Callback hell: abusing callbacks, tail-calls, and proxy frames

to obfuscate the stack

H klezvirus.github.io/posts/Callback-Hell

0:004> k
Child-Sp RetAddr
00 _000000d4"d7dff378 ©8007ff7 ©3921dab
1 000e00ed4 d7dff386 eeee7ffd c391287a
c38e5e
03 000000d4" d7dff550 ©eed7ffd c24f257d
04 000000d4" d7dff830 eeee7ffd c390afes
05 000000d4” d7dff860 00000000 00000000

December 21, 2025

Call Site

KERNEL32!LoadLibraryAStub
ThreadPoolExec! ThreadPoolCallback2+@x7b
n 'TppliorkpExecuteCallback+9x13a
ntdll!TppWorkerThread+@x8f6
KERNEL32!BaseThreadInitThunk+6x1d
ntdll!RtlUserThreadStart+0x28

Foreword

Once upon a time, my friend Athanasios Tserpelis, aka tricksterQ, decided to give me a call with
a great problem on his hands:

I’'m using TpAllocWork + TpPostWork to execute an arbitrary function, but I’'m not fully sure
how to recover the return value. Any ideas?

That question reminded me of some experiments | was working on previously, but had set aside
out of laziness. | decided to revisit it and give it another shot. What you see in this blog post is
the result of that renewed effort, an attempt to solve the problem, which | later integrated into my
stack spoofing research.

This specific work did not make it into the final talk for several reasons, mainly because | don’t
believe it materially advances the research or provides meaningful additional utility.

Still, 'm publishing the results here for completeness.

Definitions

Before “jumping” into the topic itself, let’'s give some definitions to ease readability.
Tail calls

A tail call is a subroutine call performed as the final action in a function. If a function calls another
function as its last operation (i.e., it returns the result of that call directly), this is a tail call.

At the assembly level, a tail call is typically implemented using a jmp instruction, not a call.

1/12

https://klezvirus.github.io/posts/Callback-Hell/
https://twitter.com/trickster012

In a normal function call, the call instruction pushes the return address onto the stack nad
transfers control to the target function.

But in a tail call, since the current function is done and its return address is no longer needed, we
can reuse the current stack frame. A jmp instruction achieves that, as it does not push a new
return address and transfers control directly to the callee.

This eliminates the stack growth that would otherwise occur with deeply recursive calls.
Callbacks

A callback is a function passed as an argument to another function, intended to be called at a
later time. Typically, callbacks are executed after a specific event or operation completes.

e Callbacks are fundamental to asynchronous programming, event-driven systems, and APlIs.

* They decouple the caller from the callee, allowing for extensibility and inversion of control.
ROP Gadget

A ROP gadget is a short sequence of existing machine instructions ending in a ret (or similar
control-transfer) that attackers chain together to perform arbitrary operations without injecting
code, thereby bypassing protections like DEP/NX.

JOP/COP Gadget

A JOP gadget (Jump-Oriented Programming) or COP gadget (Call-Oriented Programming) is a
short sequence of legitimate instructions ending in an indirect jmp or call (instead of ret as in
ROP), which attackers chain using controlled pointers to achieve arbitrary execution while
bypassing return-based protections like shadow stacks or control-flow integrity.

Ad-hoc Definitions

The following definitions are “arbitrary”, meaning are used in an ad hoc manner for the purposes
of this post and may not reflect a broadly accepted consensus.

Forward Proxy Frame

A Forward Proxy Frame is essentially a JOP or COP gadget that is executed using its own
crafted stack frame, where the control flow transition to the gadget occurs via a forward edge.
The gadget is invoked directly through an indirect jump or call, not via a return instruction.

A valid example of a frame like this would be:

call REG <-- we place RIP here via CONTEXT or reach it via JMP REG
pop rbx

add rsp, 20

ret

2/12

Frames like this are not really easy to find in general, which means that we will extend the
definition to other functions that can serve as a proxy (e.g., NdrclientCall3, NdrServercall2,
etc.).

Backward Proxy Frame

A Backward Proxy Frame is a ROP gadget executed using its own dedicated stack frame, where
the control flow reaches the gadget via a backward edge—meaning, the gadget is triggered
through a return instruction, consistent with traditional return-oriented programming semantics.

In a nutshell a ROP gadget where we allocate the corresponding frame, and we let the original
epilog unwind it.

For readers who followed any of the Moonwalk blogposts, it should be easy to see that any
CONCEAL gadget is indeed a valid backward proxy frame.

A valid example of a frame like this would be:

call Oxaddress

pop rbx <-- we push the address of this instruction as return address and let it execute on return
add rsp, 20

ret

It is very clear that while forward frames are CET compliant (the CALL performs the setup of the
return address), backward frames are not, as the return address is created artificially.

How callbacks appear in real life

A persistent limitation in call stack detection and general user-defined callbacks is that the
memory region executed by the thread worker must reside in memory, either embedded in a
module (via stomping) or within a dedicated RX/RWX private memory area. As a result, the
callback address inevitably appears in the call stack, making it susceptible to inspection and
detection.

We can see below that the callback address is perfectly visible in the call stack.

9:004> k

Child-SP RetAddr Call Site

00 0Peevada d7dff378 @e887ff7 ©3921dab KERNEL32!LoadLibraryAStub
El 0eo0eeed4” d7dff380 @eee7ffd c391287a ThreadPoolExec!ThreadPoolCallback2+9x7b
02 c338e5e n I TppWorkpExecuteCallback+ox13a
03 0ee0eed4 d7dffs550 eeee7ffd c24f257d ntdll!TppWorkerThread+0x8f6

04 000000d4" d7dff830 00007ffd c390af08 KERNEL32!BaseThreadInitThunk+0x1d

05 0eeveed4” d7dff360 00000000 PO ntdll!RtlUserThreadStart+0x28

3/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/normal-callback.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/normal-callback.png

One potential mitigation is to convert the callback into a no-frame function, using a pattern similar
to tail call optimization. We can do so by implementing the callback as pure MASM. By doing so,

we could pop the immediate return address, prepare the parameters to accept more than the

standard 3 parameters usually accepted by a Thread Worker Callback, and by replacing the cALL

instruction with a JmpP to the actual target function.

Abusing callbacks and tail calls to hide the original caller from the stack is not a new
concept at all, and there is quite a bit of public research on the topic already. Most notably,
Chetan Nayak, the creator of Brute Ratel C2, published a blog post about it: Hiding_In
PlainSight - Indirect Syscall is Dead! Long_Live Custom Call Stacks

section .text
global WorkCallback
wWorkCallback:

mov rax, [rbx]

mov rcx, [rbx + 0x8]
mov rdx, [rbx + 0x10]
Xor r8, r8

mov r9, [rbx + 0x18]
mov ri10, [rbx + 0x20]
mov [rsp+0x30], ril10
mov rl10, 0x3000

mov [rsp+0x28], ri10
jmp rax

ULONG Protect

Ne Ns Ns Ns Ns Ns Ns oNs oSNs S

Child-Sp RetAddr

000000ad” aa3ff618 ©0007ffd c391287a
000e000ad aa3ff620 ©BBR7ffd c38eS5ed6
00000Rad” aa3ff670 €eee7ffd c241257d
000000ad” aa3ff950 @eee7ffd c390afes
000000ad” aa3ffo380 ©LOOLE0O VROV

RIERIERIS
Alwinoik- o #

In a nutshell, it is known to be possible to use a frameless callback, built in a way where
the real function to invoke is invoked as a tail call, in this way:

mov rbx, rdx ; backing up the struct as we are going to stomp rdx
NtAllocateVirtualMemory

HANDLE ProcessHandle

PVOID *BaseAddress

ULONG_PTR ZeroBits

PSIZE_T RegionSize

stack pointer for 6th arg
ULONG AllocationType
stack pointer for 5th arg

Call Site
KERNEL32!LoadLibraryAStub
ntdll!TpphorkpExecuteCallback+0x13a
ntdll!TppWorkerThread+@x8f6
KERNEL32!BaseThreadInitThunk+ex1d
ntdll!RtlUserThreadStart+ex28

While this effectively removes the callback frame from the call stack, it comes at the cost of
losing the return value from the invoked function. And in many contexts this is an unacceptable
trade-off, particularly given that callbacks (in this case via thread pools) do not natively support
return value retrieval after a worker’s execution completes.

Initial Frame Swapping Design

During the development of the stack moonwalking techniques, we considered the algorithm’s
resilience to manual inspection. To strengthen the technique to human inspection, we first
designed an opaque architecture for the calls inside the main executable, consisting of a
conditional trampoline and an arbitrary function invoker. The conditional trampoline is set up to

4/12

https://x.com/NinjaParanoid
https://0xdarkvortex.dev/hiding-in-plainsight/
https://0xdarkvortex.dev/hiding-in-plainsight/
https://klezvirus.github.io/imgs/blog/008ProxySwap/simple-tailcall.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/simple-tailcall.png

“trick” the call stack inspector about which branch was taken when the function was called. Since
it is impossible to know the value of a variable at a specific past-time T, the branch can only be
inferred by examining the subsequent frames in the call stack, which can be controlled.

The arbitrary function invoker, on the other hand, uses a function pointer variable to “pretend”
that the function called by the main executable was indeed the High-Level API. In the
implementation, this is achieved by using two functions: an illegal frameless function and a
standard framed function.

The frameless function is the one executed by the program and prepares the stack to hold the
legitimate frame function. The framed function is never executed in its entirety. Its main task is to
validate the stack space created by the illegal function, validate the return address, validate the
call flow to the high-level API, and execute a restore routine before returning to the main
executable code.

emulate_system_call proc
cmp swaplever, Bh
jz _decoy
jmp restore
_decoy:

{jmp emulate_system_call w |
emulate_system_call endp

restore proc frame A
push rls
Hemulate_systern_call_w proc .pushreg rl5
u POsH LA = push rld
push rid .pushreg rl4
push rl3 push rl3
push rl2 .pushreg rl3
push rsi push rl2
PROLOG push rdi .pushreg ri2
push rbx push rsi 1%h
push rbp P N .pushreg rsi
sub rsp, 17*8 L SWAP ush rdi
mov rl5, restore r\.l_"_ﬁl“-ME-'/‘r1 ?pushreg rdi
add rl5, 1% push rhx
mov [rsp+4*8], rcx .pushreg rbx
mov [rsp+5*8], rdx push rbp
mov [rsp+6*8], r8 .pushreg rbp
\) mov [rsp+7*8], r9 sub rsp, 17*8B
push rl5 .allocstack 17*8
Jmp internal_emulate_system_call .endprolog
ret call functionfddress ¥
emulate_system_call_w endp ——}-I mov r9, [rsp+7*8] |
mov rd, [rsp+b*s]
mov rdx, [rsp+5*8]
mov rcx, [rsp+d*8]
add rsp, 17*8
ntdll!NtAllocateVirtualMemory+8x12 pop rbp EPILOG
KERNELBASE !VirtualAllocExNuma+8xdd pop rbx
KERNELBASE !VirtualAllocEx+@x16 pop rdi
HalfMoon!restore+@x19 pop rsi
[HalfMoonImain+8x3b7 | pop rl2
HalfMoonTinvoke_main+@x22 pop rl3
HalfMoon!__scrt_common_main_seh+0x18c pop rld
KERNEL32!BaseThreadInitThunk+&x14 pop rl>
ntdll!RtlUserThreadStart+0x21 ret ‘\//
restore endp
CALLSTACK

5/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/opaque-arch.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/opaque-arch.png

In the described scheme, emulate_system_call serves as the opaque trampoline, or dispatcher,
while emulate_system_call_w functions as the frameless function. The restore function is
replaced by the restore function in the call stack, with the return address set to the instruction
restore+19h, which is the instruction following the call functionAddress. The variable
functionAddress, ultimately, holds the fake function pointer to the High-Level API, as in the
original architecture.

The final call stack can be observed in the figure, along with the program execution flow, which
should help clarify the roles of both the frameless and framed functions. The frameless function
essentially functions as the frame function prologue, creating its frame and positioning the correct
return address. The restore function, on the other hand, executes only its epilogue, restoring all
saved registers and deallocating the stack space that was previously allocated.

Not really important in our artificial scenario, but mirroring the prolog should have the
added benefit of avoiding strange side effects if an exception in raised in the function.

The new architecture indeed adds a layer of obfuscation to the program code, making it harder to
analyze and detect the stack spoofing techniques being used. The dispatcher can be extended to
include multiple conditional jumps, which can further complicate the execution flow and make it
more challenging to determine the actual path taken. Additionally, the frameless function can be
fragmented and obfuscated without affecting the framed function, providing even more flexibility
in hiding the true nature of the program.

However, since the half moonwalk technique involved only a partial stack spoof, the added
complexity it introduced was ultimately deemed disproportionate to the limited benefits it
provided.

Frame Swapping Proxy Using a Thread Pool

While the overall architecture may be considered overly complex relative to its immediate
benefits, it introduces a primitive with broader applicability: frame swapping (aka “let’s stick
another lame name to something we’ve been doing since ret address spoofing was invented”).

This technique proves highly versatile in scenarios where a developer seeks to proxy arbitrary
function calls using a callback-style mechanism. A comparable paradigm can be observed in
thread pool execution models, such as those first explored by SafeBreach Labs here.

Our little experiment found that frame swapping resolves this dilemma quite effectively. It enables
the concealment of the callback frame within the call stack while still preserving the ability to
retrieve the return value from the proxied function, offering a powerful evasion and control flow
primitive for callback-based execution models.

6/12

https://github.com/SafeBreach-Labs/PoolParty

For this technique to function as intended (i.e., hiding the callback frame while preserving the
return value) we must identify function patterns that store the return value (typically in RAX) into a
memory location via another register (used as a pointer), just before the function epilog.

Multiple examples of this pattern can be found in several system DLLs. However, to maximize
the legitimacy of the call stack, we would need to select a frame directly from the image base of
the program where we are injecting code into.

For the sake of giving an example, this is the EPILOG of the function GlobalGetUserAndPassW in

wininet:

180152087 48 89 03 MoV gword ptr [RBX],RAX
18015208a 48 83 c4 20 ADD RSP, 0x20

18015208e 5b POP RBX

18015208f c3 RET

From this snippet, we observe that the function expects a reference to a 64-bit variable, which it
uses to store the return value produced by a preceding CALL. The total frame size is
straightforward to compute based on the epilogue: 6x20 bytes released by the ADD RSP, 0x20
instruction, plus an additional 8 bytes accounted for by the PoP instruction, for a total of 0x28
bytes.

Following the pattern established in the previous section, we only need to replicate the prologue
behavior within our custom callback. Specifically, we prepare the stack such that execution
returns directly to the address of the MoV instruction responsible for storing the return value.

do_call:
mov ri10, [r10 + 08h] ; addressToPush

;7 Pretending we are in a frame proc

;7 Note: compile this as a frame proc is absolutely not necessary

H in this case, it is just to show we are mirroring the prolog of GlobalGetUserAndPassW
.pushreg rbx

push rbx

.allocstack 20h

sub rsp, 26h ; this is for the spoofed/swapped frame

.endprolog

; This is the address after the call in GlobalGetUserAndPassW

push ri10

; GCONTEXT is the address of a user-controlled Work Item structure

mov rbx, GCONTEXT ; we need this structure in RBX

add rbx, 8 ; we use the address of the return value, unused for generic callbacks

; Finally we just to the target function
jmp rax

The resulting call stack appears as the following:

7/12

Breakpoint 1 hit
KERMELBASE! LoadLibraryi:

Ba8a7ffa 5ct51e28 A8395c2468 mow quord ptr [rsp+8],rbx ss:886088817 758ff076=-00820806008000068
8:8a83> k

Child-sP Retiddr Call Site

B2 @oeaeef7 75effo68 e8BaT7ffa 4e782347 KERMELBASE! LoadLibraryA

81 oeeaeafr 7seffoye eeee7ffa 5f7d287a | wininet!GlobalGetUserfndPassk+Bx3t |

82 GaeaBety 75811038 @8Be7ffa 517a5ed6 ntdll! TpplorkpExecuteCallback+8x13a

B3 eeeeeef7y 75effofoe eeedrffa 5dod4257d ntdll! TpphorkerThread+exgfo

84 oeegeefr 7seffcde @vee7ffa sf7cafes KERMEL32!BaseThreadInitThunk+8x1ld

85 oeeesefy” 7seffdes coeeeeee” Beooeene ntdll!RtlUserThreadstart+8x28

8:803> da rcx
peaaa2da” 7aesteed "urlmon.dll™

And this will allow us to recover the callback return value as well. Also consider that this kind of
gadget would also be compliant with Eclipse-based inspection, as the full pattern in the function
allow to place the return exactly after the CALL instruction, as visible below:

180152075 e8 ee af CALL internal_function
00 00
18015207a 48 89 03 MoV gword ptr [RBX],RAX <--- We can set the return address here
18015207d b8 01 00 MOV EAX, Ox1
00 00
180152082 eb 06 JMP PROCEDURE_END
SAVE_RBX_RDX
180152084 48 89 02 MOV gword ptr [RDX], RAX
180152087 48 89 03 MOV gword ptr [RBX],RAX
PROCEDURE_END
18015208a 48 83 c4 20 ADD RSP, Ox20
18015208e 5b POP RBX
18015208f c3 RET
180152090 cc ?7? CCh
Limitations

The technique does not have many inherent limitations, but of course, depending on the save
gadget, you can achieve different results.

Return value[s]

In general, with a MOV [REG], RAX, it's possible to implement the above behavior, to save a
normal call return value.

For function passing a return value as a parameter, you won’t need any of this, of course.

Number of arguments

The last gadget is very important to define how many parameters you can pass onto the stack.
The function GlobalGetUserAndPassW allocates only the shadow stack and save RBX before
calling the internal function, this means that the return address of the previous frame is just 0x28
bytes far. Recalling how parameters passing works in 64-bit, the reader should have clear that in

8/12

https://klezvirus.github.io/imgs/blog/008ProxySwap/proxy-swap.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/proxy-swap.png
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/windows-x64-calling-convention-stack-frame

this case, even clobbering the original value of RBX pushed onto the stack (illegal operation), we
have space for maximum one stack parameter before overwriting the return address (which will
lead to a crash on return).

For this reason, in case you want to allow for more parameters, you'd need to find proxy frames
similar to this one, but with bigger allocations (to support nargs parameters you'd need at least
0x20 + (nargs*8)).

Speaking with Alex Reid, we agreed that alternatively, you can use the same pattern
implemented in Moonwalk++, and add an additional proxy frame (conceal-gadget) big enough to
permit as many argument as needed.

One, None and a Hundred Thousand

| remember coming across a blog post not long ago that described loading a strangely named
DLL to “add a frame” between the ThreadPool worker callback using one of its functions as a

forward proxy frame. wanted-to-reference-itbutl-didn't-manage-to-find-it: The post I'm referring

to is available at this LINK

However, building on this pattern, we can explore several ways to not only add a frame, but
literally construct almost fully “custom” call stacks without relying on unusual DLL loading.
Naturally, each of these approaches comes with its own set of trade-offs.

1. One example would be to create chains of “simple” backward proxy frames ending with the
final one that saves the return address value from the target call.
o Main advantage: callstacks can be fully customized
o Disadvantages:
= valid caller-callee relationships might not be possible to construct consistently
= not all epilogs executes immediately after a call instruction, making it
susceptible to detection
2. Another solution would be to use natural occurring forward proxy frames (i.e., callbacks)
o Main advantage: forward edges are all perfectly valid and CET compliant
o Disadvantage:
= | don’t think these chains would ever be used by anybody with a sane mind
= We are stacking callbacks over... callbacks?
3. ... didn’t really think about a third one ... or did 1?

Now, the first solution would require a similar setup we used for stack moonwalk, to identify
frame sizes and collect valid backward proxy frames, then just push them on the stack setting the
valid return address. Personally, | think the code and examples provided in my previous posts
and projects should be more than enough to reproduce it without further explanations.

9/12

https://x.com/Octoberfest73
https://github.com/klezVirus/Moonwalk--/blob/master/Moonwalk--/Moonlight.cpp#L722
https://offsec.almond.consulting/evading-elastic-callstack-signatures.html

The second solution, instead, unleashes what | friendly name the “callback hell”, where we can

chain multiple callback mechanisms together to obfuscate the callstack. The strategy is quite

simple, even more than the previous one, and there’s no shortage of functions that can serve as

callback invokers. If you don’t want to research them yourself, the project
AlternativeShellcodeExec covers most of what you need.

In order to implement the chaining logic, we will define a general array of structures (Work
Items), where each work item would define the pointer to the next call in the chain, its
parameters, and the optional return argument.

typedef struct WorkItemContext {

FARPROC func; // Function pointer
void* retAddress; // Return address to simulate stack return
uint64_t argc; // Argument count

void* args[MAX_ARGC]; // Arguments (up to MAX_ARGC)
} WorkItemContext;

Now, for the actual logic, we will construct three main assembly functions™:

« FirstCallback: Initialize certain variables used across the callback chains

e GenericCallback: Perform the tail call to the next generic callback invoker

o LastCallback: Sets up the save to RBX_SAVE backward proxy frame and performs the
actual call to the

*Note: This kind of implementation is purely arbitrary

The resulting program flow would be similar to the following:

Program Code

Callback-Tailcall 1

Callback-Tailcall 1

Callback-Tailcall N

TargetFunction

10/12

https://github.com/aahmad097/AlternativeShellcodeExec
https://klezvirus.github.io/imgs/blog/008ProxySwap/chained-calls.png
https://klezvirus.github.io/imgs/blog/008ProxySwap/chained-calls.png

Ok, but why?

Apparently, as weird as it sounds, this strange call stack construction bypasses current callstack
detection logic.

In theory, it could be possible to chain n callbacks in n! ways, which makes this technique quite
interesting for artificial stack construction. On the other side, most of these callbacks are known,
so it might also be possible to create signatures for them (well, at least the documented ones).

POC||GTFO

The final POC can be found at ThreadPoolExecChain. As always, the important piece of the
puzzle is the assembly. It's nothing complex, and should serve as a basis for more complex
designs.

Following, a small video of the technique in action. If the embedded version does not work,
here’s the LINK.

Watch Video At: https://youtu.be/8oF-33is-Ic

Detection Landscape

Note: Detection is only required for processes where Intel-CET is disabled. Backward
proxy frames are not compatible with CET.

11/12

https://github.com/klezVirus/ThreadPoolExecChain
https://youtu.be/8oF-33is-Ic
https://youtu.be/8oF-33is-Ic

For Frame Swapping using backward proxy frames, the detection landscape largely mirrors that
of the original stack moonwalking technique. The most reliable detection strategy remains
monitoring the call stack for anomalies. Specifically, identifying return addresses that are not
preceded by a legitimate CALL instruction.

In fact, this technique imposes quite strict constraints for successful execution: we must locate an
instruction that not only stores RAX into a pointer but also returns without clobbering critical
registers. This combination of conditions significantly reduces the availability of suitable gadgets.
However, it is far from impossible to find suitable gadgets, as proven by the one we used in this
blog post.

What about the chain of callbacks? Well, frankly | don’t know why this behaviour does not have a
signature yet, as there are zero legitimate reasons to implement something like this.

Other detection ideas:

¢ Inspect process IAT to detect dynamic calls

o Validate called function using CFG/XFG bitmap (if CFG enabled)
o CALL address validation

e Code emulation

Closing Remarks

All of this trouble was ultimately the result of chasing a very contingent problem raised by a
friend; ironically, one | have not even informed him about yet.

Something to consider is that while chaining callbacks works perfectly fine even with CET
enabled, the return-value recovery trick does not, meaning we will have to figure out a different
approach in the future. Until then.

References

e Hiding_In PlainSight - Indirect Syscall is Dead! Long_Live Custom Call Stacks
Windows x64 Calling_ Convention

AlternativeShellcodeExec

PoolParty

Evading_Elastic EDR’s call stack signatures with call gadgets

12/12

https://0xdarkvortex.dev/hiding-in-plainsight/
https://www.ired.team/miscellaneous-reversing-forensics/windows-kernel-internals/windows-x64-calling-convention-stack-frame
https://github.com/aahmad097/AlternativeShellcodeExec
https://github.com/SafeBreach-Labs/PoolParty
https://offsec.almond.consulting/evading-elastic-callstack-signatures.html

