update global information about
this provider - which has special handling in the kernel. This is because, as we will see later,
one of the ways in which the securityTrace feature can be enabled is to consume from the
Microsoft-Windows-Security-Auditing ETW provider in a very specific manner.

9/30

etwsiloState-»EtwpSecurityProviderGuidEntry. Lock.Value = 8;
etwSiloState-»>EtwpSecurityProviderGuidEntry.5ilo5tate = etwSiloState;
etwSiloState-»EtwpSecurityProviderGuidEntry.Guid = SecurityProviderGuid,;

Given no explicit Antimalware-PPL check occurs (and that a stop operation also does not result
in a query, which would implicitly perform the Antimalware-PPL check) between the issuing of
the stop code and the trace session being stopped, if the name of the target session with
SecurityTrace enabled is known it is still possible for a process with only administrative
privileges (SYSTEM in the case of the Defender session due to additional security descriptors)
privileges to stop an ETW trace session with the securityTrace flag present (even though
querying such a session would require the querying process to possess Antimalware-PPL).
Though, as just mentioned, additional measures such as security descriptors can further tighten
the permissions needed to perform such an action on a trace session.

eventProperties->Wnode.Guid = k_DefenderApilLoggerGuid;
eventProperties->LoggerNameOffset = sizeof (EVENT_TRACE_PROPERTIES);

error = ControlTraceW(O,
L"DefenderApiLogger",
eventProperties,
EVENT_TRACE_CONTROL_STOP);
if (error != ERROR_SUCCESS)

{
goto Exit;

wprintf(L"[+] Successfully stopped DefenderApiLogger trace session.\n");

10/30

Microsoft Windows [Version 10.6.26100.658U]
(c) Microsoft Corporation. ALl rights reserved.

C:\Windows\System32>whoami
nt authority\system

C:\Windows\System32>logman query "DefenderApilLogger" -ets

Error:
Access is denied.

Try running this command as an administrator.

C:\Windows\System32>C: \Users\ANON\Desktop\StopSecurityTraceEtw.exe
[+] Successfully stopped DefenderApilogger trace session.

C:\Windows\System32>logman query "DefenderApilLogger" -ets

Error:
Data Collector Set was not found.

Lastly, SecurityTrace and Antimalware-PPL checks almost always occur in tandem with the
EtwCheckSecurityLoggerAccess kernel function. This is the actual function which performs the
check for if the requesting/querying process has the necessary privilege (Antimalware-PPL) the
operation. This function is also responsible for ensuring that only Antimalware-PPL processes
can enable Microsoft-Windows-Threat-Intelligence related telemetry on desired processes. Not
all Microsoft-Windows-Threat-Intelligence events are generated by "default" even with the
appropriate keywords enabled. For example, processes must be opted-in to emitting specific
events, such as reading/writing to/from memory. Processes do not emit these events by default.

NTSTATUS _ fastcall EtwCheckSecurityloggericcess(EPROCESS *QueryingProcess, char PreviousMode)

{
if ()
return RtlTestProtectedAccess(-*Protection.level, @x31u) == STATUS_ SUCCESS ?» STATUS_ACCESS_DENIED : @;
else
return STATUS_SUCCESS;

¥

To summarize: the point, in our view, of the securityTrace flag seems to be to prevent non-
Antimalware-PPL processes from accessing ETW data specific to sessions (more specifically,
as we will see, AutoLogger trace sessions) with this bit set. This brings up the obvious question:
how can one enable this feature in the first place? Additionally, could there be any implications
for sessions which have the securityTrace feature enabled?

11/30

https://jonny-johnson.medium.com/peeling-back-the-mask-how-the-threat-intelligence-provider-is-protected-9968c38c5481

SecurityTrace - AutoLogger Sessions

In our analysis we identified three ways to enable the SecurityTrace feature. The first two
methods happen indirectly through the specific configuration of an AutoLogger trace session.

AutoLogger sessions go through a special code path in the kernel in order to have all of the
requested providers enabled (this will be important for later in the blog post). AutoLoggers trace
sessions have their target providers enabled via EtwpEnableAutoLoggerProvider (instead of
EtwEnableTrace directly). This function begins by extracting all of the provider subkeys in the
target AutoLogger Registry key entry, iterating by provider GUID. If any of the target providers
are either Microsoft-Windows-Kernel-Audit-Api-Calls or Microsoft-Windows-Threat-Intelligence,
the target trace's WMI_LOGGER_CONTEXT structure is updated to contain the securityTrace flag.

I
// Did the Autologger have Kernel-Audit-API-Calls or
// Threat-Intelligence in the enabled providers?

I
if (!'memcmp(&targetGuid, &s_ProviderfAuditApiCalls, @x18u) || !memcmp(&targetGuid, &s_ProviderThreatInt, @x16u))

1
if (TargetSiloState != EtwpHostSiloState)
goto Exit;
if (loggerId < TargetSiloState-»MaxLoggers)
{
loggerContext = TargetSiloState-»>EtwploggerContext[loggerId];
if ((loggerContext & 1) == 8)
{
if (loggerContext-»LogFileName.Buffer)
goto Exit;
/i
// SecurityTrace

I
_InterlockedOr{&loggerContext-»Flags, @x4880u);
)i
¥
¥

The key here to remember is that the sessions are not started in context of any particular
process - meaning there is no Antimalware-PPL check to be done at this point because the
requesting "process" is the System process - in other words, the kernel itself. Traditionally, an
ETW trace session cannot enable Microsoft-Windows-Threat-Intelligence because of the fact
that when EnableTraceEx2 is called, the caller process has its identity verified - and if it is not
an Antimalware-PPL process, an access denied error is propogated back to the caller.

The difference for AutoLoggers resides in the fact that there is no check to be done on a caller
of EnableTraceEx2 because provider enablement for AutoLoggers it not tied to a particular
process identity, as it does not involve a process calling EnableTraceEx2. The kernel itself is
responsible for enabling all of the requested providers (which are listed, as previously shown, in
the Registry for each AutoLogger). This is why the presence of the securityTrace flag is
important, as it's purpose is to protect AutoLogger sessions which have enabled privileged
providers, like Microsoft-Windows-Threat-Intelligence, from being consumed by non-

12/30

Antimalware-PPL processes. Although nothing can be done to check the identity of a process
enabling a particular provider for an AutoLogger trace session at the time of enablement (as
there is no process context to check), the OS can at least delegate this check to later, when a
process attempts to then consume from this session. This is exactly where securityTrace
comes into play.

The second way an AutoLogger can enable this capability is by setting an undocumented, but
valid, AutoLogger Registry configuration value. The value in this case is
EnableSecurityProvider. This is achieved in EtwpStartAutoLogger in the kernel (note that
SecTraceUnion is user-defined and is not the name of the union which is actually used in the
WMI_LOGGER_INFORMATION structure we have previously mentioned. Flags in this case is a 1-to-
1 mapping of Flags in the target session's WMI_LOGGER_CONTEXT, as we will see later).

if (autolLoggerEnabledSecurityProvider)
1
logFileMode = loggerInfo-»LogFileMode;
if ((logFileMode & BxBOu) == @ || (logFileMode & Bx10@) == @ || loggerInfo->DUMMYUNIONMAMES.LogFileName.Buffer)
{
status = STATUS_ACCESS_DENIED;

goto Exit;
}
/!
[/ Sets both QpcDeltaTracking and SecurityTrace
1
loggerinfo-»SecTraceUnion.Flags |= 8x80884080u;

As a point of contention, when the EnableSecurityProvider AutoLogger key is set a few
additional implicit actions occur. Any AutoLogger which has this key set will automatically be
opted-in to consuming the Microsoft-Windows-Security-Auditing ETW provider and the target
logger ID is added to the list of known loggers consuming from this provider, via the
ETW_SILODRIVERSTATE structure managed PspHostSiloGlobals in the kernel. This is because
the EtwpSecurityProviderGuidEntry is always set to the Microsoft-Windows-Security-Auditing
provider in EtwpPreInitializeSiloState.

13/30

1

// SecurityTrace

1

if ((LoggerContext-»Flags.Flags & 8x4808) != 8)

1

Additionally, the first logger ID in the EtwpSecurityLoggers array is hardcoded, in

for (1 =0; i < 8; ++1)

1

-

= (siloState + 2 * i);

iloState
f (siloState-»EtwpSecurityloggers[B] == LoggerContext-»LoggerId)

si

currentThread = KeGetCurrentThread();
--currentThread-»KernelApcDisable;
unknown = KeAbPreAcquire(&siloState->EtwpSecurityProviderGuidEntry.lLock, 8, 8);
if (_interlockedbittestandset64(&siloState->EtwpSecurityProviderGuidEntry.Lock, 8))
ExfAcquirePushlLockExclusiveEx(
&=iloState->EtwpSecurityProviderGuidEntry. Lock,
unknown,
&ziloState-»EtwpSecurityProviderGuidEntry. Lock);
if (unknown)
{
if ((KiAbpGlobalState & 1) !=8)
AutoBoost: :KiAbpPostAcquire(unknown);
else
#(unknown + 18) = 1;
1
siloState-»EtwpSecurityProviderEnableMask &= ~(1 << 1);
index = i,
#&siloState-»EtwpSecurityProviderGuidEntry.EnableInfo[index].IsEnabled = 8;
*&=1loState->EtwpSecurityProviderGuidEntry . EnableInfo[index].MatchAnyKeyword = 8;
siloState-»EtwpSecurityloggers[8] = 8;
siloState-»EtwpSecurityProviderGuidEntry. LockOwner = @;
_m_prefetchw(&siloState-»EtwpSecurityProviderGuidEntry. Lock);
lockValue = siloState-»EtwpSecurityProviderGuidEntry. Lock.Value;
val = lockValue - 16;
if ((lockValue & BxFFFFFFFFFFFFFFFBULL) <= ©x18)
val = @;
if ((lockValue & 2) !=0
|| (value = siloState->EtwpSecurityProviderGuidEntry.Lock.Value,
Value != _InterlockedCompareExchange6d(&siloState->EtwpSecurityProviderGuidEntry.Lock,

ExfReleasePushlock(&siloState-»EtwpSecurityProviderGuidEntry. Lock, val);
KeAbPostRelease(&siloState-»EtwpSecurityProviderGuidEntry. Lock);

KeleavelriticalRegion();
break;

val, lockValue)))

EtwpPreInitializeSiloState, to the logger ID of 3 - which is always reserved for the
EventLog-Security trace session. And, as mentioned, any AutoLogger which specifies the
EnableSecurityProvider Registry value will be added to this list - as well as have the

SecurityTrace bit enabled.

14/30

etwSiloState-»Maxloggers = maxlLoggers;
loggerRundown = ExAllocatePool2(Bx48u);
etwSiloState-»EtwploggerRundown = loggerRundown;
if (loggerRundown }
{
loggerld = B;
etwSiloState-»FtwploggerContext = (loggerRundown + maxloggers);
while (loggerld < etwSiloState-»MaxlLoggers)
1
etwSiloState-»EtwploggerContext[loggerId] = 1;
loggerfundown = etwSiloState->»EtwploggerRundown;
loggerRundown[loggerld] = ExAllocateCachefwareRundownProtection(NonPagedPoollNx, "cwtE');
if (letwSiloState-»EtwploggerRundown]loggerId])
goto Exit;
++loggerld;
1
KelnitializeMutex({&=twS5iloState-»EtupStartTraceMutex, 8);
hashTable = etwSiloState->EtwpGuidHashTable;
etwSiloState-»EtwpSecurityloggers[@] = 3;

In addition there is a "non-AutoLogger" method to enable the SecurityTrace flag without
running at Antimalware-PPL (and also, for that matter, dynamically/programmatically without the
help of the AutoLogger Registry keys). Additionally, we will outline how it is possible to also
consume from such traces without Antimalware-PPL.

WMI_LOGGER_INFORMATION

As previously mentioned there is a level of abstraction, in user-mode, between the documented
EVENT_TRACE_PROPERTIES structure and the kernel-mode WMI_LOGGER_CONTEXT structure - and
that is the wMI_LOGGER INFORMATION structure. Taking a look at this structure, there is some
interesting behavior present. Specifically, Flags and LogBuffersLost:

0:000> dt combase!_WMI_LOGGER_INFORMATION

<--- Truncated --->
+0x070 LogBuffersLost : Uint4B
+0x070 Flags : Uint4B
<--- Truncated --->

As seen above, both of these members are located at the same place in memory (offset 0x70).
This infers these two members are actually part of a union (represented by our SecTraceUnion
union earlier), and only one of the values can be valid at a time. LogBuffersLost, which is
present in the documented EVENT_TRACE_PROPERTIES structure is unioned with another member
which is not present in the documented structure: Flags. This Flags member, as we mentioned
earlier, is directly imported from the intermediary WMI_LOGGER_INFORMATION structure, provided
by user-mode, into the F1lags member of the WMI_LOGGER_CONTEXT structure in kernel mode.

15/30

if ((newloggerContext-»LoggerMode & Bx1088) != 8)
_InterlockedOr(&newloggerContext->Flags, 8u);

else
_InterlockedAnd(&newloggerContext->Flags, BxFFFFFFF7);

if { (LoggerInformation-»SecTraceUnion.Flags & 2) =8)
_InterlockedOr(&newloggerContext-»>Flags, 2u);

if ((LoggerInformztion-»SecTraceUnion.Flags & ©x80080008) != @)
_InterlockedOr(&newloggerContext->Flags, Bx30080000);

if ((LoggerInformation-»SecTraceUnion.Flags & 1) '= 8)
_InterlockedOr(&newloggerContext-»Flags, 1u);

if ((LoggerInformation-»SecTraceUnion.lLogBuffersLost & 0x4000) != @)
_InterlockedOr(&newloggerContext->Flags, @x4808u);

% Choose union field O *

Field Type

SecTracellnion.LogBuffersLost unsigned int

SecTracelnion.Flags unsigned int

In our case, however, because LogBuffersLost is present in the EVENT_TRACE_PROPERTIES
structure passed to startTrace, and because this is unioned with Flags, if LogBuffersLost is
set to 0x4000 in the call to startTrace (the mask associated with the securityTrace bit being
setin WMI_LOGGER_CONTEXT.Flags) this value is directly imported into the target
WMI_LOGGER_CONTEXT structure! This is because, again, EtwpCopyPropertiesIntoInfo
(EVENT_TRACE_PROPERTIES -> WMI_LOGGER_INFORMATION) in Sechost.d11 performs a direct
copy of the unioned data.

16/30

void fastcall EtwpCopyPropertiesToInfo(
struct EVENT TRACE PROPERTIES W2 *EventTraceProperties,
_WMI_LOGGER_INFORMATION *LoggerInformation)

{
ULONG BufferSize; // eax
bool useVersionedProperties; // zf
unsigned _ int6d *v20ptions; // rax

ULONGEd wersionedOptions; // rdx

BufferSize = LoggerInformation->Wnode.BufferSize;
*&loggerInformation->Wnode.BufferSize = *&tventiraceProperties->Wnode.BufferSize;
*&loggerInformation-»Wnode.Countlost = *&EventTraceProperties-»Wnode.Countlost;
*LoggerInformation->Wnode.Guid.Datad = *EventTraceProperties->hnode.Guid.Datad;
useVersionedProperties = (LoggerInformation-»Wnode.Flags & 9x800808) == 8;
LoggerInformation-»>Wnode.BufferSize = BufferSize;
LoggerInformation->BufferSize = EventTraceProperties->BufferSize;
LoggerInformation->MinimumBuffers = EventTraceProperties->MinimumBuffers;
LoggerInformation->MaximumBuffers = EventTraceProperties->MaximumBuffers;
LoggerInformation->MaximumFileSize = EventTraceProperties-»>MaximumFileSize;
LoggerInformation->LogFileMode = EventTraceProperties-»>LogFileMode;
LoggerInformation->FlushTimer = EventTraceProperties->FlushTimer;
LoggerInformation->EnableFlags = EventTraceProperties->EnablefFlags;
LoggerInformation->Agelimit = EventTraceProperties->Agelimit;
LoggerInformation->NumberOfBuffers = EventTraceProperties->NumberOfBuffers;
LoggerInformation->FreeBuffers = EventTraceProperties->FreeBuffers;
LoggerInformation->Eventslost = EventTraceProperties->Eventslost;
LoggerInformation->BuffersWritten = EventTraceProperties->BuffersWritten;
LoggerInformation->LogBufferslost = EventTraceProperties->LogBufferslost;
LoggerInformation-»>RealTimeBufferslost = LventTraceProperties-»>RealTimeBufferslost;
LoggerInformation->LoggerThreadld6d = EventlraceProperties->LoggerThreadld;
v20ptions = &loggerInformation->V20ptions;
if (useVersionedProperties)

versionedOptions = @;

else
versionedOptions = EventTraceProperties->V20ptions;
*y20ptions = versionedOptions;
€ Choose union field O >
Field Type
LogBuffersLost unsigned int
Flags unsigned int

This allows one programmatically to enable securityTrace without running at Antimalware-
PPL, or without needing to even use an AutoLogger trace session that enables any providers
which do require Antimalware-PPL in order to consume from the trace. Additionally, one must
set this flag on the call to StartTrace (it is not possible to call ControlTrace with an updated
EVENT_TRACE_PROPERTIES containing a new value for LogBuffersLost. This value is ignored in
update scenarios by the kernel via EVENT_TRACE_CONTROL_UPDATE).

17/30

//

// <snip>

//

traceProperties->LogBuffersLost = 0x4000; // Treated as "Flags" if 0x4000 is set in
nt!EtwpStartLogger.

error = StartTraceW(TraceHandle,

TraceName,
traceProperties);
if (error !'= ERROR_SUCCESS)
{
wprintf(L"[-] Error in StartTraceW! (Error: 0x%1x)\n", error);
goto EXit;
}

After the call to startTrace, with LogBuffersLost set to 0x4000, the SecurityTrace bitis setin
the target trace's WMI_LOGGER_CONTEXT.

3: kd> dx ((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])
(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)->EtwSiloState->EtwpLoggerContext))-
>Where(l => 1 != 1).Where(l => 1->SecurityTrace == 1).Select(i => i->LoggerName)
((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-
>EtwSiloState->EtwpLoggerContext))->Where(l => 1 != 1).Where(l => 1l->SecurityTrace ==
1).Select(i => i->LoggerName)

[5] : "DefenderApiLogger" [Type: _UNICODE_STRING]
[6] : "DefenderAuditLogger" [Type: _UNICODE_STRING]
[41] : "MyTrace" [Type: _UNICODE_STRING]

So, as we can see, we can still create a trace which prevents any process without Antimalware-
PPL from querying the session! This is especially useful for software which wants to create an
ETW session that is protected from being discovered by other processes (as no AutoLogger key
is needed to do this).

The issue though is that, in its current state, this is completely useless because we still run into
an issue when it comes time to actually consume ETW events from this trace session. As we
have seen thus far - in almost every scenario where SsecurityTrace is enabled, the assumption
is the target process consuming from the trace will be running at Antimalware-PPL (even though
we know it is possible for a process which is not running at Antimalware-PPL to enable this
feature).

In order to consume events (using the documented APIs) we need two calls: openTrace and
ProcessTrace. OpenTrace and ProcessTrace, for real-time ETW consumers, contain a call to
the private function EtwpQueryRealTimeTraceProperties in Sechost.dll.

18/30

https://learn.microsoft.com/en-us/windows/win32/etw/consuming-events

ULONG _ fastcall EtwpQueryRealTimeTraceProperties(
LPCWSTR Instancelame,
PEVENT_TRACE_PROPERTIES Properties,
unsigned int *Number0fProcessors,
unsigned int *HistoricalContext)

ULONG error; // eax

ULONGE4 historicalContext; // rbx

ULONG numberOfProcessors; // ecx

_DWORD outBuffer[6]; // [rsp+36h] [rbp-18h]
ULONG returnlLength; // [rsp+58h] [rbp+16h] E

outBuffer[@] = 8;

returnLength = 8;

memset B(& roperties->Wnode.ProviderId, 8, 8x1874u);
Properties-»Wnode.BufferSize = 8x1878;

error = ControlTraceW(@®, Instancelame, Properties, EVENT_TRACE_CONTROL_QUERY);
if (lerror)

{
if ((Properties-»LogFileMode & 8x188) !=8)
{
historicalContext = Properties-»Wnode.HistoricalContext;
if (TraceQueryInformation(historicalContext, TraceStreamCount, outBuffer, 4u, &returnlength) || returnlength 1= 4)
{
if ((Properties-»LogFileMode & ©x10000808) != 0)
number0fProcessors = 1;
else
number0fProcessors = NtCurrentPeb()->Number0fProcessors;
¥
alse
{
numberOfProcessors = outBuffer[@];
¥
if (HistoricalContext)
*HistoricalContext = historicalContext;
if (NumberOfProcessors)
*NumberOfProcessors = number0fProcessors;
return @;
¥
else
{
return ERROR_WMI_INSTAMCE_NOT_FOUND;
¥
}
return error;

This function occurs inline with openTrace and ProcessTrace. The fundamental problem here is
that calling both of these functions will implicitly call ControlTrace with the
EVENT_TRACE_CONTROL_QUERY code - which results in a query operation to the kernel. As already
mentioned, given that securityTrace must be set at the time of the call to startTrace and
cannot be updated, the securityTrace bit will already be set at the time of the call to
EtwpQueryRealTimeTraceProperties. Since query operations result in a check of the
SecurityTrace bit (and given our process which is making the calls to openTrace and
ProcessTrace is not running as Antimalware-PPL) the operation will fail with
ERROR_ACCESS_DENIED. Going back to what we mentioned earlier, this is why it is not possible to
consume events from a trace session that has SecurityTrace enabled without Antimalware-
PPL. However, given that this check is occurring in user-mode, there is more than what meets
the eye!

19/30

Consuming from a SecurityTrace Session Without Antimalware-PPL

The fundamental reason why consuming fails is due to the query operation. However, given that
the check is delegated to user-mode instead of happening inline in the kernel itself as part of a
call to NtTraceControl for consuming events, and given that we fully-control the process which
is invoking OpenTrace and ProcessTrace - we can bypass this check and consume from any
trace session which has securityTrace enabled. There are two primary options to choose
from:

1. Use only native APIs from ntd11.d11 (primarily Nt TraceControl) to consume from the
trace session. Since OpenTrace and ProcessTrace are high-level APls, directly calling the
native APIs will result in a bypassing of the query operation

2. Install a hook on EtwpQueryRealTimeTraceProperties (or ControlTrace itself) to detour
all query operations to our own variant. This can be achieved using a supported library like
Microsoft Detours, or by installing your own hook.

Due to time constraints we opted for the latter option, which resulted in using our own simple
function hook (not using Detours or any other library). Given we opted for a function hook, we
needed to compensate for a few things. The first being returning to the caller of
EtwpQueryRealTimeTraceProperties all of the information it expects. This includes:

1. The number of processors on the system

2. The HistoricalContext (which is referred to as the "trace handle", but really is just the
logger ID preserved in the ETW_REALTIME_ CONSUMER structure - or additionally the position
of the session's WMI_LOGGER_CONTEXT structure in the EtwpLoggerContext array found in
PspHostSiloGlobals->EtwSiloState in the kernel)

3. The "final" EVENT_TRACE_PROPERTIES to return to the caller (which needs to be 0x1078
bytes in size)

4. An ERROR_SUCCESS (0) return code

However, this is if we choose to install a hook on EtwpQueryRealTimeTraceProperties. Given
that this is a private function - as indicated by the Etwp prefix - this function is not exported and
it will be a more involved process in order to keep a working POC portable/updated. A more
portable method for a POC would be to install a hook on ControlTrace for only query
operations. ControlTrace is exported and its address can always be known. Because of this all
that is required is returning both a a "success" error code and the output tracing properties.
Note that the call to TraceQueryInformation, which is one of the ways the number of
processors is retrieved, does not result in an actual call to EtwpQueryTrace in the kernel.

Going back to EtwpQueryRealTimeTraceProperties, the query operation is presumably an
artifact of getting a "known good copy" of the target trace properties from the kernel - and
additionally so that a check of the securityTrace bit can occur. Trial-and-error revealed that
simply just providing the EVENT _TRACE_PROPERTIES returned from the original call to StartTrace

20/30

https://github.com/microsoft/Detours

was sufficient and the queried properties are not necessary. So, for our purposes, all that is
needed is to detour calls to ControlTrace for query operations to our own hook and then return
to the caller the tracing properties we already have populated from the call to startTrace! The
controlTrace hook simply identifies if the target operation is a query and, if it is, returns the
target trace properties to EtwpQueryRealTimeTraceProperties (which then fills out the
HistoricalContext and number of processors as a result of natural execution).

21/30

22/30

Disassembly Hooks.asm % R0l Na]d]

1 .CODE
2
3 extern k_TraceProperties:QWORD
4 extern g OriginalControlTracel:QWORD
5
6 ; RCX: Traceld
7 3 RDX: InstancelNams
& ; R&: Properties
9 ; R9: ControlCode
& 18 MyControlTraceW PROC
11 ; If the target operation is anything other than a query,
12 ; Jjump to the real ControlTracelW function.
13 int 3
14 cmp r9, @ , EVENT_TRACE_CONTROL_QUERY
15 je hooked control tracew
16 jmp real_control_tracew
17
18 hooked control tracew:
19 ; RDI, RSI, and RCX are going to be used here.
28 ; Preserve them. Alsoc the flags.
21 pushfg
22 push rdi
23 push rsi
24 push rcx
25
26 : R8 is a structure on the stack. Therefore
27 ; we need to memcpy instead of just assigning
28 5 the value.
29 mov rdi, rg
38 mov rsi, k TraceProperties
31 Xor rax, rax
32 mov eax, 28Fh ; Counter: @x1878 / 8 = e@x28F (527 qwords)
33
34 ; memcpy implementation.
35 memcpy_loop:
36 mov rcx, gword ptr [rsi] ; Read 8 bytes from source
37 mov quord ptr [rdi], rcx ; Write & bytes to destination
38 add rsi, 8 : Advance source
39 add rdi, 8 : Advance destination
48 dec eax 3 Decrement counter
41 jnz memcpy_ loop
42
43 ; Restore non-volatile registers. And flags.
44 pop rcx
45 pop rsi
46 pop rdi
47 popfq
43
49 ;s bail
58 jmp exit label
51
52 exit label:
53 s ERROR_SUCCESS
LY. Xor rax, rax
5E ret

56

23/30

t7 ; Forward to standalone trampoline that properly executes
58 ; the original ControlTraceW with all parameters intact.
59 real control tracew:

68 ; Simply jump to the trampoline function in allocated memory.

61 ; All parameters (RCX, RDX, R8, R2) are still intact.

62 ; The trampoline will execute the original bytes and return properly.
63 int 3

64 jmp qword ptr [g OriginalControlTracew]

65 MyControlTraceW ENDP

66

67 END

The above code simply returns the necessary information the caller of
EtwpQueryRealTimeTraceProperties needs without the actual query operation (which would
fail, as mentioned, due to the consuming process not running at Antimalware-PPL). By simply
inserting this thunk we can now successfully consume ETW events from a trace session which
has the securityTrace bit set without Antimalware-PPL! We can also use this exact same
method to consume protected ETW providers, like Microsoft-Windows-Threat-Intelligence,
without Antimalware-PPL!

Consuming From Microsoft-Windows-Threat-Intelligence Without
Antimalware-PPL

As mentioned earlier, the whole point of the securityTrace bit is to protect ETW trace sessions
that wish to consume from privileged ETW providers, like Microsoft-Windows-Threat-
Intelligence - specifically in AutoLogger scenarios. The reason for this is pretty straightforward -
the code paths to enable an ETW provider in a target trace session, in the kernel, differ based
on if the trace session is an AutoLogger session or not. If the trace session is not an AutoLogger
trace session it is impossible to consume from the Microsoft-Windows-Threat-Intelligence
provider without being an Antimalware-PPL. This is due to a check which occurs in
EtwpCheckNotificationAccess in kernel-mode (recall when the AutoLogger enablement
happens there is no "process context" for which EnableTraceEx2 can be invoked, since the
kernel is responsible for standing up all AutoLogger sessions).

24/30

NTSTATUS _ fastcall EtwpCheckMotificationAccess(_GUID *TargetGuid, _GUID *TraceSessionGuid)
{

NTSTATUS status; // eax MAPDST

__int6d isNotProtectedProvider; // rax

status = EtwpCheckGuidAccess(TargetGuid, Bx86u);
if (status »= STATUS_SUCCESS)
{
status = EtwpCheckGuidAccess(TraceSessionGuid, @x80u);
if (status »= STATUS_SUCCESS)
{
islotProtectedProvider = *&TargetGuid-»Datal - *&s_ProviderThreatInt.Datal;
if (*&TargetGuid-»Datal == *&s_ProviderThreatInt.Datal)

islotProtectedProvider = *TargetGuid-»Datad - *s_ProviderThreatInt.Datad;
if (!isNotProtectedProvider)
1
// Does the consuming process have PPL?
1
return EtwCheckSecurityloggericcess(KeGetCurrentThread()->ApcState.Process, KeGetCurrentThread()->PreviousMode);
¥
¥
return status;

3

The issue here is that with an AutoLogger ETW trace session the actual check is different. If the
Microsoft-Windows-Threat-Intelligence provider is to be consumed by an AutoLogger, only the
SecurityTrace flag is checked - there is no call to EtwpCheckNotificationAccess, as there is
no process context to validate against. This is because the kernel itself is responsible for
instantiating all AutoLogger sessions, not a particular process. We saw this earlier in the blog
with how an AutoLogger has the securityTrace bit set in the first place. Given this, we can
instrument the following:

1. Create an entry in the AutoLogger Registry key to consume from Microsoft-Windows-
Threat-Intelligence. This will enable Microsoft-Windows-Threat-Intelligence in the trace
session. Note that the trace has not yet been consumed by a target process, meaning no
Antimalware-PPL check happens because it is not applicable at this state as the kernel is
creating all of these sessions - not a particular process

2. Patch controlTrace in user-mode, which allows consumption from a trace that has the
SecurityTrace bit set. We just need to provide the target EVENT_TRACE_PROPERTIES
structure

3. Call openTrace and ProcessTrace as normal. This results in everything needed to
consume from the session without the query operation we previously showed.

The only challenge in the above implementation is EVENT_TRACE_PROPERTIES. In our original
proof-of-concept, we took solace in the fact that we had a fully-populated
EVENT_TRACE_PROPERTIES structure after the original call to startTrace. Given that we are
trying to consume from an already-existing AutoLogger session, we can no longer call
StartTrace because the session already exists. This means we need to manually populate our
own EVENT_TRACE_PROPERTIES structure to return to the caller of
EtwpQueryRealTimeTraceProperties in Sechost.d11l. Recall that we cannot directly query for

25/30

these properties without Antimalware-PPL, since SsecurityTrace is set. Trial-and-error revealed
that the following fields in the EVENT_TRACE_PROPERTIES structure are needed for the call to
succeed (and the entirety of the openTrace and ProcessTrace operations in general):

1. All relevant WNODE_HEADER fields (Guid, etc.). Especially HistoricalContext
2. Buffersize (a valid value - | have chosen 0x40)

3. LogFileMode (EVENT_TRACE_REAL_TIME_MODE)

4. FlushTimer

5. MinimumBuffers

6. LoggerNameOffset

All of the aforementioned fields are trivial to fill out (they just need to be reconciled with the
target AutoLogger trace session settings in the Registry) except for HistoricalContext.
HistoricalContext, however, is deterministic. This because it is simply, as mentioned, the ID
of the logger. Given that we are consuming from an AutoLogger trace session, the only
"relevant” IDs will be those present in the AutoLogger Registry key at the time an ID is assigned
to our trace session. Additionally, the AutoLoggers are enabled in alphabetical order (with a few
exceptions that are easily compensated for).

Through testing, it seems the first logger ID used is always 2 (for the "traditional" kernel logger
session), and we also know from earlier that ID 3 is always reserved for the EventLog-Security
trace - meaning the first possible ID is 4. Compensating for all of this, one can easily infer what
the projected HistoricalContext will be for the target session by brute-forcing all values from 4
- 80 (the maximum ID) with a query operation. AutoLoggers will always reserve the "lower" IDs
(starting at 4, 5, 6, etc.) and, thus, iterating over values 4 - 80 until a query to a value that
returns ERROR_ACCESS_DENIED is found is a good indicator that the target trace session is likely
a SecurityTrace target (although this is not always the case as there can be other reasons why
a query can fail that is not related to securityTrace). What we are releasing is a POC and,
thus, other implementations to reconcile the trace ID are left as an exercise to the reader, as the
trace IDs themselves are simply just numeric values and AutoLoggers themselves are enabled
in alphabetical order. In the POC we have released, we simply create a trace session name
which starts with 0. This all but guarantees, for POC purposes, that this session will be the first
ID (4) in the registered trace session, since it will come first alphabetically in most cases.

Finally, with the relevant checks passed, it is then possible to consume from the Microsoft-
Windows-Threat-Intelligence ETW provider without Antimalware-PPL or any sort of kernel-mode
memory patching or driver loading.

26/30

void

HandleThreatIntelligenceCallback (
In PEVENT_RECORD EventRecord

)
{

wprintf(L"[+] [HandleThreatIntelligenceCallback] Hello from the Threat-Intelligence

ETW callback!\n");

//

// Print the GUID

//

wprintf(L" [*] GUID = {%081X-%04hX-%04hX-%02hhX%02hhX -

%02hhX%02hhX%02hhX%02hhX%02hhX%02hhX}\n",

return;

EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.
EventRecord->EventHeader.

'_' Administrator: Command Pro X +

ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.
ProviderId.

C:\Users\ANON\Desktop>SecurityTracePoc.exe

[+] StartTraceW success!
[+] Started processing!

[+] [HandleThreatIntelligenceCallback] Hello from the Threat-Intelligence ETW callback!

Datal,
Dataz,
Data3,
Data4[0],
Data4[1],
Data4[2],
Data4[3],
Data4[4],
Data4[5],
Data4[6],
Data4[7]);

[*] GUID = {FUE1897C-BB5D-5668—-F1D8-0UOFUDEDD3UL}

We can see the GUID here is that of the Microsoft-Windows-Threat-Intelligence GUID
(FAE1897C-BB5D-5668-F1D8-040F4D8DD344). Additionally, if we enumerate the list of consumers
attached to this trace session (via the linked-list in wMI_LOGGER_CONTEXT) for a list of
ETW_REALTIME_CONSUMER structures - we can see the only process which is consuming from this
trace session, which has enabled the Microsoft-Windows-Threat-Intelligence provider, does not
have Antimalware-PPL, and is our proof-of-concept process!

27/30

3: kd> dx ((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])
(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)->EtwSiloState->EtwpLoggerContext))-
>Where(l => 1 != 1).Where(l => 1->SecurityTrace == 1).Select(i => new { Name = 1i-
>LoggerName, Consumers = Debugger.Utility.Collections.FromListEntry(i->Consumers,

"nt!_ ETW_REALTIME_CONSUMER", "Links")})[On4].Consumers[0Q]
((nt!_WMI_LOGGER_CONTEXT*(*)[0x50])(((nt!_ESERVERSILO_GLOBALS*)&nt!PspHostSiloGlobals)-
>EtwSiloState->EtwpLoggerContext))->Where(l => 1 != 1).Where(l => 1l->SecurityTrace ==
1).Select(i => new { Name = i->LoggerName, Consumers =
Debugger.Utility.Collections.FromListEntry(i->Consumers, '"nt!_ETW_REALTIME_CONSUMER",

"Links")})[On4].Consumers[0] [Type: _ETW_REALTIME_CONSUMER]
[+0x000] Links [Type: _LIST_ENTRY]
[+0x010] ProcessHandle OXFFFFffff800037b0 [Type: void *]
[+0x018] ProcessObject : Oxffffa58900524080 [Type: _EPROCESS *]

[+Ox020] NextNotDelivered : Ox0 [Type: void *]

[+Ox028] RealtimeConnectContext : Ox0 [Type: void *]

[+Ox030] DisconnectEvent : Oxffffa5890188e2e0 [Type: _KEVENT *]

[+Ox038] DataAvailableEvent : Oxffffa5890188e760 [Type: _KEVENT *]

[+Ox040] UserBufferCount : 0x202d0255450 : Unable to read memory at Address
0x202d0255450 [Type: unsigned long *]

[+O0x048] UserBufferListHead : 0x202d0255448 [Type: _SINGLE_LIST_ENTRY *]

[+0x050] BuffersLost : Ox0 [Type: unsigned long]
[+Ox054] EmptyBuffersCount : Ox0 [Type: unsigned long]
[+O0x058] LoggerId : Ox4 [Type: unsigned short]
[+Ox05a] Flags : Ox0 [Type: unsigned char]
[+Ox05a (O0: 0)] ShutDownRequested : Ox0 [Type: unsigned char]
[+Ox05a (1: 1)] NewBuffersLost : Ox0 [Type: unsigned char]
[+Ox05a (2: 2)] Disconnected : Ox0 [Type: unsigned char]
[+Ox05a (3: 3)] Notified : Ox0 [Type: unsigned char]
[+tOx05a (4: 4)] Wow : Ox0 [Type: unsigned char]

[+Ox060] ReservedBufferSpaceBitMap [Type: _RTL_BITMAP]

[+Ox070] ReservedBufferSpace : 0x202d0360000 : Unable to read memory at Address
0x202d0360000 [Type: unsigned char *]

[+0x078] ReservedBufferSpaceSize : 0x80000 [Type: unsigned long]

[+Ox07c] UserPagesAllocated : Ox0 [Type: unsigned long]

[+Ox080] UserPagesReused : 0Ox3d [Type: unsigned long]

[+Ox088] EventsLostCount : 0x202d0255368 : Unable to read memory at Address
0x202d0255368 [Type: unsigned long *]

[+Ox090] BuffersLostCount : 0x202d025536¢c : Unable to read memory at Address
0x202d025536¢ [Type: unsigned long *]

[+Ox098] SiloState : OxfFfffab88f8631000 [Type: _ETW_SILODRIVERSTATE *]

3: kd> dx ((nt!_EPROCESS*)0xffffa58900524080)->Protection

((nt!_EPROCESS*)0xffffa58900524080)->Protection [Type: _PS_PROTECTION]
[+Ox000] Level : OXx0 [Type: unsigned char]
[+Ox000 (2: 0)] Type : Ox0 [Type: unsigned char]
[+Ox000 (3: 3)] Audit : Ox0 [Type: unsigned char]
[+Ox000 (7: 4)] Signer : Ox0 [Type: unsigned char]

As a point of contention for the reader, it is worth noting that this POC is not capable of enabling
sources of telemetry which are disabled by default on processes. For example, one still needs
Antimalware-PPL in order to call NtSetInformationProcess to enable impersonation events -

28/30

https://jonny-johnson.medium.com/behind-the-mask-unpacking-impersonation-events-fca909e08d00

which have to be explicitly enabled through this privileged system call that this POC is incapable
of making. The method outlined here is capable of consuming the following telemetry by default

(telemetry that is emitted without a separate privileged system call being made to enable it on a

per-process basis):

1. Executable memory allocation events (user-mode and kernel-mode callers)
2. Executable memory mapping events (user-mode and kernel-mode callers)

3. Remote APC events (user-mode)

4. Thread context update events (SetThreadContext)

5. Kernel-mode device and driver load and unload events

6. System call events. At the time this blog post was written, this includes only
NtSystemDebugControl and NtQuerySystemInformation system calls

However, it is also worth pointing out that on the latest Insider Preview version of Windows
(Canary channel), there are several processes which have already been opted-in to the
"optional" telemetry (including memory protection, process/thread suspension, and other
events). This means that using the methodology outlined in this blog post will result in receiving
such events "for free". This is a result of Microsoft Defender invoking the functionality, since it is
a process running at Antimalware-PPL, for enabling the other "optional" telemetry bits.

Command

2: kd» dx @$curprocess.Name
@$curprocess.Name : MsMpEng.exe

Length : Bxb
2: kd>» r rdx
rdx=088828880800208068
2: kd» k
Child-sP RetAddr
fffff586" 8bea7ag98 fffff884° a46bB8c55
fffff586" 8bea7aa® e8887ffd 38241e84
Beesee92” 54cfdbbd eeee7ffd lefc3dfa
eee6ees2” 54ctdbce BeBEeB00" BBBBE8E0

L]

SRR
L P et

Call Site
nt!NtSetInformationProcess
nt!KisystemServiceCopyEnd+8x25
ntdll!NtSetInformationProcess+8x14
mpengine! rsignal+8x28dbba

A list of all processes which have opted-in to the optional Threat-Intelligence telemetry can be

seen below:

29/30

https://windows-internals.com/an-end-to-kaslr-bypasses/

dx -g @$cursession.Processes.Where(p =>
(p.KernelObject.EnableProcessImpersonationLogging == |]
p.KernelObject.EnableProcessLocalExecProtectVmLogging == 1) ||
.KernelObject.EnableProcessRemoteExecProtectVmLogging == []
.KernelObject.EnableProcessSuspendResumelLogging == []
.KernelObject.EnableReadVmLogging == |]
.KernelObject.EnableThreadSuspendResumeLogging == 1 ||
p.KernelObject.EnableWriteVmLogging == 1).Select(p => new { Name = p->Name,
EnableProcessImpersonationLogging = p.KernelObject.EnableProcessImpersonationLogging,
EnableProcessLocalExecProtectVmLogging =
p.KernelObject.EnableProcessLocalExecProtectVmLogging,
EnableProcessRemoteExecProtectVmLogging =
p.KernelObject.EnableProcessRemoteExecProtectVmLogging,
EnableProcessSuspendResumeLogging = p.KernelObject.EnableProcessSuspendResumelLogging,
EnableReadVmLogging = p.KernelObject.EnableReadVmLogging,
EnableThreadSuspendResumeLogging = p.KernelObject.EnableThreadSuspendResumelLogging,
EnablewWriteVmLogging = p.KernelObject.EnableWriteVmLogging }),d

p
p
p
p

Conclusion

We have coordinated with Microsoft the findings in this blog post and MSRC has concluded no
vulnerability exists due to the administrative <-> PPL boundary which is not enforceable. The
SecurityTrace is a pretty obscure and undocumented flag that we found interesting as a result
protect our customers. This blog post would also be incomplete without any recommendation -
which would be to move such a check for securityTrace traces to the kernel and not delegate
it to user-mode. Thank you for reading and we hope you enjoyed this blog post!

30/30

https://www.originhq.com/

