i1 : ZZ[x,y] o1 = ZZ[x, y] o1 : PolynomialRing |
i2 : f = FGL(series(x+y+x*y,10)) o2 = FormalGroupLaw{x*y + x + y, 10} o2 : FormalGroupLaw |
i3 : ZZ[u] o3 = ZZ[u] o3 : PolynomialRing |
i4 : s = formalGroupPoint(f,series(u^2+u,5)) 2 o4 = FormalGroupPoint{FormalGroupLaw{x*y + x + y, 10}, FormalSeries{u + u, 5}} o4 : FormalGroupPoint |
i5 : t = formalGroupPoint(f,series(u^3,5)) 3 o5 = FormalGroupPoint{FormalGroupLaw{x*y + x + y, 10}, FormalSeries{u , 5}} o5 : FormalGroupPoint |
i6 : s+t 5 4 3 2 o6 = FormalGroupPoint{FormalGroupLaw{x*y + x + y, 10}, FormalSeries{u + u + u + u + u, 5}} o6 : FormalGroupPoint |