
CICADA8 June 25, 2025

We’re going the wrong way! How to abuse symlinks and get

LPE in Windows

 cicada-8.medium.com/were-going-the-wrong-way-how-to-abuse-symlinks-and-get-lpe-in-windows-0c598b99125b

Hello everybody, my name is Michael Zhmailo and I am a penetration testing expert in the

CICADA8 team.

1/17

https://cicada-8.medium.com/were-going-the-wrong-way-how-to-abuse-symlinks-and-get-lpe-in-windows-0c598b99125b
https://www.linkedin.com/in/mzhmo/
https://cicada8.ru/

Symbolic links have been present in Windows systems almost since birth. However, few offensive

security courses will teach you about them, although symbolic links have great potential, because

with luck you can get LPE! My article will tell you in detail about symbolic links, the specifics of

working with them, and will also clearly show you the logic of abuse to obtain LPE.

What is a symbolic link?

So, a symbolic link allows you to point from one object to another. Literally: a symbolic link

example could point to file 1.txt. There are different types of symbolic links in Windows. Let’s take

a closer look at them.

NTFS (Soft Link) — Allows you to link from one file to another. To create, you need

administrator rights or the privilege or Windows Developer Mode enabled. U can create such

link using:

mklink link.txt orig.txt;

Soft Link Example

Hard Link — also allows you to link from one file to another, but only within the same drive.

Requires FILE_WRITE_ATTRIBUTES rights to create. You cannot link to directories. U can

read more about soft and hard links here. U can create hard link with:

mklink /H link.txt orig.txt/CommonUtils/Hardlink.cpp

Hard link example

2/17

https://www.reddit.com/r/linuxadmin/comments/cue7g2/hard_links_vs_soft_links/

Registry Link — allows you to link from one registry key to another, requires

KEY_CREATE_LINK+KEY_CREATE_SUB_KEY rights to create, also you cannot create a

symlink between certain hives. For example, you cannot create a symlink from to

/CommonUtils/RegistrySymlink.cpp

Registry Symlink example

As you can see, almost all symbolic links require a fairly privileged account. How can you elevate

your privileges then?

And here we come to two other less popular types of symlinks.

NTFS Mount Point — This is a symbolic link from one folder to another. Can be created on

behalf of a low-privileged account. The directory that becomes a symbolic link (in the

examples) must be empty, and we must have write access to it. U can create such link

using:

mklink /J Dir-link Directory/CreateMountPoint

NTFS Mount Point Example

Object Manager Symlink — allows you to create symbolic links within the Object Manager

namespace. As a low-privileged user, you can create symbolic links in the and namespaces.

You can also try creating a symbolic link inside if you meet some conditions described here.

/NativeSymlink/CreateDosDeviceSymlink

3/17

https://x.com/sixtyvividtails/status/1825687230788329921

Object manager symlink example

U can read more about Object Manager here. To achieve LPE we will use these two types of

symbolic links.

Arbitrary File Deletion Example

So, let’s look at an example. Let’s say we know that some operation which can lead to LPE is

being performed on a file, and we want to replace it with a symbolic link.

Using NTFS Mount Point + Object Manager symlink example

So, let’s say there is some Windows service that performs the operation of deleting the file

C:\Temp\abc\file.txt. And we want to replace this file with C:\Windows\controlled.txt, while working

on behalf of a low-privileged account. In addition, we have full rights to the directory C:\Temp\abc

and to the file.txt file itself. We have no rights to the file controlled.txt.

In this case, we proceed as follows:

1. Create a Object Manager symbolic link from to

2. After that, we create an NTFS Mount Point from C:\Temp\abc (dont forget about deleting all files

from C:\Temp\abc) to \RPC Control;

3. We see successful deletion of C:\Windows\controlled.txt!

4/17

https://en.wikipedia.org/wiki/Object_Manager

How does it work? So, first, the high-privileged service that performs the delete operation calls a

method like DeleteFile() on the file C:\Temp\abc\file.txt. However, this file does not exist. And

C:\Temp\abc points to \RPC Control. So, \RPC Control\file.txt is accessed. This is also a symbolic

link. Only it points to C:\Windows\controlled.txt. This causes the service to follow two symbolic

links and instead of the desired C:\Temp\abc\file.txt, it deletes C:\Windows\controlled.txt. This is

what the vulnerability looks like :) It’s called Arbitrary File Deletion.

More arbitrary file operations

So, the general logic of exploitation is as follows. We create two symbolic links, after which we

redirect the execution flow of the privileged service, forcing it to perform some operations against

the file we need.

Abuse logic

You can see examples of Arbitrary File Delete on these CVEs:

CVE-2020–0683 — Windows MSI “Installer service” Elevation of Privilege;

CVE-2023–21800 — Windows Installer EOP;

CVE-2024–29404 — Razer EOP.

However, in addition to deletion, you may encounter copying operations, creating files, moving

files, overwriting. I’ve put together the following POC to demonstrate these scenarios.

CVE-2024–26238 — Windows 10 PlugScheduler EOP. Arbitrary Create;

CVE-2024–12754 — AnyDesk LPE. Arbitrary Copy;

CVE-2024–37726 — MSI Center Arbitrary File Overwrite Vulnerability;

CVE-2024–21111 — Oracle VirtualBox LPE;

CVE-2020–1076 — Arbitrary file write in VaultSvc.

5/17

https://github.com/padovah4ck/CVE-2020-0683
https://blog.doyensec.com/2023/03/21/windows-installer.html
https://github.com/Wh04m1001/RazerEoP
https://www.synacktiv.com/advisories/windows-10-plugscheduler-elevation-of-privilege
https://github.com/CICADA8-Research/Penetration/tree/main/POCs/CVE-2024-12754
https://github.com/carsonchan12345/CVE-2024-37726-MSI-Center-Local-Privilege-Escalation
https://github.com/mansk1es/CVE-2024-21111
https://www.seljan.hu/posts/arbitrary-file-write-in-vaultsvc/

How to find this vulnerability?

The easiest way to find such a vulnerability is to use Process Monitor. To do this, set up the

settings as I have, then monitor file operations and check which files you can replace with a

symbolic link.

Process Monitor Settings (Options -> Select Columns)

For example, when we investigated LPE in Anydesk, we determined that the operation was being

used on the file C:\users\<username>\AppData\Roaming\Microsoft\Windows\Themes\

<wallpaper>.png, over which we have full control. After which the file was copied to

C:\Windows\Temp\<wallpaper>.png.

6/17

File operation example

Then you need to determine the context, that is, on whose behalf the privileged operation is being

performed. In our case, it was NT AUTHORITY\SYSTEM, which led to the LPE.

Privileged File Operation

So, we just need to file a privileged file operation on a file we control, and then replace that file

with a symbolic link. But how to trigger this privileged file operation? Here I offer several options.

Sending an IOCTL to the driver — you can try to trigger the driver to perform a file operation

on a file under your control;

Bulk creation of COM objects — When initializing, COM objects can use different files, while

running on behalf of the NT AUTHORITY\SYSTEM;

MSI Packet Installation — different files may be used during the installation of an MSI

package;

7/17

https://gist.github.com/MzHmO/5c01a837998b225faa4834e82260922c
https://github.com/CICADA8-Research/COMThanasia?tab=readme-ov-file#comtraveller
https://github.com/CICADA8-Research/MyMSIAnalyzer

GUI/RPC/ALPC — finally, you can try to interact with the target application via the IPC

interfaces it provides.

Arbitrary File Delete

Let’s take a closer look at the vulnerability. For example, how Arbitrary File Delete was used in the

past to abuse antiviruses.

AV Abuse Example

So, we have an antivirus service that operates on behalf of NT AUTHORITY\SYSTEM. The

hacker places a malicious EICAR file on the device disk. Then it starts checking the Last Access

TimeStamp in a loop in an attempt to detect access to its file. The antivirus accesses the file,

identifies malicious file, and then tries to delete it from the disk. However, at this point the hacker

replaces his file with a symbolic link, which, by connecting NTFS Mount Point and Object Manager

Symlink, leads to a critical file for the antivirus itself. This is how the antivirus deletes itself :)

Join Medium for free to get updates from this writer.

So what can we do once we have achieved arbitrary file deletion?

Here is a more general option — try to delete some DLL library. Then write your own load in its

place. Focus on the Search Order Hijacking and DLL Redirection mechanisms. However, this is a

slightly more complex case. Consider a simpler method — abuse of Windows Installer Rollback.

This method allows you to get the system shell from arbitrary file deletion primitive.

8/17

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getfileinformationbyhandleex
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getfileinformationbyhandleex
https://cloud.google.com/blog/topics/threat-intelligence/arbitrary-file-deletion-vulnerabilities/

Windows Installer Rollback abuse

The mechanism is based on the fact that we delete the C:\Config.msi folder, write our own

malicious MSI files and call the Rollback mechanism, which leads to the execution of these files.

You can explore this mechanism in more detail in these CVEs:

CVE-2023–27470 — Take Control Agent 7.0.41.1141 LPE;

CVE-2023–20178 — Arbitrary File Delete vulnerability in Cisco Secure Client (tested on

5.0.01242) and Cisco AnyConnect (tested on 4.10.06079);

CVE-2022–30206 — Windows Print Spooler Elevation of Privilege Vulnerability.

Fun Fact

To be honest, I was quite surprised by the fact that the topic of symbolic link abuse is largely

ignored in the leading and most popular offensive security courses. Moreover, this vulnerability is

more than relevant. Just a couple of months ago, another CVE was registered, related to the

abuse of symbolic links. Read the research here.

Arbitrary File Create/Copy && Some Tricks

So, what if you can control whether a file is created or copied instead of deleting it? In this case, I

suggest using two options for abuse:

More general option: Try writing a new configuration file to some service, writing scripts to

the system-wide startup or using the DLL Redirection mechanism (create .local files);

However, there is a potentially vulnerable DiagHub service that will allow us to load an

arbitrary library from C:\Windows\System32. So, try to write your library to this path and

trigger the service. You can read more here and here.

9/17

https://cloud.google.com/blog/topics/threat-intelligence/arbitrary-file-deletion-vulnerabilities/
https://github.com/Wh04m1001/CVE-2023-20178
https://github.com/Malwareman007/CVE-2022-30206
https://cyberdom.blog/abusing-the-windows-update-stack-to-gain-system-access-cve-2025-21204/
https://github.com/xct/diaghub/tree/master
https://github.com/irsl/microsoft-diaghub-case-sensitivity-eop-cve

DiagHub vulnerable interface definition

DiagHub initialization and abuse

However, during exploitation you may encounter a problem — the target application checks the

file before copying or creating. In this case, look towards the BaitAndSwitch repository. This

repository will allow you to perform a Time of check — time of use (TOCTOU) attack.

What does it consist of? First, we also create a symbolic link, but it points to a legitimate file that is

being checked. In turn, OpLock is installed on this legitimate file. OpLock allows you to track

requests to a legitimate file. As soon as the target service requests a legitimate file, OpLock is

triggered and our symbolic link changes from a legitimate file to a malicious one.

10/17

https://github.com/googleprojectzero/symboliclink-testing-tools/tree/main/BaitAndSwitch
https://github.com/googleprojectzero/symboliclink-testing-tools/tree/main/SetOpLock

TOCTOU Abuse Example

This is the first trick you can use when abusing arbitrary copying or arbitrary file creation.

The second trick is to override DACL. It was used when writing POC on LPE in AnyDesk. We had

the following case: we could perform arbitrary copying of any system files to the C:\Windows\Temp

folder, but the files were copied together with their original DACL. Thus, we could not read the

files. However, we simply recreated the target files in the C:\Windows\Temp folder and the

vulnerable service involuntarily performed an arbitrary overwrite operation instead of arbitrary

copying. And in this case, the original DACL is used. That is, the file that we created ourselves.

And we can read our own files without problems.

11/17

Overriding DACL Example

U can read more about it here.

Arbitrary File Overwrite/Move

It is worth noting that if you have achieved a move or overwrite primitive, the methods of abuse

will not differ from the methods used for arbitrary copying or creation. Also look into writing DLL

libraries or using DiagHub.

Did you know that renaming can move a file? Let’s take a closer look. Let’s say we have some

privileged service that performs the rename operation from C:\abc\private.txt to C:\xyz\public.txt.

In this case, we control both files: private.txt and public.txt.

12/17

https://mansk1es.gitbook.io/AnyDesk_CVE-2024-12754

Renaming to moving…

In this case, we can make two symbolic links: one will be called private.txt, and the second

public.txt. And they will point to the files we need to move. For example, private.txt will point to the

malicious DLL library C:\hack\pwn.dll, which we want to write to the path C:\LegitService\Legit.Dll.

Accordingly, public.txt should point to C:\LegitService\Legit.dll. Thus, when the service wants to

rename C:\abc\private.txt to C:\xyz\public.txt, it will rename C:\hack\pwn.dll to

C:\LegitService\Legit.dll. You can read more about this wonderful technique here.

Arbitrary Directory Creation

There are more sophisticated methods. For example, when you can control the folder being

created. In this case, you can try to untwist it to arbitrary reading of system files.

13/17

https://www.synacktiv.com/advisories/windows-10-plugscheduler-elevation-of-privilege

From Arbitrary Directory Creation to Arbitrary File Read

In this case, you should create a folder with a special name, for example, c_1337.nls, convert it to

NTFS Mount Point to the desired file. Yes, to the file, not to the folder, we will work with the

National Language Support service, which uses a special system call that allows you to convert a

symbolic link NTFS Mount Point to a file. After that, we trigger the National Language Support

service, the target file is mapped to shared memory. All we have to do is find the desired file in

memory by its characteristic name. You can find the POC here, and the original research here.

Symlinks to UAC Abuse

You can use symbolic links to bypass UAC! It is worth noting that this method only works on

systems running Intel processors. To abuse it, you need to locate the ShaderCache folder, delete

all files from there, create an NTFS Mount Point, achieve a random overwrite primitive, and write

your own DLL.

14/17

https://gist.github.com/tyranid/221bf08dd3ddb88ec33d2573a83482d0
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html

UAC Bypass using symlinks

You can find the original research here.

Defense notes

So how can you protect yourself from symbolic link abuse? I see two options:

RedirectionTrust — the system does not follow symbolic links that are created by a user with

a lower IL;

15/17

https://g3tsyst3m.github.io/uac%20bypass/Bypass-UAC-via-Intel-ShaderCache/

Enabling RedirectionTrust example

POC to find the RedirectionTrust mechanism in running processes.

Impersonation — Your service must use a low-privilege user token for file operations. You

can use someone else’s token using special functions, such as

ImpersonateLoggedOnUser().

Also, check out this exploit blocker.

Conclusion

Thank you for reading my article to the end. I hope the material will help you in studying the abuse

of symbolic links. Subscribe to us in X!

16/17

https://gist.github.com/MzHmO/09b5ea312efcd4bd9cc25b7facd4ded4
https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-impersonateloggedonuser
https://github.com/shubham0d/SymBlock
https://x.com/CICADA8Research

17/17

