
December 21, 2025

Callback hell: abusing callbacks, tail-calls, and proxy frames

to obfuscate the stack

 klezvirus.github.io/posts/Callback-Hell

Foreword

Once upon a time, my friend Athanasios Tserpelis, aka trickster0, decided to give me a call with

a great problem on his hands:

I’m using TpAllocWork + TpPostWork to execute an arbitrary function, but I’m not fully sure

how to recover the return value. Any ideas?

That question reminded me of some experiments I was working on previously, but had set aside

out of laziness. I decided to revisit it and give it another shot. What you see in this blog post is

the result of that renewed effort, an attempt to solve the problem, which I later integrated into my

stack spoofing research.

This specific work did not make it into the final talk for several reasons, mainly because I don’t

believe it materially advances the research or provides meaningful additional utility.

Still, I’m publishing the results here for completeness.

Definitions

Before “jumping” into the topic itself, let’s give some definitions to ease readability.

Tail calls

A tail call is a subroutine call performed as the final action in a function. If a function calls another

function as its last operation (i.e., it returns the result of that call directly), this is a tail call.

At the assembly level, a tail call is typically implemented using a jmp instruction, not a call.

1/12

https://klezvirus.github.io/posts/Callback-Hell/
https://twitter.com/trickster012

In a normal function call, the call instruction pushes the return address onto the stack nad

transfers control to the target function.

But in a tail call, since the current function is done and its return address is no longer needed, we

can reuse the current stack frame. A jmp instruction achieves that, as it does not push a new

return address and transfers control directly to the callee.

This eliminates the stack growth that would otherwise occur with deeply recursive calls.

Callbacks

A callback is a function passed as an argument to another function, intended to be called at a

later time. Typically, callbacks are executed after a specific event or operation completes.

Callbacks are fundamental to asynchronous programming, event-driven systems, and APIs.

They decouple the caller from the callee, allowing for extensibility and inversion of control.

ROP Gadget

A ROP gadget is a short sequence of existing machine instructions ending in a ret (or similar

control-transfer) that attackers chain together to perform arbitrary operations without injecting

code, thereby bypassing protections like DEP/NX.

JOP/COP Gadget

A JOP gadget (Jump-Oriented Programming) or COP gadget (Call-Oriented Programming) is a

short sequence of legitimate instructions ending in an indirect jmp or call (instead of ret as in

ROP), which attackers chain using controlled pointers to achieve arbitrary execution while

bypassing return-based protections like shadow stacks or control-flow integrity.

Ad-hoc Definitions

The following definitions are “arbitrary”, meaning are used in an ad hoc manner for the purposes

of this post and may not reflect a broadly accepted consensus.

Forward Proxy Frame

A Forward Proxy Frame is essentially a JOP or COP gadget that is executed using its own

crafted stack frame, where the control flow transition to the gadget occurs via a forward edge.

The gadget is invoked directly through an indirect jump or call, not via a return instruction.

A valid example of a frame like this would be:

call REG <-- we place RIP here via CONTEXT or reach it via JMP REG

pop rbx

add rsp, 20
ret

2/12

Frames like this are not really easy to find in general, which means that we will extend the

definition to other functions that can serve as a proxy (e.g., NdrClientCall3, NdrServerCall2,

etc.).

Backward Proxy Frame

A Backward Proxy Frame is a ROP gadget executed using its own dedicated stack frame, where

the control flow reaches the gadget via a backward edge—meaning, the gadget is triggered

through a return instruction, consistent with traditional return-oriented programming semantics.

In a nutshell a ROP gadget where we allocate the corresponding frame, and we let the original

epilog unwind it.

For readers who followed any of the Moonwalk blogposts, it should be easy to see that any

CONCEAL gadget is indeed a valid backward proxy frame.

A valid example of a frame like this would be:

call 0xaddress

pop rbx <-- we push the address of this instruction as return address and let it execute on return
add rsp, 20

ret

It is very clear that while forward frames are CET compliant (the CALL performs the setup of the

return address), backward frames are not, as the return address is created artificially.

How callbacks appear in real life

A persistent limitation in call stack detection and general user-defined callbacks is that the

memory region executed by the thread worker must reside in memory, either embedded in a

module (via stomping) or within a dedicated RX/RWX private memory area. As a result, the

callback address inevitably appears in the call stack, making it susceptible to inspection and

detection.

We can see below that the callback address is perfectly visible in the call stack.

3/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/normal-callback.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/normal-callback.png

One potential mitigation is to convert the callback into a no-frame function, using a pattern similar

to tail call optimization. We can do so by implementing the callback as pure MASM. By doing so,

we could pop the immediate return address, prepare the parameters to accept more than the

standard 3 parameters usually accepted by a Thread Worker Callback, and by replacing the CALL

instruction with a JMP to the actual target function.

Abusing callbacks and tail calls to hide the original caller from the stack is not a new

concept at all, and there is quite a bit of public research on the topic already. Most notably,

Chetan Nayak, the creator of Brute Ratel C2, published a blog post about it: Hiding In

PlainSight - Indirect Syscall is Dead! Long Live Custom Call Stacks

In a nutshell, it is known to be possible to use a frameless callback, built in a way where

the real function to invoke is invoked as a tail call, in this way:

section .text

global WorkCallback

WorkCallback:

 mov rbx, rdx ; backing up the struct as we are going to stomp rdx

 mov rax, [rbx] ; NtAllocateVirtualMemory
 mov rcx, [rbx + 0x8] ; HANDLE ProcessHandle

 mov rdx, [rbx + 0x10] ; PVOID *BaseAddress

 xor r8, r8 ; ULONG_PTR ZeroBits
 mov r9, [rbx + 0x18] ; PSIZE_T RegionSize

 mov r10, [rbx + 0x20] ; ULONG Protect

 mov [rsp+0x30], r10 ; stack pointer for 6th arg
 mov r10, 0x3000 ; ULONG AllocationType

 mov [rsp+0x28], r10 ; stack pointer for 5th arg

 jmp rax

While this effectively removes the callback frame from the call stack, it comes at the cost of

losing the return value from the invoked function. And in many contexts this is an unacceptable

trade-off, particularly given that callbacks (in this case via thread pools) do not natively support

return value retrieval after a worker’s execution completes.

Initial Frame Swapping Design

During the development of the stack moonwalking techniques, we considered the algorithm’s

resilience to manual inspection. To strengthen the technique to human inspection, we first

designed an opaque architecture for the calls inside the main executable, consisting of a

conditional trampoline and an arbitrary function invoker. The conditional trampoline is set up to

4/12

https://x.com/NinjaParanoid
https://0xdarkvortex.dev/hiding-in-plainsight/
https://0xdarkvortex.dev/hiding-in-plainsight/
https://klezvirus.github.io/imgs/blog/008ProxySwap/simple-tailcall.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/simple-tailcall.png

“trick” the call stack inspector about which branch was taken when the function was called. Since

it is impossible to know the value of a variable at a specific past-time T, the branch can only be

inferred by examining the subsequent frames in the call stack, which can be controlled.

The arbitrary function invoker, on the other hand, uses a function pointer variable to “pretend”

that the function called by the main executable was indeed the High-Level API. In the

implementation, this is achieved by using two functions: an illegal frameless function and a

standard framed function.

The frameless function is the one executed by the program and prepares the stack to hold the

legitimate frame function. The framed function is never executed in its entirety. Its main task is to

validate the stack space created by the illegal function, validate the return address, validate the

call flow to the high-level API, and execute a restore routine before returning to the main

executable code.

5/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/opaque-arch.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/opaque-arch.png

In the described scheme, emulate_system_call serves as the opaque trampoline, or dispatcher,

while emulate_system_call_w functions as the frameless function. The restore function is

replaced by the restore function in the call stack, with the return address set to the instruction

restore+19h, which is the instruction following the call functionAddress. The variable

functionAddress, ultimately, holds the fake function pointer to the High-Level API, as in the

original architecture.

The final call stack can be observed in the figure, along with the program execution flow, which

should help clarify the roles of both the frameless and framed functions. The frameless function

essentially functions as the frame function prologue, creating its frame and positioning the correct

return address. The restore function, on the other hand, executes only its epilogue, restoring all

saved registers and deallocating the stack space that was previously allocated.

Not really important in our artificial scenario, but mirroring the prolog should have the

added benefit of avoiding strange side effects if an exception in raised in the function.

The new architecture indeed adds a layer of obfuscation to the program code, making it harder to

analyze and detect the stack spoofing techniques being used. The dispatcher can be extended to

include multiple conditional jumps, which can further complicate the execution flow and make it

more challenging to determine the actual path taken. Additionally, the frameless function can be

fragmented and obfuscated without affecting the framed function, providing even more flexibility

in hiding the true nature of the program.

However, since the half moonwalk technique involved only a partial stack spoof, the added

complexity it introduced was ultimately deemed disproportionate to the limited benefits it

provided.

Frame Swapping Proxy Using a Thread Pool

While the overall architecture may be considered overly complex relative to its immediate

benefits, it introduces a primitive with broader applicability: frame swapping (aka “let’s stick

another lame name to something we’ve been doing since ret address spoofing was invented”).

This technique proves highly versatile in scenarios where a developer seeks to proxy arbitrary

function calls using a callback-style mechanism. A comparable paradigm can be observed in

thread pool execution models, such as those first explored by SafeBreach Labs here.

Our little experiment found that frame swapping resolves this dilemma quite effectively. It enables

the concealment of the callback frame within the call stack while still preserving the ability to

retrieve the return value from the proxied function, offering a powerful evasion and control flow

primitive for callback-based execution models.

6/12

https://github.com/SafeBreach-Labs/PoolParty

For this technique to function as intended (i.e., hiding the callback frame while preserving the

return value) we must identify function patterns that store the return value (typically in RAX) into a

memory location via another register (used as a pointer), just before the function epilog.

Multiple examples of this pattern can be found in several system DLLs. However, to maximize

the legitimacy of the call stack, we would need to select a frame directly from the image base of

the program where we are injecting code into.

For the sake of giving an example, this is the EPILOG of the function GlobalGetUserAndPassW in

wininet:

180152087 48 89 03 MOV qword ptr [RBX],RAX
18015208a 48 83 c4 20 ADD RSP,0x20

18015208e 5b POP RBX

18015208f c3 RET

From this snippet, we observe that the function expects a reference to a 64-bit variable, which it

uses to store the return value produced by a preceding CALL. The total frame size is

straightforward to compute based on the epilogue: 0x20 bytes released by the ADD RSP, 0x20

instruction, plus an additional 8 bytes accounted for by the POP instruction, for a total of 0x28

bytes.

Following the pattern established in the previous section, we only need to replicate the prologue

behavior within our custom callback. Specifically, we prepare the stack such that execution

returns directly to the address of the MOV instruction responsible for storing the return value.

do_call:

 mov r10, [r10 + 08h] ; addressToPush

 ;; Pretending we are in a frame proc

 ;; Note: compile this as a frame proc is absolutely not necessary

 ;; in this case, it is just to show we are mirroring the prolog of GlobalGetUserAndPassW
 .pushreg rbx

 push rbx

 .allocstack 20h
 sub rsp, 20h ; this is for the spoofed/swapped frame

 .endprolog

 ; This is the address after the call in GlobalGetUserAndPassW

 push r10

 ; GCONTEXT is the address of a user-controlled Work Item structure
 mov rbx, GCONTEXT ; we need this structure in RBX

 add rbx, 8 ; we use the address of the return value, unused for generic callbacks

 ; Finally we just to the target function

 jmp rax

The resulting call stack appears as the following:

7/12

And this will allow us to recover the callback return value as well. Also consider that this kind of

gadget would also be compliant with Eclipse-based inspection, as the full pattern in the function

allow to place the return exactly after the CALL instruction, as visible below:

180152075 e8 ee af CALL internal_function

 00 00

18015207a 48 89 03 MOV qword ptr [RBX],RAX <--- We can set the return address here
18015207d b8 01 00 MOV EAX,0x1

 00 00

180152082 eb 06 JMP PROCEDURE_END
 SAVE_RBX_RDX

180152084 48 89 02 MOV qword ptr [RDX],RAX

180152087 48 89 03 MOV qword ptr [RBX],RAX
 PROCEDURE_END

18015208a 48 83 c4 20 ADD RSP,0x20

18015208e 5b POP RBX
18015208f c3 RET

180152090 cc ?? CCh

Limitations

The technique does not have many inherent limitations, but of course, depending on the save

gadget, you can achieve different results.

Return value[s]

In general, with a MOV [REG], RAX, it’s possible to implement the above behavior, to save a

normal call return value.

For function passing a return value as a parameter, you won’t need any of this, of course.

Number of arguments

The last gadget is very important to define how many parameters you can pass onto the stack.

The function GlobalGetUserAndPassW allocates only the shadow stack and save RBX before

calling the internal function, this means that the return address of the previous frame is just 0x28

bytes far. Recalling how parameters passing works in 64-bit, the reader should have clear that in

8/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/proxy-swap.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/proxy-swap.png
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/windows-x64-calling-convention-stack-frame

this case, even clobbering the original value of RBX pushed onto the stack (illegal operation), we

have space for maximum one stack parameter before overwriting the return address (which will

lead to a crash on return).

For this reason, in case you want to allow for more parameters, you’d need to find proxy frames

similar to this one, but with bigger allocations (to support nargs parameters you’d need at least

0x20 + (nargs*8)).

Speaking with Alex Reid, we agreed that alternatively, you can use the same pattern

implemented in Moonwalk++, and add an additional proxy frame (conceal-gadget) big enough to

permit as many argument as needed.

One, None and a Hundred Thousand

I remember coming across a blog post not long ago that described loading a strangely named

DLL to “add a frame” between the ThreadPool worker callback using one of its functions as a

forward proxy frame. I wanted to reference it, but I didn’t manage to find it. The post I’m referring

to is available at this LINK

However, building on this pattern, we can explore several ways to not only add a frame, but

literally construct almost fully “custom” call stacks without relying on unusual DLL loading.

Naturally, each of these approaches comes with its own set of trade-offs.

1. One example would be to create chains of “simple” backward proxy frames ending with the

final one that saves the return address value from the target call.

Main advantage: callstacks can be fully customized

Disadvantages:

valid caller-callee relationships might not be possible to construct consistently

not all epilogs executes immediately after a call instruction, making it

susceptible to detection

2. Another solution would be to use natural occurring forward proxy frames (i.e., callbacks)

Main advantage: forward edges are all perfectly valid and CET compliant

Disadvantage:

I don’t think these chains would ever be used by anybody with a sane mind

We are stacking callbacks over… callbacks?

3. … didn’t really think about a third one … or did I?

Now, the first solution would require a similar setup we used for stack moonwalk, to identify

frame sizes and collect valid backward proxy frames, then just push them on the stack setting the

valid return address. Personally, I think the code and examples provided in my previous posts

and projects should be more than enough to reproduce it without further explanations.

9/12

https://x.com/Octoberfest73
https://github.com/klezVirus/Moonwalk--/blob/master/Moonwalk--/Moonlight.cpp#L722
https://offsec.almond.consulting/evading-elastic-callstack-signatures.html

The second solution, instead, unleashes what I friendly name the “callback hell”, where we can

chain multiple callback mechanisms together to obfuscate the callstack. The strategy is quite

simple, even more than the previous one, and there’s no shortage of functions that can serve as

callback invokers. If you don’t want to research them yourself, the project

AlternativeShellcodeExec covers most of what you need.

In order to implement the chaining logic, we will define a general array of structures (Work

Items), where each work item would define the pointer to the next call in the chain, its

parameters, and the optional return argument.

typedef struct WorkItemContext {

 FARPROC func; // Function pointer
 void* retAddress; // Return address to simulate stack return

 uint64_t argc; // Argument count

 void* args[MAX_ARGC]; // Arguments (up to MAX_ARGC)
} WorkItemContext;

Now, for the actual logic, we will construct three main assembly functions*:

FirstCallback: Initialize certain variables used across the callback chains

GenericCallback: Perform the tail call to the next generic callback invoker

LastCallback: Sets up the save to RBX_SAVE backward proxy frame and performs the

actual call to the

*Note: This kind of implementation is purely arbitrary

The resulting program flow would be similar to the following:

10/12

https://github.com/aahmad097/AlternativeShellcodeExec
https://klezvirus.github.io/imgs/blog/008ProxySwap/chained-calls.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/chained-calls.png

Ok, but why?

Apparently, as weird as it sounds, this strange call stack construction bypasses current callstack

detection logic.

In theory, it could be possible to chain n callbacks in n! ways, which makes this technique quite

interesting for artificial stack construction. On the other side, most of these callbacks are known,

so it might also be possible to create signatures for them (well, at least the documented ones).

POC||GTFO

The final POC can be found at ThreadPoolExecChain. As always, the important piece of the

puzzle is the assembly. It’s nothing complex, and should serve as a basis for more complex

designs.

Following, a small video of the technique in action. If the embedded version does not work,

here’s the LINK.

Watch Video At: https://youtu.be/8oF-33is-Ic

Detection Landscape

Note: Detection is only required for processes where Intel-CET is disabled. Backward

proxy frames are not compatible with CET.

11/12

https://github.com/klezVirus/ThreadPoolExecChain
https://youtu.be/8oF-33is-Ic
https://youtu.be/8oF-33is-Ic

For Frame Swapping using backward proxy frames, the detection landscape largely mirrors that

of the original stack moonwalking technique. The most reliable detection strategy remains

monitoring the call stack for anomalies. Specifically, identifying return addresses that are not

preceded by a legitimate CALL instruction.

In fact, this technique imposes quite strict constraints for successful execution: we must locate an

instruction that not only stores RAX into a pointer but also returns without clobbering critical

registers. This combination of conditions significantly reduces the availability of suitable gadgets.

However, it is far from impossible to find suitable gadgets, as proven by the one we used in this

blog post.

What about the chain of callbacks? Well, frankly I don’t know why this behaviour does not have a

signature yet, as there are zero legitimate reasons to implement something like this.

Other detection ideas:

Inspect process IAT to detect dynamic calls

Validate called function using CFG/XFG bitmap (if CFG enabled)

CALL address validation

Code emulation

Closing Remarks

All of this trouble was ultimately the result of chasing a very contingent problem raised by a

friend; ironically, one I have not even informed him about yet.

Something to consider is that while chaining callbacks works perfectly fine even with CET

enabled, the return-value recovery trick does not, meaning we will have to figure out a different

approach in the future. Until then.

References

Hiding In PlainSight - Indirect Syscall is Dead! Long Live Custom Call Stacks

Windows x64 Calling Convention

AlternativeShellcodeExec

PoolParty

Evading Elastic EDR’s call stack signatures with call gadgets

12/12

https://0xdarkvortex.dev/hiding-in-plainsight/
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/windows-x64-calling-convention-stack-frame
https://github.com/aahmad097/AlternativeShellcodeExec
https://github.com/SafeBreach-Labs/PoolParty
https://offsec.almond.consulting/evading-elastic-callstack-signatures.html

