leftarcode.com Iposts/afd-reverse-engineering-part4/

Under the Hood of AFD.sys Part 4: Receiving TCP packets

Mateusz Lewczak : : 06/08/2025

A hands-on foray into the IOCTL_AFD_RECEIVE Fast-I/O path: stalking AfdFastConnectionReceive in
WinDbg, decoding the AFD_SENDRECV_INFO / WSABUF triad, flipping TDI flags for peek-and-poke
tricks, and slurping raw TCP responses straight out of AFD.sys—zero Winsock, pure kernel-level packet
sorcery.

Posted Aug 6, 2025
By Mateusz Lewczak

11 min read

Under the Hood of AFD.sys Part 4: Receiving TCP packets

Introduction

Ok, the time has come, we can finally receive some data in our sockets. If you haven'’t seen the previous
batches, | encourage you to check them out, so far we’ve managed to create a socket and send TCP
packets. We still have a long way to go to fully understand how networking works by communicating
directly with the AFD. sys driver, but there will be time for that yet. No need to procrastinate, let’s go!

Looking for recv

As before, recv is handled as Fast I/O (unless we set the flags differently). A good reference for this will
be IOCTL AFD RECEIVE going into our AfdFastIoDeviceControl function. By default, as before,
our reference will be this code using Winsock:

1 void createTCPv4 () {

2 const size t PAYLOAD = 1024;

3 SOCKET s = socket (AF_INET, SOCK STREAM, IPPROTO TCP);

4 if (s == INVALID SOCKET) { std::cerr << "socket: " << WSAGetLastError () << '\n';
5 return; }

6

7 sockaddr in dst{};

8 dst.sin family = AF INET;

9 dst.sin port = htons(80);

10 InetPtonA (AF _INET, "192.168.1.1", &dst.sin_addr);

11

12 if (connect (s, reinterpret cast<sockaddr*>(&dst), sizeof(dst)) == SOCKET ERROR) ({
13 std::cerr << "connect: " << WSAGetLastError () << '\n';

14 closesocket (s); return;

15 }

16

17 std::string big (PAYLOAD, 'A');

18

19 size t sent = 0;

20 while (sent < big.size()) {

1/7

https://leftarcode.com/posts/afd-reverse-engineering-part4/
https://leftarcode.com/

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

int n = send(s, big.data() + sent, static cast<int>(big.size() - sent), 0);
if (n == SOCKETiERROR) {
break;
}
sent += n;
}
char buf[4096];
int n = 0;
size t received = 0;
std::string response;
while ((n = recv(s, buf, static cast<int>(sizeof (buf)), 0)) > 0) {
response.append (buf, n);
received += n;
}
if (n == SOCKETiERROR) {
std::cerr << "recv: " << WSAGetLastError () << '\n';
}
std::cout << "Received " << received << " bytes\n";
std::cout << "————- RESPONSE BEGIN —----- \n"
<< response << '\n'
<K M= RESPONSE END —-————-- \n";

closesocket (s);

As we connect to the HTTP server and send garbage we get a Bad request in response - a clear case.

To confirm that we are indeed recv hitting the driver as Fast I/O we will use a command like this in
WinDbg:

O J oy Ul b wdN

e el el el e
Ul W N O

14: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p ${ep}
afd!AfdFastIoDeviceControl ".printf \"IoControlCode=%p\\n\", @rdi;gc;" }
0: ff£f£f£801 6d9d4c20 @!"afd!AfdFastIoDeviceControl"
Couldn't resolve error at 'SessionId: afd!AfdFastIoDeviceControl ".printf
\"IoControlCode=%p\\n\", Q@rdi;gc;" '
14: kd> g
IoControlCode=000000000001207b // IOCTL AFD GET INFORMATION
IoControlCode=000000000001207b // IOCTL AFD GET INFORMATION
IoControlCode=0000000000012047 // IOCTL AFD SET CONTEXT
IoControlCode=00000000000120bf // IOCTL AFD TRANSPORT IOCTL
IoControlCode=0000000000012047 // IOCTL AFD SET CONTEXT
IoControlCode=0000000000012003 // IOCTL AFD BIND
IoControlCode=0000000000012047 // IOCTL AFD SET CONTEXT
IoControlCode=0000000000012007 // IOCTL AFD CONNECT
IoControlCode=0000000000012047 // IOCTL AFD_ SET CONTEXT
ToControlCode=000000000001201f // IOCTL AFD_ SEND
IoControlCode=0000000000012017 // IOCTL AFD RECEIVE
IoControlCode=0000000000012017 // IOCTL AFD RECEIVE

As we can see our request IOCTL AFD RECEIVE appears twice. We can explain this by the fact that in

our code, the recv function is executed in a loop. In practice, we retrieve the response in packets of

4096 bytes until we have received the entire TCP response. The first time we received the entire HTTP

response and presumably AFD. sys returned information about how many bytes we actually received.

And the second call with which we wanted to retrieve the rest returned us zero bytes, so no more
requests were sent - a simple matter.

2/7

It's time to find a direct function that is responsible for handling this request, as in
AfdFastConnectionSend. Let’s check this statically using Binary Ninja:

1 1c0034be0 int64 t AfdFastIoDeviceControl (struct FILE OBJECT* FileObject,

2 1c0034be0 BOOLEAN Wait, PVOID InputBuffer, ULONG InputBufferLength,

31c0034be0 PVOID OutputBuffer, ULONG OutputBufferLength, ULONG IoControlCode,

4 1c0034be0 PIO STATUS BLOCK IoStatus, struct DEVICE OBJECT* DeviceObject) {
5...

6 1c00354a6 rbx = (uinté64 t)AfdFastConnectionReceive (FsContext, &s,
7 1c00354a6 rax 51, IoStatus);

8 ...

9 1c0034be0 }

This time in the code we don’t find a condition that directly checks if ToControlCode == 0x12017,

what’s more, before calling our target function we also have a number of checks that for now we don’t
know what they do. Let’s take a breakpoint on this function:

12: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p S{ep}

1 afd!AfdFastConnectionReceive ".printf \"HIT!\\n\";gc;" }
2 4: ffff£801°6d9d3280 @!"afd!AfdFastConnectionReceive"
3 Couldn't resolve error at 'SessionId: afd!AfdFastConnectionReceive ".printf
4 \"HIT!\\n\";gc;" '
512: kd> g
HIT!

We only have one hit despite the fact that two TOCTL_AFD RECEIVE requests went, this could mean that
these check functions before calling AfdFastConnectionReceive check if, for example, the internal

response buffer for the socket is empty.

We now turn to examining what our input buffer looks like for this request. Here, as usual, our invaluable
sources (killvxk), (unknowncheats.me ICoded post), (ReactOS Project), (DynamoRIO / Dr. Memory),
(DeDf), (diversenok) will help us.

1 10: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p S{ep}
2 afd!AfdFastConnectionReceive }

3 6: ffff£f801°6d9d3280 @!"afd!AfdFastConnectionReceive"

4 Couldn't resolve error at 'SessionId: afd!AfdFastConnectionReceive '
5 10: kd> g

6 Breakpoint 6 hit

7 afd!AfdFastConnectionReceive:

8 fffff801 6d9d3280 4c894c2420 mov gword ptr [rsp+20h],r9

9 4: kd> r

10 rax=0000000000000002
11 rdx=fff£ff58d13a4efl0
12 rip=f££ff£8016d9d3280
13 r8=0000000000001000
14 r11=£f£f£ffbl1£fcd3800000
15 r14=0000000000000018

16 iopl=0
17 ¢s=0010

nv up
ss=0018

ds=

rbx=00000001ac3ae028
rsi=0000000000000001
rsp=fffff58d13a4ee88
rO9=fffff58d13a4flc8
rl12=ffff8b05ecaffb340
r15=000000000000afdl
ei pl zr na po nc
002b es=002b £fs=00

18 afd!AfdFastConnectionReceive:

19 £££££f801°6d9d3280 4c894c2420 mov gword ptr [rsp+20h],r9
20 s5:0018:fffff58d 13a4eea8=0000000000000003

21 4: kd> dg 0000000lac3ae028 L3

22 00000001 ac3ae028 00000001 ac3ael08 00000000°00000001

23 00000001 ac3ae038 00000000°00000020

rex=ffff8b05eaffb340
rdi=0000000000000000
rbp=fffff58d13a4f4el
r10=£££f££801d8817c70
r13=0000000000000000

53 gs=002b

24 4: kd> dg 00000001 ac3aelld8 L2
2500000001 ac3ael08 00000000°00001000 00000001 ac3ae260
26 4: kd> dg 00000001 ac3ae260 L10

27 00000001 ac3ae260

CCccccccc CCCCCCCC CCCCCCCC cceeceece

ef1=00040246

3/7

28 00000001
29 00000001
30 00000001

3100000001°

3200000001

00000001 "

00000001

‘ac3ae270
“ac3ae280
“ac3ae290
ac3ae2al
“ac3ae2b0
ac3ae2c0
‘ac3ae2d0

ccccceece
cccccecece”
ccccceecece”
ccccceecec”
cccccececece”
cccceceec
ccccceec

ccccecececece
ccceccecececece
cccececececece
cccececececece
ccececececece
ccccecececece
ccccecececece

cccecceeece”
cccecceece”
ccccecceceece”
ccccceecece”
cccceecece”
cccceeece
cccceceece

ccccececcece
ccccececcece
ccccececcece
ccccececcece
ccceccececcece
cccececcece
ccccececcece

We can see that essentially the structure of the input buffer is identical to the one we use to send packets

(see part 3). With a slight difference, in our structure we have AfdFlags, which are flags describing our

buffer. When they are set to 0x00 as in the case of sending then AFD. sys treats them as send buffer.

Analyzing retrieved data AfdFastConnectionReceive

Earlier we were guided by (diversenok) to guess what values the flags can take and nowhere there was a
We can instead look at (unknowncheats.me |ICoded post), there we find such definitions:

value 0x20.

#define
#define
#define
#define
#define
#define
#define
#define
9 #define
10 #define
11 #define
12 #define
13 #define

0 ~J oy U b w N

TDI_RECEIVE BROADCAST
TDI_RECEIVE MULTICAST
TDI_RECEIVE PARTIAL
TDI_RECEIVE NORMAL
TDI_RECEIVE EXPEDITED
TDI_RECEIVE PEEK
TDI_RECEIVE NO RESPONSE_ EXP
TDI_RECEIVE COPY LOOKAHEAD
TDI_RECEIVE ENTIRE MESSAGE
TDI RECEIVE AT DISPATCH LEVEL
TDI_RECEIVE CONTROL INFO
TDI_RECEIVE FORCE INDICATION
TDI_RECEIVE NO_PUSH

0x800

0x2000

0x4
0x8
0x40
0x100
0x200
0x400

0x1000

0x10
0x20

0x80

0x4000

That is, 0x20 would imply a normal reception of data from the driver. But there is a detail, according to

(unknowncheats.me ICoded post), these flags apply to the TdiFlags field:

NTSTATUS AfdRecv (HANDLE SocketHandle,

pBytes)
{

NTSTATUS Status;
IO STATUS BLOCK IoStatus;

AFD SENDRECV_INFO RecvInfo;
HANDLE Event;
AFD WSABUF AfdBuffer;

Status =

if (NT_SUCCESS (Status))

{

/77
AfdBuffer.len = (ULONG)BufferLength;
RecvInfo.BufferArray = &AfdBuffer;
RecvInfo.BufferCount = 1;
RecvInfo.TdiFlags = TDI RECEIVE NORMAL;
RecvInfo.AfdFlags = 0;

s

}

return Status;

PVOID Buffer, ULONG PTR BufferLength, PULONG PTR

NtCreateEvent (&Event, EVENT ALL ACCESS, NULL, NotificationEvent,

47

Which in our case is not quite true. The buffer sentto AFD.sys is 0x18 in size, i.e. it has three fields of

0x8 bytes. And this third field (in our case AfdFlags)is just setto 0x20. | have experimentally checked

and our version is the one that works. Of course, | am not saying that the (unknowncheats.me ICoded
post) version does not work, it just does not apply in our case.

With all this in mind, let us create a working proof-of-concept using everything we already have:

O J oy Uk wdh

9

13

#include <stdint.h>

#include <Windows.h>

#include <winternl.h>

#include <iostream>

#include "afd defs.h"

#include "afd ioctl.h"

#pragma comment (lib, "ntdll.lib")

NTSTATUS createAfdSocket (PHANDLE socket) {/**/}
10 NTSTATUS bindAfdSocket (HANDLE socket) {/**/}

11 NTSTATUS connectAfdSocket (HANDLE socket) {/**/}
12 NTSTATUS sendAfdPacketTCP (HANDLE socket) {/**/}

14 NTSTATUS receiveAfdPacketTCP (HANDLE socket) {

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

const int BUF NUM = 1;

const int BUF SIZE = 1000;

AFDiBUFF* payload = new AFDiBUFF[BUFiNUM];
for (int 1 = 0; i < BUF_NUM; i++) {

payloadl[i] .buf = (uint8 t*)malloc (BUF_ SIZE);

memset (payload[i] .buf, 0x00, BUF SIZE);
payload[i].len = BUF SIZE;
}

AFD SEND PACKET* afdSendPacket = new AFD SEND PACKET;

afdSendPacket->buffersArray = payload;
afdSendPacket->buffersCount = BUF NUM;

afdSendPacket->afdFlags = 0x20; // RECEIVE NORMAL

IO STATUS BLOCK ioStatus;

NTSTATUS status = NtDevicelIoControlFile (socket, NULL, NULL, NULL,

IOCTL AFD RECEIVE,

}

afdSendPacket,
nullptr,

if (status == STATUS_PENDING) {
WaitForSingleObject (socket, INFINITE)
status = ioStatus.Status;

}

0);

std::cout << "[+] SERVER RESPONSE: " << std::endl;

std::cout << payload[0].buf << std::endl;

return status;

int main() {

HANDLE socket;

// 1. Create socket

// 2. Bind socket

// 3. Connect to remote host
// 4. Send 1000x'A'

status = receiveAfdPacketTCP (socket) ;
if (!NT SUCCESS (status)) {

std::cout << "[-] Could not receive TCP packet:
std::endl;

return 1;

}

" << std::hex <<

&ioStatus,

sizeof (AFD_SEND_ PACKET),

status <<

5/7

58 std::cout << "[+] Received!" << std::endl;
59
return 0;

What we do. We allocate our buffers to store the received response somewhere, set AfdFlags to 0x20

(normal reception), and then send the request to AFD. sys. What more do you need?

Well, it would be useful to somehow find out how much of this data we have received. At first, | thought
that maybe AFD. sys would modify the buffer structure and change its size. However, this did not
happen. The answer was much simpler. The IO STATUS BLOCK structure has an Information field:

// ref: https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/ns-wdm-
1o status block
typedef struct IO STATUS BLOCK {
union {
NTSTATUS Status;
PVOID Pointer;
}i
ULONG _PTR Information;
} IO _STATUS BLOCK, *PIO STATUS BLOCK;

O J oy Ul bk wdNh

And itis inthe Information field that we get a return on how many bytes have been read, but we do
not know how many are actually left to read. To check this we would now have to send another request to
AFD.sys and check if Informtaion is equal to 0x0. Then only then would we know if this is all there is.

Other receive flags

This question may be best answered by documentation from Microsoft. All the flags are very nicely
described there. Although some of them are explained in terminology familiar to driver developers. | tried
to reproduce some of them in Winsock and ‘make up’ my own explanation:

// Receive normal packets

; afdSendPacket->afdFlags = TDI_RECEIVE NORMAL;

3 // Receive normal packet, but don't clear AFD.sys input queue

4 afdSendPacket->afdFlags = TDI RECEIVE NORMAL | TDI RECEIVE PEEK;

5 // Receive normal packet, but wait for all data, equivalent of MSG WAITALL in Winsock
6 afdSendPacket->afdFlags = TDI RECEIVE NORMAL | TDI RECEIVE NO PUSH;

- // Receive packets with tcp.flags.urg ==

8 afdSendPacket->afdFlags = TDI RECEIVE EXPEDITED;

9 // Receive packets with tcp.flags.urg == 1, but don't clear AFD.sys input queue
10 afdSendPacket->afdFlags = TDI RECEIVE EXPEDITED | TDI RECEIVE PEEK;

11 // Receive packets with tcp.flags.urg == 1, but wait for all data, equivalent of
12 MSG WAITALL in Winsock

afdSendPacket->afdFlags = TDI RECEIVE EXPEDITED | TDI RECEIVE NO_ PUSH;

Some of our flags relate to UDP and we will certainly look at this when the opportunity arises.

Next steps

At this point, we already have the necessary functionality to be able to create a simple TCP client. In the
next batches we will look more at socket operations. How to change its parameters, how to close a
connection, how to close a socket, how to handle other types of TCP messages.

6/7

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/network/ff565131(v=vs.85)

Final code

Essentially, the content of the final code is no different from what you can find in the proof-of-concept
above. Of course, the code for IPv6 will look identical.

References

10.

11

12.

. Vittitoe, Steven. “Reverse Engineering Windows AFD.sys: Uncovering the Intricacies of the

Ancillary Function Driver.” Proceedings of REcon 2015, 2015, https://doi.org/10.5446/32819.

. killvxk. CVE-2024-38193 Nephster PoC. 2024, https://github.com/killvxk/CVE-2024-38193-

Nephster/blob/main/Poc/poc.h.

. unknowncheats.me ICoded post. Native TCP Client Socket. n.d.,

https://www.unknowncheats.me/forum/c-and-c-/500413-native-tcp-client-socket.html.

. ReactOS Project. Afd.h. n.d.,

https://github.com/reactos/reactos/blob/master/drivers/network/afd/include/afd.h.

. DynamoRIO / Dr. Memory. afd_sharedh. n.d.,

https://github.com/DynamoRIO/drmemory/blob/master/wininc/afd_shared.h.

. Dr. Memory - GH issue#376. Issue #376: AFD Support Improvements. n.d.,

https://github.com/DynamoRIO/drmemory/issues/376.

. Microsoft. NtCreateFile Function (Winternl.h). n.d., https://learn.microsoft.com/en-

us/windows/win32/api/winternl/nf-winternl-ntcreatefile.

. ---. X64 Calling Convention. n.d., https://learn.microsoft.com/en-us/cpp/build/x64-calling-

convention?view=msvc-170.

. -—-. X64 Calling Convention. n.d., https://learn.microsoft.com/pl-pl/windows/win32/api/winsock2/nf-

winsock2-wsasocketa.
DeDf. AFD Repository. n.d., https://github.com/DeDf/afd/tree/master.

. Allievi, Andrea, et al. Windows® Internals Part 2 - 6th Edition. 6th ed., Microsoft Press (Pearson

Education), 2022, https://learn.microsoft.com/sysinternals/resources/windows-internals.
diversenok. \Textttntafd.h — Ancillary Function Driver Definitions. commit 2dda0dd, Hunt & Hackett,
April 2025, https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntafd.h.

7/7

