
1/7

leftarcode.com /posts/afd-reverse-engineering-part4/

Under the Hood of AFD.sys Part 4: Receiving TCP packets
Mateusz Lewczak ⋮ ⋮ 06/08/2025

A hands-on foray into the IOCTL_AFD_RECEIVE Fast-I/O path: stalking AfdFastConnectionReceive in
WinDbg, decoding the AFD_SENDRECV_INFO / WSABUF triad, flipping TDI flags for peek-and-poke
tricks, and slurping raw TCP responses straight out of AFD.sys—zero Winsock, pure kernel-level packet
sorcery.

Posted Aug 6, 2025
By Mateusz Lewczak

11 min read

Under the Hood of AFD.sys Part 4: Receiving TCP packets

Introduction

Ok, the time has come, we can finally receive some data in our sockets. If you haven’t seen the previous
batches, I encourage you to check them out, so far we’ve managed to create a socket and send TCP
packets. We still have a long way to go to fully understand how networking works by communicating
directly with the AFD.sys driver, but there will be time for that yet. No need to procrastinate, let’s go!

Looking for recv

As before, recv is handled as Fast I/O (unless we set the flags differently). A good reference for this will
be IOCTL_AFD_RECEIVE going into our AfdFastIoDeviceControl function. By default, as before,
our reference will be this code using Winsock:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

void createTCPv4() {

 const size_t PAYLOAD = 1024;

 SOCKET s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (s == INVALID_SOCKET) { std::cerr << "socket: " << WSAGetLastError() << '\n';

return; }

 sockaddr_in dst{};

 dst.sin_family = AF_INET;

 dst.sin_port = htons(80);

 InetPtonA(AF_INET, "192.168.1.1", &dst.sin_addr);

 if (connect(s, reinterpret_cast<sockaddr*>(&dst), sizeof(dst)) == SOCKET_ERROR) {

 std::cerr << "connect: " << WSAGetLastError() << '\n';

 closesocket(s); return;

 }

 std::string big(PAYLOAD, 'A');

 size_t sent = 0;

 while (sent < big.size()) {

https://leftarcode.com/posts/afd-reverse-engineering-part4/
https://leftarcode.com/

2/7

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

 int n = send(s, big.data() + sent, static_cast<int>(big.size() - sent), 0);

 if (n == SOCKET_ERROR) {

 break;

 }

 sent += n;

 }

 char buf[4096];

 int n = 0;

 size_t received = 0;

 std::string response;

 while ((n = recv(s, buf, static_cast<int>(sizeof(buf)), 0)) > 0) {

 response.append(buf, n);

 received += n;

 }

 if (n == SOCKET_ERROR) {

 std::cerr << "recv: " << WSAGetLastError() << '\n';

 }

 std::cout << "Received " << received << " bytes\n";

 std::cout << "----- RESPONSE BEGIN -----\n"

 << response << '\n'

 << "----- RESPONSE END -----\n";

 closesocket(s);

}

As we connect to the HTTP server and send garbage we get a Bad request in response - a clear case.
To confirm that we are indeed recv hitting the driver as Fast I/O we will use a command like this in
WinDbg:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

14: kd> .foreach /pS 1 (ep { !process 0 0 afd_re.exe }) { bm /p ${ep}

afd!AfdFastIoDeviceControl ".printf \"IoControlCode=%p\\n\", @rdi;gc;" }

 0: fffff801`6d9d4c20 @!"afd!AfdFastIoDeviceControl"

Couldn't resolve error at 'SessionId: afd!AfdFastIoDeviceControl ".printf

\"IoControlCode=%p\\n\", @rdi;gc;" '

14: kd> g

IoControlCode=000000000001207b // IOCTL_AFD_GET_INFORMATION

IoControlCode=000000000001207b // IOCTL_AFD_GET_INFORMATION

IoControlCode=0000000000012047 // IOCTL_AFD_SET_CONTEXT

IoControlCode=00000000000120bf // IOCTL_AFD_TRANSPORT_IOCTL

IoControlCode=0000000000012047 // IOCTL_AFD_SET_CONTEXT

IoControlCode=0000000000012003 // IOCTL_AFD_BIND

IoControlCode=0000000000012047 // IOCTL_AFD_SET_CONTEXT

IoControlCode=0000000000012007 // IOCTL_AFD_CONNECT

IoControlCode=0000000000012047 // IOCTL_AFD_SET_CONTEXT

IoControlCode=000000000001201f // IOCTL_AFD_SEND

IoControlCode=0000000000012017 // IOCTL_AFD_RECEIVE

IoControlCode=0000000000012017 // IOCTL_AFD_RECEIVE

As we can see our request IOCTL_AFD_RECEIVE appears twice. We can explain this by the fact that in
our code, the recv function is executed in a loop. In practice, we retrieve the response in packets of
4096 bytes until we have received the entire TCP response. The first time we received the entire HTTP
response and presumably AFD.sys returned information about how many bytes we actually received.
And the second call with which we wanted to retrieve the rest returned us zero bytes, so no more
requests were sent - a simple matter.

3/7

It’s time to find a direct function that is responsible for handling this request, as in
AfdFastConnectionSend. Let’s check this statically using Binary Ninja:

1

2

3

4

5

6

7

8

9

1c0034be0 int64_t AfdFastIoDeviceControl(struct _FILE_OBJECT* FileObject,

1c0034be0 BOOLEAN Wait, PVOID InputBuffer, ULONG InputBufferLength,

1c0034be0 PVOID OutputBuffer, ULONG OutputBufferLength, ULONG IoControlCode,

1c0034be0 PIO_STATUS_BLOCK IoStatus, struct _DEVICE_OBJECT* DeviceObject) {

...

1c00354a6 rbx = (uint64_t)AfdFastConnectionReceive(FsContext, &s,

1c00354a6 rax_51, IoStatus);

...

1c0034be0 }

This time in the code we don’t find a condition that directly checks if IoControlCode == 0x12017,
what’s more, before calling our target function we also have a number of checks that for now we don’t
know what they do. Let’s take a breakpoint on this function:

1

2

3

4

5

12: kd> .foreach /pS 1 (ep { !process 0 0 afd_re.exe }) { bm /p ${ep}

afd!AfdFastConnectionReceive ".printf \"HIT!\\n\";gc;" }

 4: fffff801`6d9d3280 @!"afd!AfdFastConnectionReceive"

Couldn't resolve error at 'SessionId: afd!AfdFastConnectionReceive ".printf

\"HIT!\\n\";gc;" '

12: kd> g

HIT!

We only have one hit despite the fact that two IOCTL_AFD_RECEIVE requests went, this could mean that
these check functions before calling AfdFastConnectionReceive check if, for example, the internal
response buffer for the socket is empty.

We now turn to examining what our input buffer looks like for this request. Here, as usual, our invaluable
sources (killvxk), (unknowncheats.me ICoded post), (ReactOS Project), (DynamoRIO / Dr. Memory),
(DeDf), (diversenok) will help us.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

10: kd> .foreach /pS 1 (ep { !process 0 0 afd_re.exe }) { bm /p ${ep}

afd!AfdFastConnectionReceive }

 6: fffff801`6d9d3280 @!"afd!AfdFastConnectionReceive"

Couldn't resolve error at 'SessionId: afd!AfdFastConnectionReceive '

10: kd> g

Breakpoint 6 hit

afd!AfdFastConnectionReceive:

fffff801`6d9d3280 4c894c2420 mov qword ptr [rsp+20h],r9

4: kd> r

rax=0000000000000002 rbx=00000001ac3ae028 rcx=ffff8b05eaffb340

rdx=fffff58d13a4ef10 rsi=0000000000000001 rdi=0000000000000000

rip=fffff8016d9d3280 rsp=fffff58d13a4ee88 rbp=fffff58d13a4f4e0

 r8=0000000000001000 r9=fffff58d13a4f1c8 r10=fffff801d8817c70

r11=ffffb1fcd3800000 r12=ffff8b05eaffb340 r13=0000000000000000

r14=0000000000000018 r15=000000000000afd1

iopl=0 nv up ei pl zr na po nc

cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b efl=00040246

afd!AfdFastConnectionReceive:

fffff801`6d9d3280 4c894c2420 mov qword ptr [rsp+20h],r9

ss:0018:fffff58d`13a4eea8=0000000000000003

4: kd> dq 00000001ac3ae028 L3

00000001`ac3ae028 00000001`ac3ae108 00000000`00000001

00000001`ac3ae038 00000000`00000020

4: kd> dq 00000001`ac3ae108 L2

00000001`ac3ae108 00000000`00001000 00000001`ac3ae260

4: kd> dq 00000001`ac3ae260 L10

00000001`ac3ae260 cccccccc`cccccccc cccccccc`cccccccc

4/7

28

29

30

31

32

00000001`ac3ae270 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae280 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae290 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae2a0 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae2b0 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae2c0 cccccccc`cccccccc cccccccc`cccccccc

00000001`ac3ae2d0 cccccccc`cccccccc cccccccc`cccccccc

We can see that essentially the structure of the input buffer is identical to the one we use to send packets
(see part 3). With a slight difference, in our structure we have AfdFlags, which are flags describing our
buffer. When they are set to 0x00 as in the case of sending then AFD.sys treats them as send buffer.

Analyzing retrieved data AfdFastConnectionReceive

Earlier we were guided by (diversenok) to guess what values the flags can take and nowhere there was a
value 0x20. We can instead look at (unknowncheats.me ICoded post), there we find such definitions:

1

2

3

4

5

6

7

8

9

10

11

12

13

#define TDI_RECEIVE_BROADCAST 0x4

#define TDI_RECEIVE_MULTICAST 0x8

#define TDI_RECEIVE_PARTIAL 0x10

#define TDI_RECEIVE_NORMAL 0x20

#define TDI_RECEIVE_EXPEDITED 0x40

#define TDI_RECEIVE_PEEK 0x80

#define TDI_RECEIVE_NO_RESPONSE_EXP 0x100

#define TDI_RECEIVE_COPY_LOOKAHEAD 0x200

#define TDI_RECEIVE_ENTIRE_MESSAGE 0x400

#define TDI_RECEIVE_AT_DISPATCH_LEVEL 0x800

#define TDI_RECEIVE_CONTROL_INFO 0x1000

#define TDI_RECEIVE_FORCE_INDICATION 0x2000

#define TDI_RECEIVE_NO_PUSH 0x4000

That is, 0x20 would imply a normal reception of data from the driver. But there is a detail, according to
(unknowncheats.me ICoded post), these flags apply to the TdiFlags field:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

NTSTATUS AfdRecv(HANDLE SocketHandle, PVOID Buffer, ULONG_PTR BufferLength, PULONG_PTR

pBytes)

{

NTSTATUS Status;

IO_STATUS_BLOCK IoStatus;

AFD_SENDRECV_INFO RecvInfo;

HANDLE Event;

AFD_WSABUF AfdBuffer;

Status = NtCreateEvent(&Event, EVENT_ALL_ACCESS, NULL, NotificationEvent,

FALSE);

if (NT_SUCCESS(Status))

{

 ///

AfdBuffer.len = (ULONG)BufferLength;

RecvInfo.BufferArray = &AfdBuffer;

RecvInfo.BufferCount = 1;

RecvInfo.TdiFlags = TDI_RECEIVE_NORMAL;

RecvInfo.AfdFlags = 0;

 ///

}

return Status;

}

5/7

Which in our case is not quite true. The buffer sent to AFD.sys is 0x18 in size, i.e. it has three fields of
0x8 bytes. And this third field (in our case AfdFlags) is just set to 0x20. I have experimentally checked
and our version is the one that works. Of course, I am not saying that the (unknowncheats.me ICoded
post) version does not work, it just does not apply in our case.

With all this in mind, let us create a working proof-of-concept using everything we already have:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

#include <stdint.h>

#include <Windows.h>

#include <winternl.h>

#include <iostream>

#include "afd_defs.h"

#include "afd_ioctl.h"

#pragma comment(lib, "ntdll.lib")

NTSTATUS createAfdSocket(PHANDLE socket) {/**/}

NTSTATUS bindAfdSocket(HANDLE socket) {/**/}

NTSTATUS connectAfdSocket(HANDLE socket) {/**/}

NTSTATUS sendAfdPacketTCP(HANDLE socket) {/**/}

NTSTATUS receiveAfdPacketTCP(HANDLE socket) {

 const int BUF_NUM = 1;

 const int BUF_SIZE = 1000;

 AFD_BUFF* payload = new AFD_BUFF[BUF_NUM];

 for (int i = 0; i < BUF_NUM; i++) {

 payload[i].buf = (uint8_t*)malloc(BUF_SIZE);

 memset(payload[i].buf, 0x00, BUF_SIZE);

 payload[i].len = BUF_SIZE;

 }

 AFD_SEND_PACKET* afdSendPacket = new AFD_SEND_PACKET;

 afdSendPacket->buffersArray = payload;

 afdSendPacket->buffersCount = BUF_NUM;

 afdSendPacket->afdFlags = 0x20; // RECEIVE_NORMAL

 IO_STATUS_BLOCK ioStatus;

 NTSTATUS status = NtDeviceIoControlFile(socket, NULL, NULL, NULL, &ioStatus,

IOCTL_AFD_RECEIVE,

 afdSendPacket, sizeof(AFD_SEND_PACKET),

 nullptr, 0);

 if (status == STATUS_PENDING) {

 WaitForSingleObject(socket, INFINITE);

 status = ioStatus.Status;

 }

 std::cout << "[+] SERVER RESPONSE: " << std::endl;

 std::cout << payload[0].buf << std::endl;

 return status;

}

int main() {

 HANDLE socket;

 // 1. Create socket

 // 2. Bind socket

 // 3. Connect to remote host

 // 4. Send 1000x'A'

 status = receiveAfdPacketTCP(socket);

 if (!NT_SUCCESS(status)) {

 std::cout << "[-] Could not receive TCP packet: " << std::hex << status <<

std::endl;

 return 1;

 }

6/7

58

59

 std::cout << "[+] Received!" << std::endl;

 return 0;

}

What we do. We allocate our buffers to store the received response somewhere, set AfdFlags to 0x20
(normal reception), and then send the request to AFD.sys. What more do you need?

Well, it would be useful to somehow find out how much of this data we have received. At first, I thought
that maybe AFD.sys would modify the buffer structure and change its size. However, this did not
happen. The answer was much simpler. The IO_STATUS_BLOCK structure has an Information field:

1

2

3

4

5

6

7

8

// ref: https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-

_io_status_block

typedef struct _IO_STATUS_BLOCK {

 union {

 NTSTATUS Status;

 PVOID Pointer;

 };

 ULONG_PTR Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

And it is in the Information field that we get a return on how many bytes have been read, but we do
not know how many are actually left to read. To check this we would now have to send another request to
AFD.sys and check if Informtaion is equal to 0x0. Then only then would we know if this is all there is.

Other receive flags
This question may be best answered by documentation from Microsoft. All the flags are very nicely
described there. Although some of them are explained in terminology familiar to driver developers. I tried
to reproduce some of them in Winsock and ‘make up’ my own explanation:

1

2

3

4

5

6

7

8

9

10

11

12

// Receive normal packets

afdSendPacket->afdFlags = TDI_RECEIVE_NORMAL;

// Receive normal packet, but don't clear AFD.sys input queue

afdSendPacket->afdFlags = TDI_RECEIVE_NORMAL | TDI_RECEIVE_PEEK;

// Receive normal packet, but wait for all data, equivalent of MSG_WAITALL in Winsock

afdSendPacket->afdFlags = TDI_RECEIVE_NORMAL | TDI_RECEIVE_NO_PUSH;

// Receive packets with tcp.flags.urg == 1

afdSendPacket->afdFlags = TDI_RECEIVE_EXPEDITED;

// Receive packets with tcp.flags.urg == 1, but don't clear AFD.sys input queue

afdSendPacket->afdFlags = TDI_RECEIVE_EXPEDITED | TDI_RECEIVE_PEEK;

// Receive packets with tcp.flags.urg == 1, but wait for all data, equivalent of

MSG_WAITALL in Winsock

afdSendPacket->afdFlags = TDI_RECEIVE_EXPEDITED | TDI_RECEIVE_NO_PUSH;

Some of our flags relate to UDP and we will certainly look at this when the opportunity arises.

Next steps

At this point, we already have the necessary functionality to be able to create a simple TCP client. In the
next batches we will look more at socket operations. How to change its parameters, how to close a
connection, how to close a socket, how to handle other types of TCP messages.

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565131(v=vs.85)

7/7

Final code

Essentially, the content of the final code is no different from what you can find in the proof-of-concept
above. Of course, the code for IPv6 will look identical.

References

1. Vittitoe, Steven. “Reverse Engineering Windows AFD.sys: Uncovering the Intricacies of the
Ancillary Function Driver.” Proceedings of REcon 2015, 2015, https://doi.org/10.5446/32819.

2. killvxk. CVE-2024-38193 Nephster PoC. 2024, https://github.com/killvxk/CVE-2024-38193-
Nephster/blob/main/Poc/poc.h.

3. unknowncheats.me ICoded post. Native TCP Client Socket. n.d.,
https://www.unknowncheats.me/forum/c-and-c-/500413-native-tcp-client-socket.html.

4. ReactOS Project. Afd.h. n.d.,
https://github.com/reactos/reactos/blob/master/drivers/network/afd/include/afd.h.

5. DynamoRIO / Dr. Memory. afd_sharedḣ. n.d.,
https://github.com/DynamoRIO/drmemory/blob/master/wininc/afd_shared.h.

6. Dr. Memory - GH issue#376. Issue #376: AFD Support Improvements. n.d.,
https://github.com/DynamoRIO/drmemory/issues/376.

7. Microsoft. NtCreateFile Function (Winternl.h). n.d., https://learn.microsoft.com/en-
us/windows/win32/api/winternl/nf-winternl-ntcreatefile.

8. ---. x64 Calling Convention. n.d., https://learn.microsoft.com/en-us/cpp/build/x64-calling-
convention?view=msvc-170.

9. ---. x64 Calling Convention. n.d., https://learn.microsoft.com/pl-pl/windows/win32/api/winsock2/nf-
winsock2-wsasocketa.

10. DeDf. AFD Repository. n.d., https://github.com/DeDf/afd/tree/master.
11. Allievi, Andrea, et al. Windows® Internals Part 2 - 6th Edition. 6th ed., Microsoft Press (Pearson

Education), 2022, https://learn.microsoft.com/sysinternals/resources/windows-internals.
12. diversenok. \Textttntafd.h – Ancillary Function Driver Definitions. commit 2dda0dd, Hunt & Hackett,

April 2025, https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntafd.h.

