leftarcode.com Iposts/afd-reverse-engineering-part3/

Under the Hood of AFD.sys Part 3: Sending TCP packets

Mateusz Lewczak : : 30/07/2025

A deep-dive into the IOCTL_AFD_SEND Fast-I/O path: snaring AfdFastloDeviceControl hits in WinDbg,
reverse-engineering the AFD_SEND_INFO / WSABUF chain, and blasting raw TCP payloads straight
from user space on Windows 11—still no Winsock, just pure AFD.sys magic.

Posted Jul 30, 2025
By Mateusz Lewczak

20 min read

Under the Hood of AFD.sys Part 3: Sending TCP packets

Introduction

With a word of introduction, this post is the third in a series of articles in which we take a closer look at
the AFD. sys driver. So far we have managed to create a socket and perform a three-way handshake
using only I/O request packets to AFD. sys with the omission of Winsock and mswsock.d11. Now it was

time to send and receive the packet.

As tradition dictates, here is our code from Winsock for our reference:

1 void createTCPv4 () {

2 const size t PAYLOAD = 8;

3

4 SOCKET s = socket (AF_INET, SOCK STREAM, IPPROTO TCP);

5 if (s == INVALID SOCKET) { std::cerr << "socket: " << WSAGetLastError () << '\n';
6 return; }

7

8 sockaddr in dst{};

9 dst.sin family = AF INET;

10 dst.sin port = htons(80);

11 InetPtonA (AF _INET, "192.168.1.1", &dst.sin_addr);

12

13 if (connect (s, reinterpret cast<sockaddr*>(&dst), sizeof(dst)) == SOCKET ERROR) ({
14 std::cerr << "connect: " << WSAGetLastError () << '\n';

15 closesocket (s); return;

16 }

17

18 std::string big (PAYLOAD, 'A');

19

20 size t sent = 0;

21 while (sent < big.size()) {

22 int n = send(s, big.data() + sent, static cast<int>(big.size() - sent), 0);
23 if (n == SOCKET_ERROR) {

24 std::cerr << "send: " << WSAGetLastError () << '\n';

25 break;

26 }

27 sent += n;

28 }

1/12

https://leftarcode.com/posts/afd-reverse-engineering-part3/
https://leftarcode.com/

29
30 closesocket (s);

After how easy it was to intercept the communiqué between our example program from Winsock and
AFD. sys | thought send and recv would be equally easy, but | was wrong. Setting the breakpoints to
afd!Afdsend and afd!AfdReceive did nothing. The previously adopted method was not effective, in
this case.

Starting with send, | thought at that point that maybe just maybe Afdsend is not the function that is
actually called to send TCP packets. | started searching by available symbols and the phrase Send, |
then hit nearly 96 different entries in the export table...

How do drivers differentiate between requests?

Unlike a normal program, where the start function is main (simplification), in Windows drivers such a
function is DriverEntry. This is the place where the DRIVER OBJECT is created, which is a structure

describing the device being made available, you will find there such information as:

¢ The name of the device, which will be visible, e.g. \Device\Afd.

¢ Function setting, when the driver is initialised/deinitialised.
¢ Setting of the disptach function that is called when an TRP comes in.

In order for the driver to distinguish between specific codes there is such a thing as a dispatch function.
This is a function that decodes the ToControlCode and passes the data and control to the next function
responsible for handling that particular request. For example, below we have the pseudo C code (Binary
Ninja) from the AfdDispatchDeviceControl function:

1 uinteée4 t AfdDispatchDeviceControl (int64 t argl, IRP* arg2) {

2 void* Overlay = *(uint64 t*) ((char*)arg2->Tail + 0x40);

3

4 if (NetioNrtIsTrackerDevice()) {

5 int32 t rax 6 = NetioNrtDispatch(argl, arg2);

6 *(uint32 t*) ((char*)arg2->IoStatus. + 0) = rax 6;

7 IofCompleteRequest (arg2, 0);

8 return (uinté4 t)rax 6;

9 }

10

11 int32 t r8 = *(uint32 t*) ((char*)Overlay + 0x18);

12 uint64 t rax 3 = (uint64 t) (r8 >> 2) & Ox3ff;

13

14 if (rax 3 < Ox4a && *(uint32 t*) ((rax 3 << 2) + &AfdIoctlTable) == r8) {
15 *(uint8 t*) ((char*)Overlay + 1) = rax 3;

16

17 if ((&AfdIrpCallDispatch) [rax 3])

18 return guard dispatch icall();

19 }

20

21 if ((*(int64 _t*) ((char*)g rgFastWppLevelEnabledFlags + Oxe)) & 0x10)
22 WPP_SF D(Oxb, &WPP 750cd5b025b73aclabcedcd764708469 Traceguids, r8);
23

24 *(uint32_t*) ((char*)arg2->IoStatus. + 0) = 0xc0000010;

25 IofCompleteRequest (arg2, AfdPriorityBoost);

26 return 0xc0000010;

27 }

2/12

There are a number of ways on how to perform such a dispatch, one is simply to create a series of
expressions with i f or switch/case and based on the resulting ToControlCode value, the specific
function responsible for performing the operation is called.

The second way (used in AFD. sys) is to create a call table (see AfdIrpCallDispatch). Instead of
complex conditional expressions, the driver creates an array of (pointers to) functions for itself and,
depending on the decoded function, the corresponding cal1l is executed. A fragment of this code can be
found in lines 14 to 19 in the snippet above.

We can go further and see what the content of this AfdIrpCallDispatch table looks like:

1c0059410 wvoid* AfdIrpCallDispatch = AfdBind

1c0059418 wvoid* data 1c0059418 = AfdConnect

1c0059420 wvoid* data 1c0059420 = AfdStartListen
1c0059428 wvoid* data 1c0059428 = AfdWaitForListen
1c0059430 wvoid* data 1c0059430 = AfdAccept

1c0059438 wvoid* data 1c0059438 = AfdReceive

1c0059440 wvoid* data 1c0059440 = AfdReceiveDatagram
1c0059448 wvoid* data 1c0059448 = AfdSend

9 1c0059450 wvoid* data 1c0059450 = AfdSendDatagram

10 1c0059458 void* data 1c0059458 = AfdPoll

11 1c0059460 wvoid* data 1c0059460 = AfdDispatchImmediatelrp
12 1c0059468 wvoid* data 1c0059468 = AfdGetAddress

13 1c0059470 wvoid* data 1c0059470 = AfdDispatchImmediatelIrp
14 1c0059478 wvoid* data 1c0059478 = AfdDispatchImmediatelrp

o ~J oy U b w N

We see there, for example, that operation 0 will be AfdBind, operation 1 will be AfdConnect, and we
also find there that operation 7 will be AfdSend. And these offsets are actually reflected in how we build
the IToControlCode to communicate with AFD. sys. Our control code is encoded with information about

what operation we want to perform:

, #define AFD BIND 0
, #define AFD CONNECT 1
Z #define FSCTL AFD BASE FILE DEVICE NETWORK
5 #define AFD CONTROL CODE (Request, Method) (FSCTL AFD BASE << 12 | (Request) << 2 |
6(Method))
; #define IOCTL_AFD BIND _AFD_CONTROL_CODE (AFD_BIND,
o METHOD_NEITHER) // 0x12003
#define IOCTL AFD CONNECT _AFD_CONTROL CODE (AFD CONNECT,

METHOD NEITHER) // 0x12007

Intercepting AfdDispatchDeviceControl

So instead of creating a breakpoint on afd!AfdsSend let’s try setting one for our
afd!AfdDispatchDeviceControl function. What | want to do at this point is simply check what
IoControlCode values are sent to our driver and see if one of them will be TOCTL AFD SEND
(0x1201F). To do this we will use the JavaScript below, which is supposed to read the ToControlCode
value at each hit:

1 "use strict";
2

3/12

3 function GetIoctl (irpAddr) {

4 // Get _IRP object

5 const irp = host.createTypedObject (irpAddr, "nt", " IRP");
6 // Get IO STACK LOCATION address

7 const stackPtr = irp.Tail.Overlay.CurrentStackLocation;

8 // Get IO STACK LOCATION object

9 const i1sl = stackPtr.dereference();

10

11 const code = isl.Parameters.DeviceloControl.IoControlCode;
12 return code;

13}

Now we need to load our script and set the appropriate breakpoint, which will write us the returned value
and not stop each time:

10: kd> .scriptrun D:\afddispatch.]s;
JavaScript script successfully loaded from 'D:\afddispatch.js'
JavaScript script 'D:\afddispatch.js' has no main function to invoke!

14: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p S{ep}
afd!AfdDispatchDeviceControl "dx
Debugger.State.Scripts.afddispatch.Contents.GetIoctl (@rdx);gc;" }

17: f£f£f£f£800°515b2db0 @!"afd!AfdDispatchDeviceControl"

14: kd> g

Debugger.State.Scripts.afddispatch.Contents.GetIoctl (Qrdx) : 0x120bf //
IOCTL AFD TRANSPORT IOCTL
Debugger.State.Scripts.afddispatch.Contents.GetIoctl (@rdx) : 0x12003 //
IOCTL_AFD BIND
Debugger.State.Scripts.afddispatch.Contents.GetIoctl (@rdx) : 0x12007 //
IOCTL AFD_ CONNECT

P P OO Jo bk whE

Already from the obtained IToControlCode we can see that we only have AfdBind and AfdConnect,
but where is our Afdsend? After many hours of reversing AFD. sys and mswsock.d11 and searching
the Internet for information | came across something called Fast 1/O.

What is Fast 1/0?

| will use the book Windows® Internals Part 2 - 6th edition (especially Chapter 11) (Allievi et al.) as one
source of information here. As we can read on page 375, Fast I/O is Windows’ mechanism for performing
fast operations, bypassing all the anguish involved in generating I/O request packets. Our driver first
checks if something can be handled as Fast I/O, if so it goes to another dispatch function that will handle
the request. Although in the book itself the author refers to a File system driver, as we will see this does
not apply only to file handling. One of the requirements to be able to handle Fast I/O is that our request
must be synchronous, and our send function from Winsock is, after all, waiting until it receives the result -
| don’t know if this is the good determinant, mswsock.d11 may handle it differently, but it's always
something. Importantly, requests that can be handled as Fast I/0O do not go to the traditional dispatch
function.

Looking for send

We have some suspicion that AFD. sys supports send as Fast I/O, so let’s start looking for confirmation

in the code. Like traditional dispatch, fast dispatch is also setin DriverEntry:

4/12

1 NTSTATUS DriverEntry (DRIVER OBJECT* argl) {

2

3 rdi 3 = memfill u64(&argl->MajorFunction, AfdDispatch, 0Oxlc);
4 argl->MajorFunction[Oxe] = AfdDispatchDeviceControl;

5 argl->MajorFunction[0xf] = AfdWskDispatchInternalDeviceControl;
6 argl->MajorFunction[0x17] = AfdEtwDispatch;

7 argl->FastIoDispatch = &AfdFastIoDispatch;

8 argl->DriverUnload = AfdUnload;

9 void* AfdDeviceObject 1 = AfdDeviceObject;

10 .

11}

And so right next to AfdDispatchDeviceControl we have the AfdFastIoDispatch function, it is
worth taking a closer look at it. Our AfdFastIoDispatch object is an array:

1c0065000 AfdFastIoDispatch:

1c0065000 eO 00 00 00 OO 0O OO OO OO OO0 00 00 00 00 00 00 +..iuiiivnionn..
1c0065010 wvoid* data 1c0065010 = AfdFastIoRead

1c0065018 wvoid* data 1c0065018 = AfdFastIoWrite

1c0065020 00 00 00 00 0O OO OO OO OO OO0 00 00 00 00 00 00 +.vivivnivnennn.
1c0065030 00 00 00 00 0O OO OO OO OO OO0 00 00 00 00 00 00 ...
1c0065040 wvoid* data 1c0065040 = AfdSanFastUnlockAll

1c0065048 00 00 00 00 00 00 0O OO L.l
1c0065050 wvoid* data 1c0065050 = AfdFastIoDeviceControl

W O J o U b W -

In our array we can see the entry AfdFastIoDeviceControl, which is a dispatch function, but for Fast
I/0. Why not throw a breakpoint in there and collect the ToControlCode. Except that they won'’t have to
delve into the IRP structure, the operation code is passed as one of the arguments of the

PFAST IO DEVICE CONTROL call:

1 typedef

2 BOOLEAN
3 (*PFAST IO DEVICE CONTROL) (

4 IN struct FILE OBJECT *FileObject,

5 IN BOOLEAN Wait,

6 IN PVOID InputBuffer OPTIONAL,

7 IN ULONG InputBufferLength,

8 OUT PVOID OutputBuffer OPTIONAL,

9 IN ULONG OutputBufferLength,

10 IN ULONG IoControlCode,

11 OUT PIO_STATUS BLOCK IoStatus,

12 IN struct DEVICE OBJECT *DeviceObject
13)i

So all we need to do is read the seventh argument (@rdi) of the call, we do this by setting such a

breakpoint:

6: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p ${ep}

afd!AfdFastIoDeviceControl ".printf \"IoControlCode=%p\\n\", @rdi;gc;" }
2: ffff£f800°515c4c20 @!"afd!AfdFastIoDeviceControl"

Couldn't resolve error at 'SessionId: afd!AfdFastIoDeviceControl ".printf

\"IoControlCode=%p\\n\", Q@rdi;gc;" '

6: kd> g

IoControlCode=000000000001207b // IOCTL AFD TRANSMIT FILE
ToControlCode=000000000001207b // IOCTL AFD TRANSMIT FILE
ToControlCode=0000000000012047 // IOCTL_AFD SET CONTEXT
IoControlCode=00000000000120bf // IOCTL_AFD TRANSPORT IOCTL
IoControlCode=0000000000012047 // IOCTL AFD SET CONTEXT
IoControlCode=0000000000012003 // IOCTL AFD BIND
IoControlCode=0000000000012047 // IOCTL _AFD SET CONTEXT

O Jo Uk WwN

R =P o
w N - o

5/12

14 ToControlCode=0000000000012007 // IOCTL AFD CONNECT
15 IToControlCode=0000000000012047 // IOCTL AFD SET CONTEXT
IoControlCode=000000000001201f // IOCTL AFD SEND

Ok, there we have it! Our send is treated as Fast I/O, let’s try to look at the AFD. sys code and find what

function is called when the driver receives 0x1201 £:

1 1c0034be0 int64 t AfdFastIoDeviceControl (struct FILE OBJECT* FileObject,

2 1c0034be0 BOOLEAN Wait, PVOID InputBuffer, ULONG InputBufferLength,

3 1c0034be0 PVOID OutputBuffer, ULONG OutputBufferLength, ULONG IoControlCode,
4 1c0034be0 PIO STATUS BLOCK IoStatus, struct DEVICE OBJECT* DeviceObject) {
5 ..

6 1c0034c99 if (IoControlCode == 0x1201f)

7 1c0034c9% goto label 1c0034d7d;

8 ...

9 1c0034d7d label 1c0034d7d:

10 1c0034d7d
11 1c0034d8d
12 1c0034d8d
13 ce

14 1c00350£f7
151c00350£7
16 1c00350fa
17 .

18 1c0034be0

__builtin memset (&s_2, 0, 0x14);
intl28 t s 3;
__builtin memset (&s 3, 0, 0x48);

rbx = (uint64 t)AfdFastConnectionSend(FsContext,
&s_2, rax_ 30, IoStatus);
goto label 1c003646b;

The code of the entire AfdFastIoDeviceControl is quite extensive, so | have only shown the parts

related to our 0x1201£. We can find there that if IoControlCode == 0x1201f£, then execute jmp to

0x1c0034d7d. This is where the initialisation of all necessary memory areas, variables etc. starts. And a

piece further on we have a call to the AfdFastConnectionSend function. This could be our function

responsible for sending the data. Of course, to confirm this we should now set a breakpoint there:

6: kd> .foreach /pS 1 (ep {
afd!AfdFastConnectionSend }

!process 0 0 afd re.exe }) { bm /p ${ep}

4: fffff800°515aac90 @!"afd!AfdFastConnectionSend"

6: kd> g

Couldn't resolve error at 'SessionId: afd!AfdFastConnectionSend '

Breakpoint 4 hit
afd!AfdFastConnectionSend:
fff£f£800°515aac90 4053

W O J o Uk WN -

push rbx

Hit! We found our function responsible for sending data via TCP! Now it is time to analyse the input
buffer. Here, as usual, our invaluable sources (killvxk), (unknowncheats.me ICoded post), (ReactOS
Project), (DynamoRIO / Dr. Memory), (DeDf), (diversenok) will help us.

Analyzing retrieved data AfdFastConnectionSend

From our signature for PFAST IO DEVICE CONTROL, we know that to the dispatch, InputBuffer and

InputBufferLength are passed as arguments to the third and fourth arguments, respectively. We are

not sure that they are passed to AfdFastConnectionSend at the same positions, but we can safely

assume that they are also passed directly as arguments. So what we’ll be looking for is by the values of
the address registers from user-space (canonical lower half) and some (relatively) small buffer length

value.

6/12

12: kd> r

rax=0000000000000002
rdx=ffffce0958bcef70
rip=fff£f£f800515aac90
r8=0000000000000008
r1l1=f£f££88£9d7c00000
r14=0000000000000018

rbx=000000c9532f£f128
rsi=0000000000000001
rsp=ffffce0958bcee88

r9=ffffce0958bcflc8
rl12=ffffbd8bfa8dda80
r15=000000000000afdl

rcx=ffffbd8bfa8dda80
rdi=0000000000000000
rbp=ffffce0958bcfdel
r10=ff£f£f£800bbcl7c70
r13=0000000000000000

0 ~J oy U b w N

el pl zr na po nc
es=002b £s=0053

iopl=0 nv up
cs=0010 ss=0018 ds=002b
10 afd!AfdFastConnectionSend:
11 £f££££800°515aac90 4053

ef1=00040246

NeJ

gs=002b

push rbx

Here we see that the rbx register stores something that may resemble an address in user-space, while
r14 looks like the size of our buffer. So let’s read their value:
kd> db 000000c9532ff128 L18

08 £2 2f 53 c9 00 00 00-01 00 OO OO0 OO0 00 00 00
00 00 00 00 0O 00 00 0O

112:
2 000000c9°532ff128
3000000c9°532£ff138

Again we have something that resembles an address and some size, let’s try to read (note on the dumpy
it is little-endian) 0x000000c9532ff208:

kd> db 000000c9532££208 L18
08 00 00 00 00 00 00 00-e0 f2 2f 53 c9 00 00 00
00 00 00 00 00 00 00 00

112:
2 000000c9°532ff208
3000000c9°532ff218

Once again, we see some size (0x08), which corresponds to the AAAAAAAA payload we sent. Let’s try

another dereference and check to see what it is at 0x000000¢c9532ff2e0:

112: kd> db 0x000000c9532ff2e0 L8
212: kd> db 0x000000c9532f£f2e0 L8

3000000c9°532ff2e0 41 41 41 41 41 41 41 41 AAAAAAAA

We've got it! There is our payload! But the question is how are the buffers constructed? The answer to
that will be found in (diversenok):

// ref:
typedef
ULONG
CHAR
} WSABUF,

https://learn.microsoft.com/en-us/windows/win32/api/ws2def/ns-ws2def-wsabuf
struct WSABUF ({

len;

*buf;

*LPWSABUF;

typedef struct AFD SEND INFO ({
_Field size (BufferCount) LPWSABUF BufferArray;
ULONG BufferCount;

10 ULONG AfdFlags;

11 ULONG TdiFlags; // TDI_RECEIVE *

12} AFD SEND INFO, *PAFD SEND INFO;

O J oy U bk wN

e

Breaking this down step by step, we first have a AFD SEND INFO structure containing a pointer to an

array of buffers and the number of these buffers. In each buffer, on the other hand, we have its length and
a pointer to the data. A fairly good analogy for this might be the standard use of argv in the main

function. There, too, we are dealing with an array for pointers to the buffers of our arguments passed to
the program.

7/12

A keen eye can spot a certain inconsistency. After all, we know that the InputBuffer from Winsock is 0x18
bytes and our AFD SEND INFO structure is 0x20 bytes. | have experimentally verified that, in principle,
TdiFlags is optional. Presumably if we had indicated TransportDevice (€.g. DeviceTcp) when

creating the socket we would have had to indicate this. This leaves the conundrum of what values can
AfdFlags take?

According to what we have in (diversenok) this could be:

1 #define AFD NO FAST IO 0x0001
2 #define AFD OVERLAPPED 0x0002

The AFD NO_FAST IO seems to be the most interesting from the perspective of our work so far. In fact
when we set AfdFlags to 0x0001 then AFD. sys goes through a classic dispatch and the breakpoint on
AfdSend is triggered:

1 12: kd> .foreach /pS 1 (ep { !process 0 0 afd-networking.exe }) { bm /p ${ep}
5 afd!AfdSend }
3 6: fffff800°515a18c0 @!"afd!AfdSend"
4 Couldn't resolve error at 'SessionId: afd!AfdSend '
12: kd> g
5 . .
6Breakp01nt 6 hit
7 afd!AfdSend:

fff££800°515a18c0 4c8bdc mov rll, rsp

So, that’s cool, we can control how this particular request will be dispatched. It's worth saving this for a
later reserach on where and how this is done. What about TCPv67? Generally it looks the same, there are
no big differences in sending packets. Socket created, connection established, interface to send is the
same.

The question now would be how many buffers can it send, how big can they be? Does the total number
of bytes count? Let’s find out!

Playing with buffers

So let’s perhaps start by trying to send 10 megabytes using WinSock and see if it breaks it up somehow,
to get a general idea of what we’re dealing with. By default, | set my breakpoint to
afd!AfdFastIoDeviceControl and write out the ToControlCode to see if, for example, Winsock is
splitting this data packet into multiple requests:

14: kd> .foreach /pS 1 (ep { !process 0 0 afd re.exe }) { bm /p S{ep}

afd!AfdFastIoDeviceControl ".printf \"IoControlCode=%p\\n\", Q@rdi;gc;" }
10: f£f£f£f£f800°515c4c20 @!"afd!AfdFastIoDeviceControl"

Couldn't resolve error at 'SessionId: afd!AfdFastIoDeviceControl ".printf

\"IoControlCode=%p\\n\", Qrdi;gc;" '

14: kd> g

IoControlCode=000000000001207b

ToControlCode=000000000001207b

ToControlCode=0000000000012047

ToControlCode=00000000000120bf

IoControlCode=0000000000012047

IoControlCode=0000000000012003

IoControlCode=0000000000012047

IoControlCode=0000000000012007

O Jo Ul wbh

el el)
NN S S)

8/12

ToControlCode=0000000
ToControlCode=0000000

000012047
00001201f

Despite our loop to make sure all the data was sent this Winsock managed to send 10 Megabytes at a

static_cast<int>(big.size()

'\n';

time:

1 while (sent < big.size()) {

2 int n = send(s, big.data() + sent,

3 std::cerr << "sent portion: " << n << '\n';

4 if (n == SOCKET_ERROR) {

5 std::cerr << "send: " << WSAGetLastError () <<
6 break;

7 }

8 sent += n;

9}

- sent),

And what does the buffer that is passed to AfdFastConnectionSend look like?

O Jo Uk wbh

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23

8: kd> .foreach /pS 1
afd!AfdFastConnection

(ep {
Send }

!process 0 0 afd re.exe })

afd!AfdFastConnectionSend

12: ff£f£f£f800° 515aac90 @!"afd!AfdFastConnectionSend"
Couldn't resolve error at 'SessionId:
8: kd> g
Breakpoint 12 hit
afd!AfdFastConnectionSend:
fff£f£f800° 515aac90 4053 push

8: kd> r
rax=0000000000000002
rdx=ffffce0956db6£70
rip=ffff£f800515aac90
r8=0000000006400000
r1l1=f£f££88£9d7c00000
r14=0000000000000018
iopl=0 nv up
cs=0010 ss=0018 ds=
afd!AfdFastConnection
ff£££800°515aac90 405
8: kd> dg 000000celab
000000ce " 1abff328
000000ce1abff338 00
8: kd> dg 000000ce " 1la
000000ce " 1a6bff408

rbx=000000cela6ff328
rsi=0000000000000001
rsp=ffffce0956db6e88
r9=£ffffce0956db71c8
rl12=ffffbd8bfa8dac00
r15=000000000000afdl
el pl zr na po nc

rbx

rcx=ffffbd8bfa8dac00
rdi=0000000000000000
rbp=ffffce0956db74e0
r1l0=£ff£f££800bbcl7c70
r13=0000000000000000

002b es=002b £fs=0053 gs=002b
Send:

3 push rbx

££328 L3

000000°00000000
6££408 L2

000000ce " 1a6££408 00000000 00000001

00000000°06400000 00000242 3249080

{ bm /p ${ep}

0);

ef1=00040246

Everything flies in one big buffer - the same for 1 Gigabyte. So | am curious how realistically AFD. sys

interprets these buffers. Maybe n buffers will be sent as n packets? This is already verified without using

Winsock:

1 NTSTATUS sendAfdPacke
2 const int BUF NUM
3 const int BUF SIZ
4 AFD BUFF* payload
5 for (int 1 = 0; 1
6 payload[i] .bu
7 memset (payloa
8 payload[i].le
9 }

10

11 AFD SEND PACKET*
12 afdSendPacket->Bu
13 afdSendPacket->Bu
14 afdSendPacket->Af
15

tTCP (HANDLE socket)
= 16;
E = 16;

{

= new AFD BUFF[BUF NUM];

< BUF_NUM;
f =
d[i].buf, 0x42,
n = BUF_SIZE;

i++) |

afdSendPacket =
fferArray = payload;
fferCount = BUF NUM;
dFlags =

(uint8 t*)malloc (BUF_SIZE);
BUF_SIZE);

new AFD SEND PACKET;

AFD NO_FAST IO;

9/12

16 IO STATUS BLOCK ioStatus;

17 NTSTATUS status = NtDeviceIoControlFile (socket, NULL, NULL, NULL, &ioStatus,

18 TOCTL_AFD SEND,

19 afdSendPacket, sizeof (AFD_ SEND PACKET),
20 NULL, NULL);

21 if (status == STATUS PENDING) {

22 WaitForSingleObject (socket, INFINITE) ;

23 status = ioStatus.Status;

24 }

25 return status;

As it turns out this changes nothing, it flies as one packet. For obvious reasons per the TCP specification

the packet would be split once it exceeded 0xFFFF bytes, but the number of buffers has no bearing on

this. | checked experimentally and AFD. sys will also accept 1024*1024 buffers of 1024 bytes each. An

important limitation, of course, remains our hardware.

Next steps

Although | originally intended to discuss both send and receive in this part, this article is long enough

that it is in the next step that we will deal with receiving TCP packets.

Final code

Below you can find the full code for the current state of our knowledge:

#include <stdint.h>

#include <Windows.h>

#include <winternl.h>

#include <iostream>

#include "afd defs.h"

#include "afd ioctl.h"

#pragma comment (1ib, "ntdll.lib")

0 ~J oy U b wNR

NeJ

NTSTATUS createAfdSocket (PHANDLE socket)

10 NTSTATUS bindAfdSocket (HANDLE socket) {...

11 NTSTATUS connectAfdSocket (HANDLE socket)
12

13 // AFDFLAGS

14 #define AFD NO FAST IO 0x0001

15 #define AFD_OVERLAPPED 0x0002

16

17 struct AFD BUFF {

18 uint64 t len;

19 uint8 t* buf;

20 };

21

22 struct AFD SEND PACKET ({

23 AFD BUFF* buffersArray;

24 uint64 t buffersCount;

25 uinte4 t afdFlags;

26 uint64 t tdiFlags; // optional

27 };

28

29 NTSTATUS sendAfdPacketTCP (HANDLE socket)

30 const int BUF NUM = 1;

31 const int BUF SIZE = 16;

32 AFD_BUFF* payload = new AFD_BUFF[BUF_NUM];
33 for (int i = 0; i < BUF_NUM; i++) {

34 payload[i] .buf = (uint8 t*)malloc (BUF_ SIZE);

10/12

35 memset (payload[i] .buf, 0x42, BUF SIZE);

36 payload[i].len = BUF SIZE;

37 }

38

39 AFD_SEND_PACKET* afdSendPacket = new AFD_SEND_PACKET;

40 afdSendPacket->buffersArray = payload;

41 afdSendPacket->buffersCount = BUF NUM;

42 afdSendPacket->afdFlags = 0;

43

44 IO STATUS BLOCK ioStatus;

45 NTSTATUS status = NtDeviceIoControlFile (socket, NULL, NULL, NULL, &ioStatus,
46 TOCTL_AFD SEND,

477 afdSendPacket, sizeof (AFD_SEND PACKET)
48 NULL, NULL);

49 if (status == STATUS PENDING) ({

50 WaitForSingleObject (socket, INFINITE)

51 status = ioStatus.Status;

52 }

53 return status;

54}

55

56 int main() {

57 HANDLE socket;

58 NTSTATUS status = createAfdSocket (&socket);

59 if (!NT_SUCCESS(StatuS)) {

60 std::cout << "[-] Could not create socket: " << std::hex << status <<
61 std::endl;

62 return 1;

63 }

64 std::cout << "[+] Socket created!" << std::endl;

65

66 status = bindAfdSocket (socket) ;

67 if (!NT_SUCCESS(StatuS)) {

68 std::cout << "[-] Could not bind: " << std::hex << status << std::endl;
69 return 1;

70 }

71 std::cout << "[+] Socket bound!" << std::endl;

72

73 status = connectAfdSocket (socket) ;

74 if (!NT_SUCCESS(status)) {

75 std::cout << "[-] Could not connect: " << std::hex << status << std::endl;
76 return 1;

77 }

78 std::cout << "[+] Connected!" << std::endl;

79

80 status = sendAfdPacketTCP (socket) ;

81 if (!NT_SUCCESS(StatuS)) {

82 std::cout << "[-] Could not send TCP packet: " << std::hex << status <<
83 std::endl;

84 return 1;

85 }

86 std::cout << "[+] Sent!" << std::endl;

return 0;

References

1. Vittitoe, Steven. “Reverse Engineering Windows AFD.sys: Uncovering the Intricacies of the
Ancillary Function Driver.” Proceedings of REcon 2015, 2015, https://doi.org/10.5446/32819.

2. killvxk. CVE-2024-38193 Nephster PoC. 2024, https://github.com/killvxk/CVE-2024-38193-
Nephster/blob/main/Poc/poc.h.

4

11/12

10.
11.

12.

. unknowncheats.me ICoded post. Native TCP Client Socket. n.d.,

https://www.unknowncheats.me/forum/c-and-c-/500413-native-tcp-client-socket.html.

. ReactOS Project. Afd.h. n.d.,

https://github.com/reactos/reactos/blob/master/drivers/network/afd/include/afd.h.

. DynamoRIO / Dr. Memory. afd_sharedh. n.d.,

https://github.com/DynamoRIO/drmemory/blob/master/wininc/afd_shared.h.

. Dr. Memory - GH issue#376. Issue #376: AFD Support Improvements. n.d.,

https://github.com/DynamoRIO/drmemory/issues/376.

. Microsoft. NtCreateFile Function (Winternl.h). n.d., https://learn.microsoft.com/en-

us/windows/win32/api/winternl/nf-winternl-ntcreatefile.

. -—-. X64 Calling Convention. n.d., https://learn.microsoft.com/en-us/cpp/build/x64-calling-

convention?view=msvc-170.

. ---. X64 Calling Convention. n.d., https://learn.microsoft.com/pl-pl/windows/win32/api/winsock2/nf-

winsock2-wsasocketa.

DeDf. AFD Repository. n.d., https://github.com/DeDf/afd/tree/master.

Allievi, Andrea, et al. Windows® Internals Part 2 - 6th Edition. 6th ed., Microsoft Press (Pearson
Education), 2022, https://learn.microsoft.com/sysinternals/resources/windows-internals.
diversenok. \Textttntafd.h — Ancillary Function Driver Definitions. commit 2dda0dd, Hunt & Hackett,
April 2025, https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntafd.h.

12/12

