Inside Windows' Default Browser Protection

Q binary.ninja/2025/03/25/default-browser-upcd.html

Windows Registry Editor Version 5.0

[HKEY_CURRENT_USER\Software\Microsoft\Windows\Shell\Associations\UrlAssociations\http\Userchoice]

P r‘c:gID"= "FirefoxURL-308046BAAFAA3OCE"
"Hash"="itSkwoxbEIg="

Binary Ninja Blog

Xusheng Li
2025-03-25
reversing

The battle for the default browser on Windows has always been heated. You might have heard of
how Microsoft leveraged its UCPD (User Choice Protection Driver) to prevent third-party
browsers from setting themselves as the default one. However, in this post, | will show my
journey into uncovering how various browsers try to bypass the restriction, and how UCPD gets
updated to defeat their attempts.

Note: this is an extended version of my lightning talk at RE//verse. Please also check out the
video and slides.

Background

The default browser is saved in the following registry keys:

HKEY_CURRENT_USER\Software\Microsoft\Windows\Shell\Associations\UrlAssociations\http\User
Choice
HKEY_CURRENT_USER\Software\Microsoft\Windows\Shell\Associations\UrlAssociations\https\Use
rChoice

Once upon a time, setting the default browser was as easy as setting the value of these keys —
which is relatively straightforward. However, this was often abused by certain vendors to hijack
the default browser to their own, without user consent or even interactions.

To address this issue, Windows introduced a Hash sub-key which contains a hash value of the
selected default browser. The default browser settings are only respected if the hash is correct.
The hash algorithm is proprietary, and can only be calculated correctly if you use the Windows'’s

1/13

https://binary.ninja/2025/03/25/default-browser-upcd.html
https://github.com/xusheng6
https://binary.ninja/tag/reversing
https://re-verse.io/
https://youtu.be/TheUdURzFjI
https://github.com/xusheng6/ucpd_analysis/blob/main/Xusheng_Lightning.pptx

Settings dialog to set it. It also includes entropy from the current machine so it cannot be pre-
computed.

Windows Registry Editor Version 5.0@

[HKEY CURRENT_USER\Software\Microsoft\Windows\Shell\Associations\UrlAssociations\http\Userchoice]

"p r‘ogID" ="FirefoxURL-308046BRAFAA39CB"
"Hash"="1tSkwoxbEIg="

And of course, the secret for this hash would not last very long. In 2017, Christoph Kolbicz
reverse-engineered the hash algorithm and deployed it in his SetUserFTA tool, a command line
utility that can set file type associations or default browser. In 2021, Mozilla similarly enabled
Firefox to set itself as the default browser directly.

Microsoft responded to the “cracking” of its hash algorithm with the introduction of the UCPD
driver in March 2024. UCPD stands for User Choice Protection Driver, and it is a filter driver that
protects the registry keys that store the default browser settings (along with similar things, e.g.,
the default PDF reader).

Gunnar Haslinger first reported the discovery of the sneaky UCPD driver and analyzed its
functionality. In short, it uses the standard Window registry filtering mechanism —
CmRegisterCallbackEXx — to register a callback that monitors the registry operations. If a
protected key is being operated on (e.g., edited, created, etc), it only allows it if the requesting
process is trusted. The criteria for a trusted process are:

1. The executable is signed by Microsoft
2. The executable is NOT in a list of utility programs, including:
° reg.exe
o rundll32.exe
o powershell.exe
o regedit.exe
o wscript.exe
o cscript.exe
o ...efc

2/13

https://kolbi.cz/blog/2017/10/25/setuserfta-userchoice-hash-defeated-set-file-type-associations-per-user/
https://www.theverge.com/2021/9/13/22671182/mozilla-default-browser-windows-protections-firefox
https://hitco.at/blog/windows-userchoice-protection-driver-ucpd/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-cmregistercallbackex

14068084a38 BOOLEAN IsTrustedProcess(HANDLE pid, intl16_t* arg2)

140804a49 void var_48

1480084a49 inté4_t rax_1 = __security_cookie * &var_48
148864a58 UNICODE_STRING process_name

140004a58 BOOLEAN ret

1480084a58

149884a58 if (pid != 4)

1480684a62 process_name.Length = 8

148884a62 process_name.MaximumLength =

148004262 process_name.Buffer = 8

1480084a67 ret = @

146004269 GetProcessImageNameEx(pid, &process_name)
148004269

1488684a74 BOOLEAN result
1480084a74

1480084a74 if (pid == 4 |
148804aba result = 1
148004a74 else

146004a82 if (IsInDenylList(&process_name) == 8)

1480084293 ret = @

148884a93

148804a9b if (IsMicrosoftSignedFile(&process_name, arg2) != B8)
148084a9b ret = 1

148004a9b

148004a9%e WCHAR* Buffer = process_name.Buffer

146004a%e

140004aab if (Buffer != 8)

148804aaa ExFreePoolWithTag(P: Buffer, Tag: 8)

148064aaa

140804ab6 result = ret

148084ab6

1480804ac? __security_check_cookie(rax_1 * &var_48)

146804ad6 return result

| process_name.Buffer == 8)

Interestingly, | was lucky enough to catch a glimpse of the driver before Microsoft removed its
symbol file from the PDB server. Based on the function names and the implementation, it is easy
to see its intention to stop any third-party from modifying the default browser registry keys and
enforcing that the only way to set the default browser is through the Settings app:

3/13

Apps > Default apps > Choose defaults by link type

Firefox
URL:HyperText Transfer Protocol

Firefox
URL:HyperText Transfer Protocol with Privacy

If you think about this carefully, you will realize that UCPD still allows the Edge browser to set
itself as the default browser (it is signed by Microsoft and it is not in the utility list). However, per
my tests, Edge is NOT utilizing this to force itself to be the default browser — when you instruct
Edge to set itself as the default browser, it launches the Windows Settings app in which you will
need to select it as the default by yourself — which is the officially recommended way.

Are you already surprised that Microsoft even bothers to create a driver to protect the default
browser? Well, bear with me since this is only the start of the story!

Injection is Not Allowed

As a hobbyist security researcher, | am curious to see if there is a way to bypass the UCPD. | did
not have the time to dig into it until late October. At that time, my Windows PC was already
updated to the build 24H2. And | was quickly welcomed by a surprise — the new UCPD driver
contained the names of several well-known vendors!

1cee8d1b8 wchar16 const (* data_1cBeedi1b8)[Bxa
1c808d1c® wcharl16 const (* data_1c@88di1ce)[exb
1c8008d1c8 wcharl16 const (* data_1c@e8dic8)[ex8

] data_1c@ePa2c8 {u"\safemon\"}

]

]
1ce08d1d@ wchar16 const (* data_1c@88d1de)[exc]

]

]

]

data_1cPePa2e® {u"\kingsoft\"}
data_1c@ePa2f8 {u"\opera\"}
data_1cPPBa3@8 {u"\msedge.exe"}
1ce08d1d8 wchar16 const (* data_1c@88d1d8)[@xe data_1c@P@@a320 {u"\explorer.exe"}

1cee8d1e® wchar1é const (* data_1c@68di1eB)[Bxd data_1cP6Pa348 {u"explorer.exe"}

1ce08d1e8 wcharl16 const (* data_l1c@eedie8)[@xb data_1cP@Pa368 {u"msedge.exe"}

1cee8d1f®@ wchar1é const (* data_1c8e8d1f8)[Bx11] = data_1ceBPa378 {u"kwsprotectb4.exe"}

1cee8d1f8 wchar16 const (* data_1c@88d1f8)[86xd] data_1cP@Pa3a® {u"kxescore.exe"}

1cB6808d288 wchar16é const (* data_1cB888d268)[B8xc] data_1cBBBa3cB {u"368Tray.exe"}

1c808d288 void* data_1cBBBd288 = Bx1cBBPa3dB8

1cB88d218 wchar16é const (* data_1cB888d210)[ex2b] data_1cB88a480 {u"Beijing Kingsoft Security softwa."}
1c008d218 wchar16 const (* data_1cB88d218)[8x22] data_1c@00a460 {u"Beijing Qihu Technology Co., Ltd."}

What is going on?

To begin with, | noticed that the new driver uses PsSetCreateProcessNotifyRoutineEx to monitor
all the new process creation. For each created process, it first checks if its image file name
contains any of the following sub-strings:

4/13

https://learn.microsoft.com/en-us/windows/apps/develop/launch/launch-default-apps-settings
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/nf-ntddk-pssetcreateprocessnotifyroutineex

e \safemon\

e \kingsoft\

e \opera\

e \msedge.exe

e \explorer.exe

If so, for each such process, it classifies the processes into several different categories and
assigns an enum value to it. The categories are:

e Type 0x4: the process is explorer.exe or msedge.exe
e Type 0x8:
o The process is kwsprotect64.exe, kxescore.exe, Or 360Tray.exe, and
o The executable is signed by one of the following:
m Beijing Kingsoft Security software Co.,Ltd
m Beijing Qihu Technology Co., Ltd.
m Zhuhai Juntian Electronic Technology Co., Ltd.
o Type 0x10: the executable is signed by opera Norway AS, likely the Opera browser

The process -> category mapping information is saved into an AVL table. If you are not familiar
with it, you can think of it as a std: :map equivalent. You can find the main processing logic of the

process notify routine in the below screenshot. Within it, the element. type is the process
category mentioned above.

1c00029c4 if (check_process_path_folder(ImageFileName) != 8)

1c@8029ce uint128_t* rax_4 = get_exe_from_path(arg2->ImageFileName)
1cB88829ce

1c00029d9 if (rax_4 == 8)

1cB8829db rbx = -8x3fffff4s

1cB0829eb goto label_1cB882aa2

1cB0829eb

1cB8829%ec RtlInitUnicodeString(DestinationString: &element.field_18,
1cB8829%ec SourceString: rax_4)

1c8002918 int16_t* ImageFileName_1 = arg2->ImageFileName

1cB002a04 bool valid_sig = false

1cB002a87 GetVendorName(ImageFileName_1, &element.vendor_info, &valid_sig)
1cBee2a27 element.type =

1cBee2a27 check_vendor(&element.field_10, &element.vendor_info, valid_sig, arg2)

1cBB82a2d element.field B = 1

1cBB802a35 element.pid = ProcessId

1c0002a39 ExAcquireFastMutex(FastMutex: &mutex)

1cB882a39

1c0002a69 if (RtlInsertElementGenericTableAvl(Table: &table, Buffer: &element,
1c0002a69 BufferSize: 0x38, NewElement: nullptr) == 8)

1c@8082abb ExReleaseFastMutex(FastMutex: &mutex)

1c@ee82a7c rbx = -8x3fffff45s

1c@002a81 ExFreePoolWithTag(P: rax_4, Tag: 8)

1cB882a8d goto label_1cB882aa2

And where is the saved mapping information used? Well, it is used in the object callbacks
registered with ObRegisterCallbacks.

5/13

https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntddk/ns-ntddk-_rtl_avl_table
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-obregistercallbacks

There are three object callbacks, one for each of PsProcessType, PsThreadType, and
ExDesktopObjectType. The callbacks are all Preoperation so that they can examine the
requests and act accordingly:

1cB001da8 NTSTATUS setup_object_callbacks()

1cB881dc1 void var_e8

1cB881dc1 int64_t rax_1 = __security_cookie * &var_e8
1cB8881dd1 NTSTATUS result

1cB8881dd1

1c88081dd1 if (RegistrationHandle != 8)

1cB081dd3 result = BxcBee8s51e

1cBee1dd1 else if ((enabled_feature & ©8x188) != 8)
1cBep1dfc OB_OPERATION_REGISTRATION registration[@x3]
1cee81dfc registration[@].0bjectType = PsProcessType
1cBBB1eB5 registration[@].0Operations.q = @

1cBpB1eB9 registration[1].0Operations.q (%]

1cBpeB1el4 registration[@].PreOperation = PreOperation
1cBpB1e25 registration[1].0bjectType = PsThreadType
1ceeB1e2f registration[2].0Operations.q = @

1cBB881e3a registration[1].PreOperation = PreOperation
1cBe81e49 registration[2].0bjectType = ExDesktopObjectType
1cBB881e54 registration[2].PreOperation = DesktopObjectPreOp

1cBBeB1ebc registration[@].0Operations = 1
1cBeB81e63 registration[1].0Operations = 1

1cBeB1e6d registration[2].0perations = 1

1cBBB1e77 void var_28

1cBBB1e77 void* var_cB_1 = &var_28

1ceee1e7b registration[@].PostOperation

1ceee1e7f registration[1].PostOperation

1c0e81e83 registration[2].PostOperation

1cBBB1e87 int64_t var_c8 = B8x140000

1ceeB1e8f result = printf-ish(&var_c8, u"%lu.%lu", @x5e@e2)

1ceee1e8f

1cBB881e96 if (result s>= STATUS_SUCCESS)

1cBPB1e98 int128_t zmmB_1 = var_c8.o

1cBBB1eabd struct _OB_CALLBACK_REGISTRATION CallbackRegistration

1cBBB1ead CallbackRegistration.Version = 8x180

1cBBB1ead CallbackRegistration.OperationRegistrationCount = 3

1c@BB1eaf CallbackRegistration.RegistrationContext = @

1c@881eb7 CallbackRegistration.OperationRegistration = ®istration

1c@ee1ebb CallbackRegistration.Altitude.Length = zmm@_1.w

1c@ee1ebb CallbackRegistration.Altitude.MaximumLength = zmm@_1:2.w

1c@eelebb CallbackRegistration.Altitude.Buffer = zmm@_1:8.q

1c@BB1echd result = ObRegisterCallbacks(&CallbackRegistration, &RegistrationHandle)
1ceee1de7 else

1cB881de9 result = STATUS_NOT_SUPPORTED

1cB881de9

1cBe81ed3 stack_check(rax_1 * &var_e8)

1cBBB1ee8 return result

]
]
]
]

The two PreOperation callbacks for the PsProcessType and PsThreadType are the same. Within
it, it first gets the requesting process that is trying to acquire a handle, and the target process (or
the process the target thread belongs to) whose handle is being acquired. It then uses the PID to
look up the process category information from the AVL table it maintains. After that, it checks for
the following conditions:

e The target process has a category type 0x4 (explorer.exe or msedge.exe)

e The requesting process has a category type 0x8
(360Tray.exe/kxescore.exe/kwsprotect64.exe)

If the condition is met, then it removes the following access rights from the requested rights:

e For PsProcessType, the process access rights 6x28 (PROCESS_VM_OPERATION |
PROCESS_VM_WRITE) are removed
e For PsThreadType, the thread access right ©x10 (THREAD_SET_CONTEXT) is removed

if (target_process != 8)
if (((target_process->type).b & ExplorerOrMsedge) != 8)
PEPROCESS Process = IoGetCurrentProcess()

if (Process != 8 && OperationInformation->0Object != Process)
HANDLE current_process_pid = PsGetProcessId(Process)

if (current_process_pid != 8)
struct TableBuffer* current_process =
table_lookup(current_process_pid)

if (current_process != 8)
if (((current_process->type).b & QihuOrKinsoft)

1= 8)

union _OB_PRE_OPERATION_PARAMETERS*
Parameters = OperationInformation->Parameters

int32_t rbx_1 = *Parameters

enum ThreadAccessRights thread_rights =
THREAD_SET_CONTEXT

enum ProcessAccessRights process_rights =
thread_rights

if (ObjectType == PsProcessType)
process_rights =
PROCESS_VM_OPERATION | PROCESS_VM_WRITE

int32_t r9_3 = not.d(process_rights) & rbx_1
*Parameters = r9_3
int32_t r18_1 = process_rights & rbx_1

Now it should be quite easy to see the intention — it is preventing
360Tray.exe/kxescore.exe/kwsprotect64.exe from injecting code into the
explorer.exe/msedge.exe! Why would UCPD bother doing that? The only explanation is they are
trying to bypass UCPD by injecting code into explorer.exe/msedge.exe since the two can modify
the registry key for the default browser. And Microsoft did not like the idea, so it tightened its
protection by directly banning the offenders!

7/13

The remaining callback for ExbesktopObjectType checks if the current process has a category
0x10, i.e., the Opera browser. The code is simple — it just removes the access right 0x20 (by &=
oxffffffdf):

struct TableBuffer* process = table_lookup_current_process()

if (process != 8)
if (((process->type).b & Opera) != 8)
union _OB_PRE_OPERATION_PARAMETERS* Parameters =
OperationInformation->Parameters
*Parameters &= Oxffffffdf

But it took me some time to figure out what it meant. To start with, we can see 0x20 corresponds
to DESKTOP_JOURNALPLAYBACK in the official docs on “Desktop Security and Access Rights”. The
docs say the access right is “required to perform journal playback on a desktop”, which | had no
idea about. | found little information about it after Googling, so | asked ChatGPT got some clue —
it is part of the Windows Ul Automation and meant to be used to playback previously recorded
user keyboard and mouse inputs. ChatGPT even helpful pointed out the security considerations
related to it — that it can be abused for bogus Ul interactions.

Chances are the Opera browser is playing some Ul tricks to set the default browser, e.g., by
interacting with the Settings app directly. UCPD has no mercy for it.

UCPD Manager

You might be wondering why | am so sure about my conclusion. As | dig deeper into this, | found
the handle protection is only enabled when a global flag has the bit 0x100 set — otherwise, it will
do nothing:

1cBB881a68 int64_t PreOperation2(void* RegistrationContext, struct _OB_PRE_OPERATION_]

1cBBB1a8a void var_168

1cBBB1a8a inte4_t rax_1 = __security_cookie * &var_168

1cBeB1a8a

1cPBB1aaa if ((enabled_feature & 0x108) != @ && OperationInformation != B8)
1c@B881abe void* Object = OperationInformation->0Object

-, =18]s

This flag value is read from the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet®0®1\Srevices\UCPD\FeatureV2

Meanwhile, there is a ucpbMgr . exe (UCPD Manager) in the system directory, whose
SetUcPDStatus can set the value of this registry key:

8/13

https://learn.microsoft.com/en-us/windows/win32/winstation/desktop-security-and-access-rights
https://chatgpt.com/share/67d6588b-1f48-8009-9e62-1647059dc78b
https://learn.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32

140801d570 void SetUCPDStatus()

14001d584 uint32_t 1lpData_3

14001d584

146081d584 if (wil::details::FeatureImp...ts_Feature_UCPD>::__private_IsEnabled(this:
14081d584 &wil: :Feature<struct __Wi...s_Feature_UCPD>::GetImpl::impl::~impl) == 8) ..
14001d584 else

14001d58f SetV1Status(1)

148081d5aa 1pData_3 = zx.d(

14881d5aa wil::details::FeatureImp..._Feature_UCPDV2>::__private_IsEnabled(this:
14881d5aa &wil: :Feature<struct __Wi...Feature_UCPDV2>::GetImpl::impl::~impl)) * 2
14801d5aa

14801d5b3 if (wil::details::FeatureImp...ure_UCPD_PRONG1>::__private_IsEnabled(this:
14081d5b3 &wil: :Feature<struct __Wi...re_UCPD_PRONG1>::GetImpl: :impl::~impl) !
14801d5b5 lpData_3 |= 4

14801d5b5

148081d5ch if (wil::details::FeatureImp...ure_UCPD_PRONG2>::__private_IsEnabled(this:
14881d5c6 &wil: :Feature<struct __Wi...re_UCPD_PRONG2>::GetImpl: :impl::~impl)
14801d5c8 lpData_3 |= Bx28

14801d5c8

14801d5d9 if (wil::details::FeatureImp...re_UCPD_TASKBAR>::__private_IsEnabled(this:
148081d5d9 &wil: :Feature<struct __Wi...e_UCPD_TASKBAR>::GetImpl: :impl: :~impl)
14801d5db lpData_3 |= @x1@

14801d5db

148081d5ec if (wil::details::FeatureImp...eature_UCPD_WSB>::__private_IsEnabled(this:
14881d5ec &wil: :Feature<struct __Wi...ature_UCPD_WSB>::GetImpl: :impl::~impl)
14001d5ee lpData_3 |= 8

14801d5ee

14801d5ff if (wil::details::FeatureImp...D_ANTIINJECTION>::__private_IsEnabled(this:
14001d5ff &wil: :Feature<struct __Wi..._ANTIINJECTION>::GetImpl::impl::~impl)
140801d601 1lpData_3 |= ©@x188

14881d681

14001d613 if (wil::details::FeatureImp...re_UCPD_ANTIUIA>::__private_IsEnabled(this:
14081d613 &wil: :Feature<struct __Wi...e_UCPD_ANTIUIA>::GetImpl::impl::~impl)
140801d615 1lpData_3 |= B@x88

Apparently the bit 9x100 is set when wil: :Feature<struct
__WilFeatureTraits_Feature_UCPD_ANTIINJECTION>::GetImpl::impl::~impl is enabled. And
the ANTIINJECTION (anti-injection) in the name is a solid confirmation!

Another value that caught my eye is 9x80, which goes by the name ucPC_ANTIUIA. | figured the
ANTIUIA means anti-UI attack, and it reminds me of the desktop object callback above. |
checked the start of the desktop callback function and all dots are connected:

int64_t DesktopObjectPreOpInternal(void* RegistrationContext,
struct _OB_PRE_OPERATION_INFORMATION* OperationInformation)

void var_e8
int64_t rax_1 = __security_cookie * &var_e8

if ((enabled_feature).b s< 8
&& ((*OperationInformation-=Parameters).b & 8x28) != 8)
struct TableBuffer* process = table_lookup_current_process()

The check if ((enabled feature).b s< 0 is indeed checking whether the bit 0x80 is set —
since it takes the low byte from enabled feature and checks if it is negative, which is equivalent
to checking if the highest bit is set.

There are also several other interesting strings in it:

e 0x200 — UCPD_NEWDENYLIST, which enables a new deny list for registry keys

e 0x800 — UCPD_RENAME_ATTACK, which protects against an attack that renames certain keys
e 0x8 — UCPD_WSB, which protects the Windows search bar

e 0x10 — UCPD_TASKBAR, which protects the taskbar

For the sake of time, | did not dig into each of these. If you are interested, please feel free to
check it out by yourself!

Another interesting bit is that when the handle protection takes action to limit the access rights,
an event is generated in event tracing. From the content of the event, we can see that the UCPD
driver | looked at is version 3.1.0.0. Coincidentally, the earliest UCPC driver | have, i.e., the one
still has the symbol, is version 2.1.0.1. So | must have missed the very first version of it!

Stacktrace Must be Checked

While preparing this blog, the Windows March 2025 update dropped and it comes with UCPD
4.0. This time, some 16 vendors are added to a new block list:

10/13

1c80182d8 wchar16 const (* data_1c80182d8)[8x2e] data_1cB80d668 {u"O=Lenovo (Beijing) Co., Ltd., S=."
1cB8102e6 7e BB BO 606 00 60 B8 B0

1cB0102e8 wchar16 const (* data_1c@8102e8)[ex40] data_1c@80d660 {u"0=Beijing Qihu Technology Co., L."
1cee1e2fe 68 60 6a PP 0B B8O 68 B8P

1c@8182f8 wchar16 const (* data_1c8@8182f8)[@x35] data_1cBPBd6ed {u"0=Beijing Qihu Technology Co., L.."
1c@018360 ae B0 bB 60 66 60 6O 00

1c@018388 wchar16 const (* data_1c80818388)[8x58] data_1cBe8d758 {u"O=Tencent Technology (Shenzhen) ."
1cee1e318 ac 00 ae 00 00 00 6O 00

1c8818318 wchar16 const (* data_1cB@818318)[8x57] data_1cB88d868 {u"O=Tencent Technology(Shenzhen) C."
1c0010320 B2 00 B4 00 00 00 60 00

1c8018328 wchar16 const (* data_1c8@18328)[08x42] data_1cB80d8b8 {u"0=Beijing Sogou Technology Devel."
1c86810338 Oc 60 9e 6P 08 B0 68 6.

1c8010338 wchar16 const (* data_1c8810338)[ex4f] data_1c@80d94@ {u"0=ShenZhen Thunder Networking Te."
1cB810346 7e BB BP 608 0P 60 6B BB

1c@010348 wchar16 const (* data_1c@010348)[0x48] = data_1c@@@d9e@ {u"0=QIHU 360 SOFTWARE CO. LIMITED,."
1c0818358 04 90 96 60 00 00 BO 0O

1c8818358 wchar16 const (* data_1cB0818358)[@x4b] data_1cBeBda6B {u"0=Qihoo 368 Software (Beijing) C."
1c@810360 7a 0@ 7c 00 00 00 60 08

1c8818368 wchar16 const (* data_1cB818368)[8x2e] data_1cB888dbe8 {u"O=Lenovo Image (Tianjin) Technol."
1c@e1e37e 56 00 58 00 00 00 60 ee

1c8018378 wchar16 const (* data_1cB@18378)[8x2c] data_1c880db88 {u"O=Lenovo (Beijing) Limited, L=Be."
1c8810388 7c 68 7e 606 00 60 B8 B0

1c8010388 wchar16 const (* data_1c@818388)[ex3f] data_1c@88dbe® {u"0=Chengdu Qilu Technology Co. Lt."
1c88108398 72 68 74 60 08 B0 68 B8P

1c@818398 wchar16 const (* data_1c80818398)[@x2f] data_1cBPBdc68 {u"0=Beijing Kingsoft Security soft.."

1cB0103a@ 096 B0 92 00 00 0O 60 B8

1c88183a8 wchar16 const (* data_1cB08183a8)[@x49] data_1cBPBdceB {u"O=Beijing Kingsoft Security soft."

It turns out that UCPD is getting tougher again. To start with, the list is used when the bit 0x400 is
set in the feature DWORD. And in the new UCPDMgr.exe, it is associated with UCPD_BACKTRACE.
And yes, UCPD is now examining the stack trace to determine if a registry operation should be
allowed!

In short, when its registry callback sees SetValueKey/DeleteKey/RenameKey is called on a
protected key, in addition to the existing IsTrustedProcess check, now checks whether the
requesting process is SystemSettings.exe (the official app to set the default browser). And if so,
it examines the stack trace with Rt lwalkFrameChain. If any of the frames contains a module
signed by a blocked vendor, then the operation is rejected.

11/13

1cBee7a44 void** check_blacklist_2(int32_t operation_id, int32_t arg2, int16_t* arg3)

1cBee7a71 void var_298

1cBBa7ail int64_t rax_1 = __security_cookie * &var_298

1cBe87a94 void var_1f@

1cee87a94 sub_1c@889b40(&var_1f8, 8, @xds)

1cBees7a9f char var_268 = 1

1cBBa7ab3 in t rdi = 8

1cBes7abs VO * result =

1ceee7abs ExAllocatePoolWithTag(PoolType: Bx600, NumberOfBytes: 6x328, Tag: 'StPT')
1ceee7ab5s

1ceee7ac? if (result == @)

1ceee7fab result.b = 1

1cBee7ac? else

1ceee7ad7 uint32_t rax_2 RtlWalkFrameChain(Callers: result, Count: Bx64, Flags: 1)
1cB887ae3d uint32_t r12_.1 rax_2

1ceee7aef void* rax_5

1cBee7aef

1ceee7aef if (rax_2 - 1 u<= Bx62)

1cBee7bes HANDLE Buffer_1 = PsGetCurrentProcessId()
1ceee7bBc ExAcquireFastMutex(FastMutex: &data_1cB818b48)
1cBe87b23 rax_5 = RtlLookupElementGenericTableAvl(Table: &table_stracktrace_related,
1ceee7b23 Buffer: &Buffer_1)

1céea7b23

1céea7b3s if (rax_5 != @)

1cees7b3f rdi = sub_1cB8087798(rax_5)

1ceea7b3f

1ceee7b48 ExReleaseFastMutex(FastMutex: &data_1cB818b48)
1céee7b48

1ceee7bsf if (rax_2 - 1 u> Bx62 || rax_5 == 8 || rdi == 8)
1ceee7f9a ExFreePoolWithTag(P: result, Tag: 'StPT')
1ceee7fab result.b = 1

1cBeee7bsf else

1cBBa7b65

1c8087b69

To be able to do so in an efficient way, UCPD now leverages both
PsSetCreateProcessNotifyRoutineEx and PsSetLoadImageNotifyRoutine to record the list of
active processes and their loaded modules. The results are stored in an AVL table, along with
some metadata.

12/13

1cbBe7268 NTSTATUS sub_1c@087268()

1cB887278 if ((FeatureV2 & @x488) == 8)

1cB888727a return STATUS_SUCCESS

1cB888727a

1cbBB72a3 RtlInitializeGenericTableAvl(Table: &table_stracktrace_related,

1cBee72a3 CompareRoutine: sub_1cB887548, AllocateRoutine: sub_1c@ee6dce,

1c88e72a3 FreeRoutine: sub_1cB886f38, TableContext: nullptr)

1ceee72af data_1cB818b48 %]

1cB8872be data_1cB8818b58 %]

1cB8872c8 data_1cee1eb4e 1

1c0e0872d6 KeInitializeEvent(Event: &data_1c@818b58, Type: SynchronizationEvent, State: 8)
1cB8872eb NTSTATUS rax =

1c@ee72eb PsSetCreateProcessNotifyRoutineEx(NotifyRoutine: sub_1cB8875b8, Remove: 8)
1cBB872eb

1cBB872f9 if (rax s< STATUS_SUCCESS)

1cB8B887339 return rax

1cBB8e7339

1cBBB87302 NTSTATUS rax_1 = PsSetlLoadImageNotifyRoutine(NotifyRoutine: sub_1c@886f98)
1cB8e7382

1cB8887312 if (rax_1 s>= STATUS_SUCCESS)

1cB8868732b data_1c8810868 = 1

1cB8887312 else

1ceee8731d PsSetCreateProcessNotifyRoutineEx(NotifyRoutine: sub_1cB@875b8, Remove: 1)
1cBee8731d

1cBB887332 return rax_1

Conclusion

In this post, | tracked how the UCPD driver is evolving across different versions. Looking back, it
is quite surprising to me that both sides went so far in the fight for the default browser, and |
believe the trend will go on. | hope you enjoyed reading it! If you wish to check things out by
yourself, you can find my analysis database here.

References

 https://kolbi.cz/blog/2024/04/03/userchoice-protection-driver-ucpd-sys/
 https://hitco.at/blog/windows-userchoice-protection-driver-ucpd/
e https://github.com/xusheng6/ucpd_analysis

13/13

https://github.com/xusheng6/ucpd_analysis
https://kolbi.cz/blog/2024/04/03/userchoice-protection-driver-ucpd-sys/
https://hitco.at/blog/windows-userchoice-protection-driver-ucpd/
https://github.com/xusheng6/ucpd_analysis

