We’re going the wrong way! How to abuse symlinks and get
LPE in Windows

cicada-8.medium.com/were-going-the-wrong-way-how-to-abuse-symlinks-and-get-Ipe-in-windows-0c598b99125b

CICADAS8 June 25, 2025

g

al VAR

Hello everybody, my name is Michael Zhmailo and | am a penetration testing expert in the
CICADAS team.

117

https://cicada-8.medium.com/were-going-the-wrong-way-how-to-abuse-symlinks-and-get-lpe-in-windows-0c598b99125b
https://www.linkedin.com/in/mzhmo/
https://cicada8.ru/

Symbolic links have been present in Windows systems almost since birth. However, few offensive
security courses will teach you about them, although symbolic links have great potential, because
with luck you can get LPE! My article will tell you in detail about symbolic links, the specifics of
working with them, and will also clearly show you the logic of abuse to obtain LPE.

What is a symbolic link?

So, a symbolic link allows you to point from one object to another. Literally: a symbolic link
example could point to file 1.txt. There are different types of symbolic links in Windows. Let’s take
a closer look at them.

NTFS (Soft Link) — Allows you to link from one file to another. To create, you need
administrator rights or the privilege or Windows Developer Mode enabled. U can create such
link using:

mklink link.txt orig.txt;

l.‘ |:> .'A“_

link.txt orig.txt

Soft Link Example

Hard Link — also allows you to link from one file to another, but only within the same drive.
Requires FILE_WRITE_ATTRIBUTES rights to create. You cannot link to directories. U can
read more about soft and hard links here. U can create hard link with:

mklink /H link.txt orig.txt/CommonUtils/Hardlink.cpp

C:\link.txt C:\hi\orig.txt

Hard link example

217

https://www.reddit.com/r/linuxadmin/comments/cue7g2/hard_links_vs_soft_links/

Registry Link — allows you to link from one registry key to another, requires
KEY_CREATE_LINK+KEY_CREATE_SUB_KEY rights to create, also you cannot create a
symlink between certain hives. For example, you cannot create a symlink from to

/CommonUtils/RegistrySymlink.cpp

HKCU\XXX HKCU\XXX

Registry Symlink example

As you can see, almost all symbolic links require a fairly privileged account. How can you elevate
your privileges then?

And here we come to two other less popular types of symlinks.

NTFS Mount Point — This is a symbolic link from one folder to another. Can be created on
behalf of a low-privileged account. The directory that becomes a symbolic link (in the
examples) must be empty, and we must have write access to it. U can create such link
using:

mklink /J Dir-1link Directory/CreateMountPoint

L —

Dir-link Directory
NTFS Mount Point Example

Object Manager Symlink — allows you to create symbolic links within the Object Manager

namespace. As a low-privileged user, you can create symbolic links in the and namespaces.

You can also try creating a symbolic link inside if you meet some conditions described here.

/NativeSymlink/CreateDosDeviceSymlink

3/17

https://x.com/sixtyvividtails/status/1825687230788329921

© — |-

Object File

Object manager symlink example

U can read more about Object Manager here. To achieve LPE we will use these two types of
symbolic links.

Arbitrary File Deletion Example

So, let’s look at an example. Let’'s say we know that some operation which can lead to LPE is
being performed on a file, and we want to replace it with a symbolic link.

I want to control

Creation sequeance

G:\TE mp\ﬂbC\fiIE.tXt Exploitation sequence
\RPC Contral \RPC Controffile.txt :
GATSME) e \ﬁi&ﬂ!‘*’@!’ﬂ;ﬂﬁwﬁﬂﬂ%mril;ted \BaseNamedOblects\Restricted|filext _ 1o oneicontrolied it

Using NTFS Mount Point + Object Manager symlink example

So, let’s say there is some Windows service that performs the operation of deleting the file
C:\Temp\abclfile.txt. And we want to replace this file with C:\Windows\controlled.txt, while working
on behalf of a low-privileged account. In addition, we have full rights to the directory C:\Temp\abc
and to the file.txt file itself. We have no rights to the file controlled.txt.

In this case, we proceed as follows:
1. Create a Object Manager symbolic link from to

2. After that, we create an NTFS Mount Point from C:\Temp\abc (dont forget about deleting all files
from C:\Temp\abc) to \RPC Control;

3. We see successful deletion of C:\Windows\controlled.txt!

a/17

https://en.wikipedia.org/wiki/Object_Manager

How does it work? So, first, the high-privileged service that performs the delete operation calls a
method like DeleteFile() on the file C:\Temp\abcfile.txt. However, this file does not exist. And
C:\Temp\abc points to \RPC Control. So, \RPC Control\file.txt is accessed. This is also a symbolic
link. Only it points to C:\Windows\controlled.txt. This causes the service to follow two symbolic
links and instead of the desired C:\Temp\abc\file.txt, it deletes C:\Windows\controlled.txt. This is
what the vulnerability looks like :) It's called Arbitrary File Deletion.

More arbitrary file operations

So, the general logic of exploitation is as follows. We create two symbolic links, after which we
redirect the execution flow of the privileged service, forcing it to perform some operations against
the file we need.

f 1

0 Delete Chabohlixt l
MT AUTHORITYYSYSTEM CAabc \RPﬁCnnum \RPC ControfObject
Success.
CAWiIndows\System\ 2.t ‘\Davicel\HardDiskValume2\Windows\ System) 2.txt
Abuse logic

You can see examples of Arbitrary File Delete on these CVEs:

o CVE-2020-0683 — Windows MSI “Installer service” Elevation of Privilege;
e CVE-2023-21800 — Windows Installer EOP;
e CVE-2024-29404 — Razer EOP.

However, in addition to deletion, you may encounter copying operations, creating files, moving
files, overwriting. I've put together the following POC to demonstrate these scenarios.

e CVE-2024-26238 — Windows 10 PlugScheduler EOP. Arbitrary Create;
CVE-2024—-12754 — AnyDesk LPE. Arbitrary Copy;

CVE-2024-37726 — MSI Center Arbitrary File Overwrite Vulnerability;
CVE-2024-21111 — Oracle VirtualBox LPE;

CVE-2020-1076 — Arbitrary file write in VaultSvc.

5/17

https://github.com/padovah4ck/CVE-2020-0683
https://blog.doyensec.com/2023/03/21/windows-installer.html
https://github.com/Wh04m1001/RazerEoP
https://www.synacktiv.com/advisories/windows-10-plugscheduler-elevation-of-privilege
https://github.com/CICADA8-Research/Penetration/tree/main/POCs/CVE-2024-12754
https://github.com/carsonchan12345/CVE-2024-37726-MSI-Center-Local-Privilege-Escalation
https://github.com/mansk1es/CVE-2024-21111
https://www.seljan.hu/posts/arbitrary-file-write-in-vaultsvc/

How to find this vulnerability?

The easiest way to find such a vulnerability is to use Process Monitor. To do this, set up the
settings as | have, then monitor file operations and check which files you can replace with a

symbolic link.

Select colurmns ppear in the Process Manitor window:

Mame
. Image Path
B Command Line

[] Company MNamg

TWAREIPOLICIESILENCW
Event Detaiks
TWAREWPOLICIES\LENOWY
B 5equence Mumber

TWAREILENOWV AM N
: k . Event Class = [vadanl

yvive Time
= Time of Day . Duration

. Completion Time

amSatupinf

% Process ID
. Session [0 . Thread 1D
B ‘futhentication 1D B Farent FID
. f|1:r'r_|||l:r' . Virtualized

Cancel

Process Monitor Settings (Options -> Select Columns)

For example, when we investigated LPE in Anydesk, we determined that the operation was being
used on the file C:\users\<username>\AppData\Roaming\Microsoft\Windows\Themes\
<wallpaper>.png, over which we have full control. After which the file was copied to
C:\Windows\Temp\<wallpaper>.png.

6/17

lerrute Protecaiirfomuton
inturtyFin
500 Fle I ormation Rl

T Lieers geo g Dat s Flaaeming Whcronctl Wi Thmes Trampcoded Walpaper ong SUCCESS

€\t oc oo Dita! Roamng Mcrost indanes Thmes | Transcoded slpaper png success | 99 AnyDesk B poc
C L ey g pp Dt s’ Floaming Whorosat \Windows' Theme s Transcoded W alpaper png SUCCESS
ey pene oDt ' Floming ' Wkorosalt \Windows' Themes Transcoded VW alpaner png SUCCESS Chat
2 by pene wnpp Dt Plomineg Mkornaalt \Windows' Themes Transcoded VW alpaner png LUCCESS poe
£ b’ e uApp Dt Binarming Mecezaoty Wilnderes' Themes Transcoded W alpacsr ong SUCCESS . [553379364)
L' e uApe Dt S derang ezt Wilndemas' Thermes Transcoded Walpacssr ong SICCESS Open Chat Leg
C L' i Data Rinarming et Windowa Thimes Tranacoded Waloaoer ong SWCCESS Connected D0:04:19
G il eee e ey Fnarming' Macrst Winelown Thames Transcoded Walpaoer org SWCCESS iy
Gl o o Dt Flaarming Whersrbett Windor Themens' Transcded Walcuotr prg SUCCESS o Session reques
Clern'osd Ape Dt Flopering lceaall Windkows Thammes Transcaded VWalpaoer png SUCCESS
C ey oo whop Dt Faming \Wicroe Wiinadow Themes, Transcoded Walpaosr png SUCCESS =Y - | SASTEM
CWéndows'\Temp' Transcoded W alpaper png SUCCESS B Session startec
C A Windows'\Temp\ Transcoded W alpaper prg SUCCESS
€\ Windows' Temp'\ Transcoded Walpager prg SUCCESS Frofile
C ¥ Windows \Temp' Transcoded'alpaper prg SUOCESS
L \Windews \ Temp' Teanscoded W alpaoer, SUCCESS Previous Session e
Y \M\Tﬂwﬂeﬂ“ﬂ'ﬂ SUOCESS
Gk e e Duta Rnaeming Ml Windowy Thimes TranscodedWialoager prg INVALID PARAL
Gk e AopDutat Raaeming Ml Window\ Thimes TranscodedWalcager prg SUCCESS
CiWindows\ Tesp Transcaded Walcaser ong SICCESS
£ MW ndewi Teeg' Transcoded W alpaoer orig SUCCESS
€ Wirdows e TranscodedWakoaper s INVALID PARAY —
CWndows \ Teemp' Transcoded VY slpaper prg SUCCESS
4 by penc wAppe Dt ' Flnasming Whorosolt \Windows' Themes Transcooded VW slparer png SUCCESS
C 3 Wndows \Temp' Transooded Y alipaper prg SUCCESS
Cindows \Temp' Transcoded W alpaper png SUCCESS
Chiindows \Temp Tranacoded W alpager prg SICCESS
Criindews \Temp Tranacoded Walpager prg SUCCESS
Ciindews\ Temp Tranacaded W alpugsor oy SUCCESS -
s T srcess rssoe

File operation example

Then you need to determine the context, that is, on whose behalf the privileged operation is being
performed. In our case, it was NT AUTHORITY\SYSTEM, which led to the LPE.

Fay—"
F beem B Frecens
it

ms«hzw

M ey Dtk
Wees RO
Pt

| Edrogram e i Ary Dot Amy Dok exe

F beare A8 Proom =
B Stk
okt Lescuior deicirmma L
FLTMER57E RDeceFeession « lile DSOSk C Wi Systbes N ivery FLTMAGA 5T5.
FLTMGR NS Ailnde Paassos « bulida DRI Te i Syt 0 e FLTMAGA ST
FLTMGERSTS FukaiOpee Resarse Bt = Ge 580 DeSTRCOEITN C e Sysbe I ven FLTMGA 575
e WG - D3 DRI TelaTlE O iy)T e o

s eog WO a e D« Ca T

Mg gog HDe i Corradfi « CaTed

el fog el Falt Al IVER Toaretncton = DB
Tkl ORCGeOERptlinefa - WS

rogakrl g MG+ i

mEmAAEmEmS 3
AR |

v Lime

k - K10 ririss e+ 0k
| A Presgeamn Fibe (B 2y Dokt Ary Denkene” < bachond 1 Wi i PCngtiolty +
U1} wowisa oA e g, Dot chase 5 B Pl
en a8 Aechaetae LB U1l sewisd Wowlilytamiaracala o (ella
Pedrd POy DETR
Senen B i

e

AuthCx OECCCH) L T

[T PR A]

fampd FETRT0M B0 A
L
[vt - e

AmyDbee [T en] w1000

Winlpaus [l i) [T]

W Typgna Gl 30 oA " Program ey BT By Dk WAy Del. g

Toragngdl GallEN000 Gl

=1 - Prepartan Sewetho Sempin Savr
Lbriaie O] TIOS. R ADO
a1 MW Masa o s B |

Privileged File Operation

So, we just need to file a privileged file operation on a file we control, and then replace that file
with a symbolic link. But how to trigger this privileged file operation? Here | offer several options.

e Sending an IOCTL to the driver — you can try to trigger the driver to perform a file operation

on a file under your control;
» Bulk creation of COM objects — When initializing, COM objects can use different files, while

running on behalf of the NT AUTHORITY\SYSTEM,;
o MSI Packet Installation — different files may be used during the installation of an MSI

package;

717

https://gist.github.com/MzHmO/5c01a837998b225faa4834e82260922c
https://github.com/CICADA8-Research/COMThanasia?tab=readme-ov-file#comtraveller
https://github.com/CICADA8-Research/MyMSIAnalyzer

o GUI/RPC/ALPC — finally, you can try to interact with the target application via the IPC
interfaces it provides.

Arbitrary File Delete

Let’s take a closer look at the vulnerability. For example, how Arbitrary File Delete was used in the
past to abuse antiviruses.

E .
' Alert! T
ARTI=VIRUS Sﬂaﬂﬂiﬂﬂ.... |& o Q& .

MT AUTHORITYSYSTEM I:{} CAabehltxt l:,’} ARTEVIRDS

Delete Chabchl.txt
Get new last access limestamp

1
2. Delete Chabchl.bet
3
: |
Chabe \Device\Hard DiskVolume2\Windows\Systemlav.exe
\RPC Contral

\RPC Controh\Dbject

AV Abuse Example

So, we have an antivirus service that operates on behalf of NT AUTHORITY\SYSTEM. The
hacker places a malicious EICAR file on the device disk. Then it starts checking the Last Access
TimeStamp in a loop in an attempt to detect access to its file. The antivirus accesses the file,
identifies malicious file, and then tries to delete it from the disk. However, at this point the hacker
replaces his file with a symbolic link, which, by connecting NTFS Mount Point and Object Manager
Symlink, leads to a critical file for the antivirus itself. This is how the antivirus deletes itself :)

Join Medium for free to get updates from this writer.
So what can we do once we have achieved arbitrary file deletion?

Here is a more general option — try to delete some DLL library. Then write your own load in its
place. Focus on the Search Order Hijacking and DLL Redirection mechanisms. However, this is a
slightly more complex case. Consider a simpler method — abuse of Windows Installer Rollback.
This method allows you to get the system shell from arbitrary file deletion primitive.

8/17

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getfileinformationbyhandleex
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getfileinformationbyhandleex
https://cloud.google.com/blog/topics/threat-intelligence/arbitrary-file-deletion-vulnerabilities/

vulnerability to «

s, manually delete C:\Co

Windows Installer Rollback abuse

The mechanism is based on the fact that we delete the C:\Config.msi folder, write our own
malicious MSI files and call the Rollback mechanism, which leads to the execution of these files.
You can explore this mechanism in more detail in these CVEs:

o CVE-2023-27470 — Take Control Agent 7.0.41.1141 LPE;

o CVE-2023-20178 — Arbitrary File Delete vulnerability in Cisco Secure Client (tested on
5.0.01242) and Cisco AnyConnect (tested on 4.10.06079);

o CVE-2022-30206 — Windows Print Spooler Elevation of Privilege Vulnerability.

Fun Fact

To be honest, | was quite surprised by the fact that the topic of symbolic link abuse is largely
ignored in the leading and most popular offensive security courses. Moreover, this vulnerability is
more than relevant. Just a couple of months ago, another CVE was registered, related to the
abuse of symbolic links. Read the research here.

Arbitrary File Create/Copy && Some Tricks

So, what if you can control whether a file is created or copied instead of deleting it? In this case, |
suggest using two options for abuse:

e More general option: Try writing a new configuration file to some service, writing scripts to
the system-wide startup or using the DLL Redirection mechanism (create .local files);

o However, there is a potentially vulnerable DiagHub service that will allow us to load an
arbitrary library from C:\Windows\System32. So, try to write your library to this path and
trigger the service. You can read more here and here.

9/17

https://cloud.google.com/blog/topics/threat-intelligence/arbitrary-file-deletion-vulnerabilities/
https://github.com/Wh04m1001/CVE-2023-20178
https://github.com/Malwareman007/CVE-2022-30206
https://cyberdom.blog/abusing-the-windows-update-stack-to-gain-system-access-cve-2025-21204/
https://github.com/xct/diaghub/tree/master
https://github.com/irsl/microsoft-diaghub-case-sensitivity-eop-cve

declspec(uuid("f23721ef-7285-4319-83a0-60878d3ca922")) ICollectionSession : public IUnknown {

rtual HRESULT __stdcall PostStringToListener(REFGUID, LPWSTR) = @;
1 HRESULT _ stdcall PostBytesTolistener() = @;
irtual HRESULT __ stdcall AddAgent(LPWSTR path, REFGUID) = @;

DiagHub vulnerable interface definition

_t path = valid_dir;
config.path = path;

ICollectionSessionPtr session;

ThrowOnError(service->CreateSession(&config, nullptr, &session));
printf("[+] CreateSession\n");
GUID agent_guid;

CoCreateGuid(&agent_guid);
printf("[+] CoCreateGuid\n");

ThrowOnError(session->AddAgent(target_dll, agent_guid));
printf("[+] AddAgent\n");

DiagHub initialization and abuse

However, during exploitation you may encounter a problem — the target application checks the
file before copying or creating. In this case, look towards the BaitAndSwitch repository. This
repository will allow you to perform a Time of check — time of use (TOCTOU) attack.

What does it consist of? First, we also create a symbolic link, but it points to a legitimate file that is
being checked. In turn, OpLock is installed on this legitimate file. OpLock allows you to track
requests to a legitimate file. As soon as the target service requests a legitimate file, OpLock is
triggered and our symbolic link changes from a legitimate file to a malicious one.

10/17

https://github.com/googleprojectzero/symboliclink-testing-tools/tree/main/BaitAndSwitch
https://github.com/googleprojectzero/symboliclink-testing-tools/tree/main/SetOpLock

Time of check

Ny = |

\RPC Control\Legit.txt Legit.txt + oplock

ANTI-VIRUS

Time of use
ANTI-VIRUS I ! &
\RPC Control\Legit.txt Evil.txt

TOCTOU Abuse Example
This is the first trick you can use when abusing arbitrary copying or arbitrary file creation.

The second trick is to override DACL. It was used when writing POC on LPE in AnyDesk. We had
the following case: we could perform arbitrary copying of any system files to the C:\Windows\Temp
folder, but the files were copied together with their original DACL. Thus, we could not read the
files. However, we simply recreated the target files in the C:\Windows\Temp folder and the
vulnerable service involuntarily performed an arbitrary overwrite operation instead of arbitrary
copying. And in this case, the original DACL is used. That is, the file that we created ourselves.
And we can read our own files without problems.

1117

Read Create

®AnyDesk — [—> [

CA\Temp\notsecret.exe

%

0Ox5 ERROR_ACCESS_DENIED

Cprivate.txt

Create

Read Write

“ . 9> AnyDesk —> f - — |5

C\private.txt

C:\Temp\notsecret.exe C\Temp\notsecret.exe

Overriding DACL Example

U can read more about it here.

Arbitrary File Overwrite/Move

It is worth noting that if you have achieved a move or overwrite primitive, the methods of abuse
will not differ from the methods used for arbitrary copying or creation. Also look into writing DLL
libraries or using DiagHub.

Did you know that renaming can move a file? Let’s take a closer look. Let’s say we have some
privileged service that performs the rename operation from C:\abc\private.txt to C:\xyz\public.txt.
In this case, we control both files: private.txt and public.txt.

12/17

https://mansk1es.gitbook.io/AnyDesk_CVE-2024-12754

Rename intg [[, |:> &

C\abc\private.txt CAhack\pwn.dil

ANTI-VIRUS Ci\xyz\public.txt

RN

Cxyz\public.txt C\LegitService\Legit.dll

& ‘i; Rename C:\hack\pwn.dll & Into C:\LegitService\Legit.dll &
e I :>_ I ::}

ANTI-VIRUS

CAhack\pwn.dlil)))
ClLegitService\Legit.dll

Renaming to moving...

In this case, we can make two symbolic links: one will be called private.txt, and the second
public.txt. And they will point to the files we need to move. For example, private.txt will point to the
malicious DLL library C:\hack\pwn.dll, which we want to write to the path C:\LegitService\Legit.DIl.
Accordingly, public.txt should point to C:\LegitService\Legit.dll. Thus, when the service wants to
rename C:\abc\private.txt to C:\xyz\public.txt, it will rename C:\hack\pwn.dll to
C:\LegitService\Legit.dll. You can read more about this wonderful technique here.

Arbitrary Directory Creation

There are more sophisticated methods. For example, when you can control the folder being
created. In this case, you can try to untwist it to arbitrary reading of system files.

13/17

https://www.synacktiv.com/advisories/windows-10-plugscheduler-elevation-of-privilege

Create symlink ‘. _

—

CAwindows\system32\c 1337.nls C\secret\1.txt

= g o G

Mational Lan guage suppo rt CI'\WI nd DWS‘\E‘;’Ste m 32%':_1 337.nls

Find section in the r‘|‘1u\=,=|"r"|r::rry.:r
0 |:[>

Cisecret\1.txt

From Arbitrary Directory Creation to Arbitrary File Read

In this case, you should create a folder with a special name, for example, ¢_1337.nls, convert it to
NTFS Mount Point to the desired file. Yes, to the file, not to the folder, we will work with the
National Language Support service, which uses a special system call that allows you to convert a
symbolic link NTFS Mount Point to a file. After that, we trigger the National Language Support
service, the target file is mapped to shared memory. All we have to do is find the desired file in
memory by its characteristic name. You can find the POC here, and the original research here.

Symlinks to UAC Abuse

You can use symbolic links to bypass UAC! It is worth noting that this method only works on
systems running Intel processors. To abuse it, you need to locate the ShaderCache folder, delete
all files from there, create an NTFS Mount Point, achieve a random overwrite primitive, and write
your own DLL.

14/17

https://gist.github.com/tyranid/221bf08dd3ddb88ec33d2573a83482d0
https://googleprojectzero.blogspot.com/2017/08/windows-exploitation-tricks-arbitrary.html

Create s§mlink , @ |::> _[\

%LOCALAPPDATAS\Intel\ShaderCache CAWindows\System32\some.dll
Launch High IL Write ‘ [N
process ANTI-VIRUS Dummy file

CAWindows\System32\some.dll

Re:u'rit;ugh ‘[j — &

our DLL

CAWindows\Systern32\some.dll C:AWindows\System32\some.dll

UAC Bypass using symlinks

You can find the original research here.

Defense notes

So how can you protect yourself from symbolic link abuse? | see two options:

RedirectionTrust — the system does not follow symbolic links that are created by a user with
a lower IL;

15/17

https://g3tsyst3m.github.io/uac%20bypass/Bypass-UAC-via-Intel-ShaderCache/

int main() {
const char= dirPath
const char® logPath

"C:\\programdata'\PushUpdates' *";
“C:\\programdata'’\logs'\\log.txt";

// Mitigation Policy

PROCESS _MITIGATION_REDIRECTION_TRUST_POLICY signature = {0}

DWORD dwSize = sizeof(signature);

signature.EnforceRedirectionTrust = 1;
SetProcessMitigationPolicy(ProcessRedirectionTrustPolicy, &signature

while (true) {
WIN32_FIND_DATAA findFileData;
HAMDLE hFind = FindFirstFileA(dirPath, &findFileData);

Enabling RedirectionTrust example
POC to find the RedirectionTrust mechanism in running processes.

Impersonation — Your service must use a low-privilege user token for file operations. You
can use someone else’s token using special functions, such as
ImpersonatelL.oggedOnUser().

Also, check out this exploit blocker.

Conclusion

Thank you for reading my article to the end. | hope the material will help you in studying the abuse
of symbolic links. Subscribe to us in X!

16/17

https://gist.github.com/MzHmO/09b5ea312efcd4bd9cc25b7facd4ded4
https://learn.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-impersonateloggedonuser
https://github.com/shubham0d/SymBlock
https://x.com/CICADA8Research

17/17

