EDR Evasion with Hardware Breakpoints: Blindside
Technique

o cymulate.com/blog/blindside-a-new-technique-for-edr-evasion-with-hardware-breakpoints

Ilan Kalendarov December 18, 2022

Utilizing hardware breakpoints to evade monitoring by endpoint detection and response (EDR)
platforms and other control systems is not a new concept. Both threat actors and researchers
alike have exploited breakpoints to inject commands and perform malicious operations.

Proof of Concept (PoC) techniques using Event Tracking for Windows (ETW) and the Windows
Anti-Malware Scanning Interface (AMSI) have been available for some time. These include in-
depth work such as that created by @rad9800 TamperingSyscalls and In-Process Patchless AMSI
Bypass created by EthicalChaos — but in both cases, the attack is performed by hooking a
specific function in the current process memory to manipulate it for an unintended purpose.

The Cymulate Offensive Research Group were able to extend the methodology into a new
technique named “Blindside” to allow for the method to work on a broader scale. Instead of
hooking a specific function, the Blindside technique instead loads a non-monitored and
unhooked DLL and leverages debug techniques that could allow for running arbitrary code.

This permits more flexibility in what code can be executed outside the watchful eye of many
commercial EDR and XDR platforms.

Enable targeting cookies to watch this video.

An Overview of Hardware Breakpoints and Debug Registers (DR0-DR?7)

Since Blindside depends on hardware breakpoints, understanding how these breakpoints and
debug registers function is essential.

1/12

https://cymulate.com/blog/blindside-a-new-technique-for-edr-evasion-with-hardware-breakpoints/
https://twitter.com/rad9800
https://github.com/rad9800/TamperingSyscalls
https://twitter.com/_EthicalChaos_

What are Hardware Breakpoints and Debug Registers?

Hardware breakpoints are available on both x86 and x64 processors, containing eight debug
registers: DRO — DR7. These registers are 32- or 64-bits long, depending on the processor type,
and control the monitoring of debugging operations.

Unlike software breakpoints—which are more familiar to Windows developers—hardware
breakpoints allow for “memory breakpoints,” triggered when an instruction attempts to read, write,
or execute a specified memory address (based on the breakpoint configuration). However, a
limitation is that only a few hardware breakpoints can be active at any time.

Functions of Debug Registers (DR0-DR7)

 DRO0-DR3: Hold the linear address of a breakpoint and are referred to as Debug Address
Registers. A breakpoint triggers when the instruction matches the address in one of these
registers.

 DR4-DRS5: These are Reserved Debug Registers and are not used in this technique.

 DR6: Known as the Debug Status Register, it reports debug conditions sampled during the
last exception.

» DR7: The Debug Control Register is crucial in the Blindside technique as it controls each
breakpoint and its conditions.

The primary function of these debug registers is to set up and monitor up to 4 numbered 0 through
3. For each breakpoint, the following information can be specified:

e The linear address where the breakpoint is to occur.

The length of the breakpoint location (1, 2, or 4 bytes).

The operation will be performed at the address for a debug exception to be generated.
Whether the breakpoint is enabled.

Whether the breakpoint condition was present when the debug exception was generated.

2/12

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
LEN|R/W|LEN|R/W|LEN|R/W|LEN|R/W|0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E(E|3[3|2]2|1|1|0|0

31 161514131211109 8 7 6 564 3 2 1 0
Reserved (set to 1) B(jBIBlo111111111B|B|B|B| prg

T|S|D 3|2(1(0

31 0
DR5

31 0
DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint 0 Linear Address DRO

\:l Reserved

Debug Exceptions

When it comes to exceptions in hardware breakpoints, there are two consequences here: a debug
exception (#DB) and a breakpoint exception (#BP). For the purposes of the Blindside technique,
the debug exception (#DB) is most important. When a breakpoint is triggered, the execution will
be redirected to a handler - which is usually a debugger program or part of a more extensive
software system. It is important to note that exceptions in the Blindside technique will only be
triggered if they are a single-step exception.

3/12

Setting up the Blindside Technique

Step 1: The Breakpoint Handler

In preparing to utilize the technique, the first requirement is that a Breakpoint Handler is
established. Here is an example of a handler in C++:

ytionInfo->ContextRecord-=Drd) {

1x):\n", ExceptionInfo—>ExceptionRecord->ExceptionAddress);
ContextRecord-=Rcx) ;

ContextRecord-—=Rdx) ;

ContextRecord->R8) ;

ContextRecord->R9) ;

ContextRecord->Rsp)

ContextRecord->Rax)

ContextRecord->Dré) ;
—>ContextRecord->Rip)

ExceptionInfo->ContextRecord->EFlags |= (1 << 16);

return EXCEPTION_CONTINUE_EXECUTION;

¥
return EXCEPTION_CONTINUE_SEARCH,

}

The function first checks if the exception code in the ExceptionRecord member of the
EXCEPTION_POINTERS structure is EXCEPTION_SINGLE_STEP, which indicates that a single-
step exception has occurred. If this is the case, the function then checks if the instruction pointer
(Rip) in the ContextRecord member of the structure is equal to the value of the first debug register
(Dr0). If this is also true, the function prints some information about the exception, including the
exception address, the values of certain registers, and the value of the stack pointer (Rsp).

Finally, the function sets the resume flag (RF), and returns
EXCEPTION_CONTINUE_EXECUTION to indicate that the execution should continue. If the
exception code is not EXCEPTION_SINGLE_STEP, the function returns
EXCEPTION_CONTINUE_SEARCH to indicate that the search for a handler should continue.

Technique Setup Part 2: Setting the Breakpoint

With the handler configured to deal with the exception, the next step in preparation is to create the
actual breakpoint.

Using C++ as before, here is an example of the breakpoint configuration:

4/12

VOID SetHWBP(LPVOID address

CONTEXT context = { @ };
context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
GetThreadContext(nThread: GetCurrentThread(), 1ipContext:&context);

if (setBP)

{
context.
context.
context.

context. &= ~(1 == 1?};

context. = 8;
context. &= ~(1 == 8);

context.ContextFlags = CONTEXT_DEBUG_REGISTERS;
SetThreadContext(hThread: GetCurrentThread(), 1pContext: &context);

return;

This function takes two parameters. The first is the address where the system should breakpoint
on, and the second is to enable the breakpoint or disable it. The technique then takes the current
context of the specified thread being acted on and stores it inside of a context variable. If the
setBP variable is true, the code sets DRO to the address the attacker wishes to break on. Note
that the technique could have also been used Dr1, Dr2, or Dr3 to store the address if necessary.
Following this, the execution sets the first bit of Dr7 to 1 to enable the breakpoint and clears bits
16 and 17 to break the execution.

Conversely, if the setBP variable is false, the code will clear DrO and do the same for the first bit of
Dr7. Finally, the code sets the context of the thread for it to be updated.

Utilizing Blindside

While researching this topic, Cymulate reviewed the significant work on the general methodology
that has been created by numerous research professionals. The Cymulate Offensive Research
Group realized that a different technique to those already known could create a new process in
debug mode, place a breakpoint on LdrLoadDIl, and force only ntdll.dll to load. This creates a
situation where the result is a clean version of ntdll, without hooks. An attacker could then copy
the memory of the clean ntdll to an existing process and unhook all previously hooked syscalls.

5/12

When a process is first created, ntdll.dIl will automatically be loaded, but additional dII's will also
come into play. By utilizing this technique, the breakpoint blocks the loading of the additional dlI’s
by hooking LdrLoadDLL and creates a process with only the ntdll in a stand-alone, unhooked
state.

Process Debuged Process

Create debug process

Find LdrLoafdDIl address

Hardware breakpoint on LdrLoadDIl

ntdll load, other |DLLs are blocked

Copy .text section of ntdll

Overwrite hooked ntdll with the clean one

Process Debuged Process

Walking Through the Blindside Technique

When looking at the entire process, the application of the Blindside technique can allow for an
unmonitored process to run within the context of the Windows session as follows:

6/12

Step 1: Create a new process in debug mode

createProcessInDebug(

ZeroMemory(&si,
(si);
(pil);
= GetModuleFromPEB("ke
CreateProcessWCustom = (GetAPIFromPEBModule(hKernel_32, e ce)
reateProcessWCustom(p 2, NULL, NULL, FALSE, DEBUG_PROC NULL, N , &si, &pi)

return pi;

Step 2: Find the process address for LdrLoadDII

Because the process created is a targeted child process, it will have the same ntdll base address
and the same address for LdrLoadDIl. This means that the address for LdrLoadDIl must be
identified.

L.dll");
11)GetAPIFromPEBModule(ChNtdll, "LdrLoadDll");

(LdrLoadD11Custom);
\n", LdrLoadDllAddress);

Step 3: Set the breakpoint

After finding the LdrLoadDlIl address, the next function required is to put a breakpoint on the
remote process.

7/12

VOID SetHWBP(DWORD_PTR address,

I
L

CONTEXT ctx = { ;

ctx.ContextFlags = CONTEXT_DEBUG_REGISTERS | CONTEXT_INTEGER;
ctx.Dré = dress;

ctx.Dr7 = 6x088086801 ;

SetThreadContext(hTh

NT dbgEvent;
&)

if (WaitForDebugEvent(&dbgEvent, INFINITE) == @)
break;

if (dbgEvent.dwDebugEventCode == EXCEPTION_DEBUG_EVENT &&
dbgEvent.u.Exception.ExceptionRecord.ExceptionCode == EXCEPTION_SINGLE_STEP)
CONTEXT newCtx = { @ };
newCtx.ContextFlags = CONTEXT_ALL;
GetThreadContext(hThr , &newCtx);
if (dbgEvent.u.Exception.ExceptionRecord.ExceptionAddress == (LPVOID)address)
{
printf("[+] Breakpoint Hit!\n");
newCtx.Dré = newCtx.Dr newCtx.Dr7 = 8;
newCtx.EFlags |= (1 =<
return;
else {
newCtx.Dre address,
newCtx . Dr7 BaeBEeEa] ;
newCtx.EFlags & ~(1 << 8);

SetThreadContext(hThread, &newCtx);

ContinueDebugEvent(dbgEvent.dwProcessId, dbgEvent.dwThreadld, DBG_CONTINUE);

The function takes two arguments: the address at which the breakpoint should be set and a
handle to the thread on which the breakpoint should be set.

The function first initializes a CONTEXT structure and sets its ContextFlags member to the bitwise
OR of CONTEXT_DEBUG_REGISTERS and CONTEXT_INTEGER, which specifies that the
structure should be filled with the current debug registers and integer registers of the thread. It
then sets the value of the first debug register (Dr0) to the specified address and sets the Oth bit of
the Dr7 register to enable the breakpoint.

Step 4: Wait for the breakpoint to trigger

Next, the function calls the SetThreadContext() function to apply the updated context to the
thread. It then enters an infinite loop that waits for debug events using the WaitForDebugEvent()
function. When a debug event is received, the function checks if it is an exception debug event

8/12

with an exception code of EXCEPTION_SINGLE_STEP. If this is the case, the function retrieves
the current context of the thread using the GetThreadContext() function and checks if the
exception address matches the specified address.

If the exception address matches the specified address, the function will reset the Dr0, Dr6, and
Dr7 registers and will return nothing, this is done to block the LdrLoadDIl from loading other DLLs.
Otherwise, it resets the breakpoint and continues execution by calling the ContinueDebugEvent()
function with the DBG_CONTINUE argument. This loop continues until WaitForDebugEvent()
returns 0, indicating that no more debug events are available.

= explorer.exe (6404) Properties = O X
Hacker View Tools Users Help — -
General Statistics Performance Threads Token Modules Memory Environment Handles
Processes Services MNetwork
Mame PID CPU I/Ototal.. H Name . Base address Size Description
G‘ chrome.exe 16256 explorer.exe 0x7ff6d3130000 4.16 MB Windows Explorer
G‘ chrome.exe 12084 ntdll.dl 0x7ffd5a8e0000 1.93MB NT Layer DLL
G chrome.exe 15788
G chrome.exe 2904
G chrome.exe 6720
G chrome.exe 9728
G chrome.exe 15748
G chrome.exe 14764
G chrome.exe 10416
G chrome.exe 9168
G chrome.exe 12868
G chrome.exe 12504
G chrome.exe 13456 I"\3
G chrome.exe 2976
G chrome.exe 12280
~ BN cmd.exe 12844
BN conhost.exe 10092
~ [5] RHWBP.exe 10312
explorer.exe 6404
Bl cmd.exe 6112
v 1 devenv.exe 15460 013 = =
[55] PerfWatson2.exe 17020
~ [5F] Microsoft.ServiceHu... 15832
[8°] ServiceHub.VSDet... 8064 0.1 i L

Step 5: Memory loading and unhooking

It is then necessary to copy the memory of ntdll into the target process and unhook any syscalls.

9/12

VOID CopyNtdllFromDebugProcess(HANDLE hP

hHernel_32 = GetModuleFromP
hNtdll = GetModuleFromPEBR
t bAddress =
printf("ntdll.d11 base address

NtReadVirtualMemoryCusto Memory)GetAPIFromPEBModuleChNtdl
irtualProtectCustom = (T etAPIF:omPEBHodule hHernel_32, ™

ADER ImgDosHeader =
['TR)bAddress + ImgDosHeader->e_lfanew);
R OptHeader = (ader->0OptionalHeader;

) ntdl18ize = 0ptHeader.SizeO¥Image;
¥1e5hNtdll = BYTE[ntdllSize];
eadVirtualMemoryCustom)(hProc, (PVOID)bAddress, freshNtdll, ntdllSize, ©);
Te1m1nateploce55I 8);

This function has one parameter, a handle, to the debugged process created. The base address
of the debugged process will be identical to the ntdll base address. After reading the memory of
ntdll using NtReadVirtualMemory, freshNtdll (the allocated buffer will store that memory
information. It is now safe to terminate the original process as there is no further need for it.

Step 6: Overwrite hooks

Next, it is necessary to iterate through all to find the virtual address of the .text section of ntdll,
change the protection to PAGE_EXECUTE_READWRITE, and copy the .text section of the new
mapped buffer (freshNtdll) to the original hooked version of ntdll, which will result in the hooks
being overwritten.

Step 7: Clean up

The last step to conclude this technique is to restore the original protection.

Mitigating Blindside

The Blindside technique is not immune to mitigation. Although it can bypass EDR (Endpoint
Detection and Response) solutions relying on hooks to detect behaviors, several strategies can
reduce its effectiveness and alert security teams when it is used.

1. Monitoring SetThreadContext Function Usage

The first mitigation method is to monitor the use of the SetThreadContext function. This function is
frequently abused for malicious purposes. By inspecting the context, security teams can identify if
an attacker has placed an address inside one of the Debug Address Registers (DR0-DR3). Any
unexpected data written into these registers serves as a strong indicator of compromise. When
combined with evidence of new DLL instances or other indicators, this activity can prompt anti-
malware solutions to take action.

10/12

2. Tracking Suspicious Debug Functions and Registers

Another method involves monitoring debug functions to detect signs of malicious activity. While
these functions run, EDR solutions should actively inspect the DR0O-DR3 registers for suspicious
behavior. If such activity is found, it is a clear indicator of a potential threat.

3. Adjusting EDR Settings for Better Detection

Even though Blindside may bypass EDR platforms in their default settings, adjusting protocols and
profiles can enable these tools to monitor DRO-DR3 registers more effectively. If any of these
registers contain a suspicious address, it signals that a process may be attempting to hook into
them.

EDR technologies can correlate these actions with other malicious activities, such as attempts to
create unhooked DLLs. With proper settings and configurations, the EDR can block the attack and
terminate the offending process before it escalates.

Conclusion

While researching the viability of this technique, the Cymulate Offensive Research Group verified
the efficacy of the technique against multiple EDR and XDR platforms commercially available. The
result of this experimentation is that many — but not all - EDR/XDR systems could be bypassed
using Blindside.

Cymulate will not be naming specific EDR/XDR tools that are vulnerable or not vulnerable due to
confidentiality requirements, but vendors who were tested against were notified. Additionally,
before the publication of the details of the technique, Cymulate filed a Microsoft Security
Response Center report to allow Microsoft to be aware of the Blindside technique. As of this
publication, Microsoft has declined to comment.

It is the hope of the Cymulate Offensive Research Group that the identification of the viability and
efficacy of the Blindside technique against current versions of Windows (Desktop and Server) and
multiple EDR/XDR products will result in a re-examination of hardware breakpoint handling in
future.

References

o https://www.intel.com/content/dam/support/us/en/documents/processors/pentium4/sb/25366
9.pdf
e https://ling.re/hardware-breakpoints/
« https://github.com/rad9800/TamperingSyscalls
Table of Contents

e

11/12

https://www.intel.com/content/dam/support/us/en/documents/processors/pentium4/sb/253669.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/pentium4/sb/253669.pdf
https://ling.re/hardware-breakpoints/
https://github.com/rad9800/TamperingSyscalls

Cymulate Exposure Validation makes advanced security testing fast and easy. When it comes
to building custom attack chains, it's all right in front of you in one place.

Mike Humbert, Cybersecurity Engineer
DARLING INGREDIENTS INC.

Learn More

12/12

https://cymulate.com/data-sheet/exposure-validation/

